Supporting Information:

A Comparison of the Selectivity of Extraction of $\left[\mathrm{PtCl}_{6}\right]^{2-}$ by Mono-, Bi- and Tripodal Receptors that Address its Outer Co-ordination Sphere

Rebecca J. Warr, ${ }^{\dagger}$ Katherine J. Bell, ${ }^{\dagger}$ Anastasia Gadzhieva, ${ }^{\dagger}$ Rafel Cabot, ${ }^{\dagger}$ Ross J. Ellis, ${ }^{\ddagger}$ Jy Chartres, ${ }^{\ddagger}$ David K. Henderson, ${ }^{\ddagger}$ Eleni Lykourina, ${ }^{\dagger}$ A. Matthew Wilson, ${ }^{\ddagger}$ Jason B. Love, ${ }^{\ddagger}$ Peter A. Tasker, ${ }^{*, \hbar}$ and Martin Schröder ${ }^{*, \dagger, \#}$

${ }^{\dagger}$ School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, (UK)
${ }^{\text {* }}$ School of Chemistry, University of Edinburgh, Edinburgh, EH9 3JJ, (UK)
\# School of Chemistry, University of Manchester, Manchester, M13 9PL (UK)

Contents:

Section 1. Additional extraction data.
Section 2. Additional information on crystal structures and contact distances defining intermolecular H-bonds.

Section 3. ${ }^{1} \mathrm{H} n \mathrm{~nm}$ data for all protons in titration of $\mathrm{L}^{4} \cdot \mathbf{H C l}$ with $\left[\left(\mathrm{Oct}_{\mathbf{4}} \mathrm{N}_{2} \mathbf{P t C l}_{\mathbf{6}}\right]\right.$. Section 4. Listing of CIF files.

1. Additional extraction data. The results presented in Figures S1-S6 demonstrate that extractants differing only in having 3,4-dimethoxy substitution rather than 3,5-dimethoxy substitution on the benzene rings show very similar loadings of $\left[\mathrm{PtCl}_{6}\right]^{2-}$.

Figure SI1. Plot of percentage of the total platinum extracted as $\left[\mathrm{PtCl}_{6}\right]^{2-}$ from aqueous 0.6 M HCl into CHCl_{3} as a function of the [L]:[Pt] ratio for the tripodal ureas: $\mathbf{L}^{\mathbf{1}}$ (3,4-methoxy substituted) and $\mathbf{L}^{\mathbf{2}}(3,5-$ methoxy substituted).

Figure SI2. Plot of percentage of the total platinum extracted as $\left[\mathrm{PtCl}_{6}\right]^{2-}$ from aqueous 0.6 M HCl into CHCl_{3} as a function of the [L]:[Pt] ratio for the tripodal amides: \mathbf{L}^{3} (3,4-methoxy substituted) and $\mathbf{L}^{4}(3,5-$ methoxy substituted).

Figure SI3. Plot of percentage of the total platinum extracted as $\left[\mathrm{PtCl}_{6}\right]^{2-}$ from aqueous 0.6 M HCl into CHCl_{3} as a function of the $[\mathrm{L}]:[\mathrm{Pt}]$ ratio for the bipodal ureas: $\mathbf{L}^{\mathbf{6}}$ (3,4-methoxy substituted) and $\mathbf{L}^{7}(3,5-$ methoxy substituted).

Figure SI4. Plot of percentage of the total platinum extracted as $\left[\mathrm{PtCl}_{6}\right]^{2-}$ from aqueous 0.6 M HCl into CHCl_{3} as a function of the [L]:[Pt] ratio for the bipodal amides: \mathbf{L}^{8} (3,4methoxy substituted) and \mathbf{L}^{9} (3,5-methoxy substituted).

Figure SI5. Plot of percentage of the total platinum extracted as $\left[\mathrm{PtCl}_{6}\right]^{2-}$ from aqueous 0.6 M HCl into CHCl_{3} as a function of the [L]:[Pt] ratio for the monopodal ureas: $\mathbf{L}^{\mathbf{1 1}}$ (3,4-methoxy substituted) and \mathbf{L}^{12} (3,5-methoxy substituted).

Figure SI6. Plot of percentage of the total platinum extracted as $\left[\mathrm{PtCl}_{6}\right]^{2-}$ from aqueous $0.6 \mathrm{M} \mathrm{HCl}^{2}$ into CHCl_{3} as a function of the $[\mathrm{L}]:[\mathrm{Pt}]$ ratio for the monopodal amides: L^{13} (3,4-methoxy substituted) and \mathbf{L}^{14} (3,5-methoxy substituted).

