Supporting Information for:

New pathways for Asphaltenes Upgrading Using Oxy-Cracking Process

Maryam Ashtari,^{a,*} Lante Carbognani Ortega,^a Francisco Lopez-Linares,^{a,b} Abdelatif Eldood,^a Pedro Pereira-Almao ^a

- a Department of Chemical & Petroleum Engineering, Schulich School of Engineering University of Calgary, Calgary, Canada, T2N1N4
- b. Present address; Petroleum and Materials Characterization Unit, Chevron Energy Technology Company,
 100 Chevron Way, Richmond, California, 94801, United States

List of Figures.

- **Figure S1.** Model and experimental products and reactants carbon mass at 200°C, a. asphaltene carbon mass, b. organic carbon mass in liquid, c. inorganic carbon mass in liquid plus carbon in CO₂ gas.
- **Figure S2**. Model and experimental products and reactants carbon mass at 210°C, a. asphaltene carbon mass, b. organic carbon mass in liquid, c. inorganic carbon mass in liquid plus carbon in CO₂ gas.

Figure S1

Figure S2