Section 2. Additional information on crystal structures and contact distances defining intermolecular H-bonds.

Proligand $\mathbf{L}^{\mathbf{1 1}}$: The extended structure shows inter-molecular hydrogen-bonding in $\mathbf{L}^{\mathbf{1 1 (a)}}$ with $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}^{\cdots} \mathrm{O} 2\left(\mathrm{H}^{\cdots} \mathrm{A}=2.121 \AA\right.$) and $\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A}^{\cdots} \mathrm{O} 2\left(\mathrm{H}^{\cdots} \mathrm{A}=2.092 \AA\right.$ (Figure 2). The molecules of $\mathbf{L}^{\mathbf{1 1 (a)}}$ have an alternating orientation and form a chain with each molecule of $\mathbf{L}^{11(\text { a) }}$ being linked to the next through bifurcated hydrogen-bonds between the urea moieties. There are analogous inter-molecular interactions between the $\mathbf{L}^{\mathbf{1 1 (b)}}$ molecules with $\mathrm{N} 7-\mathrm{H} 7 \mathrm{~A}^{\cdots} \mathrm{O} 4\left(\mathrm{H}^{\cdots} \mathrm{A}=2.056 \AA\right)$ and $\mathrm{N} 8 — \mathrm{H} 8 \mathrm{~A}^{\cdots} \mathrm{O} 4\left(\mathrm{H}^{\cdots} \mathrm{A}=2.140 \AA\right)$. Further data are included in Table S1.
$\left[\left(\mathbf{L}^{11} \mathbf{H}\right)_{2} \mathbf{P t C l}_{6}\right]$: The complex crystallises in the monoclinic space group $\mathrm{P} 2_{1} / \mathrm{c}$ with one $\left[\mathrm{PtCl}_{6}\right]^{2-}$ anion lying on a centre of inversion and two receptor cations related by the inversion centre. The $\mathbf{L}^{\mathbf{1 1}}$ molecules are protonated at the bridgehead position (N1) to give the receptor $\mathrm{a}+1$ charge and for each $\left[\mathrm{PtCl}_{6}\right]^{2-}$ anion present there are two $\left(\mathbf{L}^{11} \mathrm{H}\right)^{+}$ cations ensuring that the structure has a net charge of zero and confirming the expected 2 : $1\left(\mathbf{L}^{11} \mathrm{H}\right)^{+}$to $\left[\mathrm{PtCl}_{6}\right]^{2-}$ stoichiometry of the complex. Disorder around the NMe fragment involving $\mathrm{N} 1, \mathrm{C} 1$ and C 2 was modelled over two half-occupied sites with distance restraints and was refined with isotropic atomic displacement parameters.

The structure determination reveals extensive hydrogen-bonding between the urea moieties of $\left(\mathbf{L}^{11} \mathrm{H}\right)^{+}$and $\left[\mathrm{PtCl}_{6}\right]^{2-}$ and also between the $\left(\mathbf{L}^{11} \mathrm{H}\right)^{+}$cations. Each $\left[\mathrm{PtCl}_{6}\right]^{2-}$ anion accepts three hydrogen-bonds from two $\left(\mathbf{L}^{11} \mathrm{H}^{+}\right)$cations giving a total of six
$\mathrm{NH}^{\cdots} \mathrm{Cl}$ interactions per anion with $\mathrm{N} 4 — \mathrm{H}^{2} 4 \mathrm{~A}^{\cdots} \mathrm{Cl} 2\left(\mathrm{H}^{\cdots} \mathrm{A}=2.604 \AA\right), \mathrm{N} 4 — \mathrm{H} 4 \mathrm{~A}^{\cdots} \mathrm{Cl} 3$ $\left(\mathrm{H}^{\cdots} \mathrm{A}=2.745 \AA\right)$ and $\mathrm{N} 5-\mathrm{H} 5 \mathrm{~A}^{\cdots} \mathrm{Cl} 2\left(\mathrm{H}^{\cdots} \mathrm{A}=2.729 \AA\right)$ (Figure 3). The N4—H4A donor group is located between the Cl 2 and Cl 3 atoms and the $\mathrm{N} 5-\mathrm{H} 5 \mathrm{~A}$ group is located approximately in the centre of a triangular face defined by $\mathrm{Cl} 1, \mathrm{Cl} 2$ and Cl 3 . These correspond to areas of highest electron density surrounding $\left[\mathrm{PtCl}_{6}\right]^{2-}$ and are locations predicted to be targeted by NH groups. ${ }^{15}$

There are also intra- and inter-ligand $\mathrm{NH}^{\cdots} \mathrm{O}$ interactions $\mathrm{N} 1-\mathrm{H} 1 \mathrm{D} \cdots \mathrm{O} 2\left(\mathrm{H}^{\cdots} \mathrm{A}=\right.$ $2.103 \AA), \mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}^{\cdots} \mathrm{O} 1\left(\mathrm{H}^{\cdots} \mathrm{A}=2.069 \AA\right.$) and $\mathrm{N} 3-\mathrm{H}^{\circ} \mathrm{A}^{\cdots} \mathrm{O} 1\left(\mathrm{H}^{\cdots} \mathrm{A}=2.141 \AA\right)$. The extended structure shows that one urea group in each $\left(\mathbf{L}^{11} \mathrm{H}^{+}\right)$cation hydrogen-bonds to $\left[\mathrm{PtCl}_{6}\right]^{2-}$ while the other forms hydrogen-bonds to an adjacent $\left(\mathbf{L}^{11} \mathrm{H}^{+}\right)$molecule to give
 hydrogen-bonds present in this structure are given in Table S2.

The configuration of the ligand is different in \mathbf{L}^{11} and $\left.\left(\mathbf{L}^{11} \mathrm{H}\right)_{2} \mathrm{PtCl}_{6}\right]$. In $\mathbf{L}^{\mathbf{1 1}}$ the two pendant arms have a parallel orientation with a bifurcated intra-ligand hydrogenbond between the urea moieties on the pendant arms. The arms are aligned less in $\left[\left(\mathbf{L}^{11} \mathrm{H}\right)_{2} \mathrm{PtCl}_{6}\right]$ and there are no intra-ligand hydrogen-bonds between the urea moieties.

It was thought that a bipodal receptor would form fewer hydrogen-bonds to $\left[\mathrm{PtCl}_{6}\right]^{2-}$ than a tripodal urea receptor because there are fewer NH donor groups available. The structure $\left[\left(\mathbf{L}^{11} \mathrm{H}\right)_{2} \mathrm{PtCl}_{6}\right]$ shows that two out of four functionalised arms interact with the anion and there are six $\mathrm{NH}^{\cdots} \mathrm{Cl}$ hydrogen-bonds to each $\left[\mathrm{PtCl}_{6}\right]^{2-}$. This suggests that the number of functionalised pendant arms does not play a significant part in determining the number of hydrogen-bonds that are formed to $\left[\mathrm{PtCl}_{6}\right]^{2-}$ in the solid state. This is true also for the other structures.
$\left[\left(\mathbf{L}^{13} \mathbf{H}\right)_{\mathbf{2}} \mathbf{P t C l}_{6}\right]$: The $\mathbf{L}^{13} \mathrm{H}^{+}$units present in the structure are protonated at the tertiary amine position (N1) giving them a +1 charge and as the $\left(\mathbf{L}^{\mathbf{1 3}} \mathrm{H}\right)^{+}:\left[\mathrm{PtCl}_{6}\right]^{2-}$ ratio is 2: 1 the crystal has a net charge of zero. The structure also contains four molecules of disordered MeCN in the unit cell. These have been omitted in Figure 4.

There are $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{Cl}-\mathrm{Pt}$ interactions between both amide NH groups in $\left(\mathbf{L}^{\mathbf{1 3}} \mathrm{H}^{+}\right)$ and two separate molecules of $\left[\mathrm{PtCl}_{6}\right]^{2-}$ with $\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~A}^{\cdots} \mathrm{Cl} 2\left(\mathrm{H}^{\cdots} \mathrm{A}=2.464 \AA\right)$ and $\mathrm{N} 3-$ $\mathrm{H} 3 \mathrm{~A}^{\cdots} \mathrm{Cl} 3\left(\mathrm{H}^{\cdots} \mathrm{A}=2.581 \AA\right)$. There is a centre of inversion at Pt1 resulting in each $\left[\mathrm{PtCl}_{6}\right]^{2-}$ anion accepting one hydrogen-bond from four different $\left(\mathbf{L}^{13} \mathrm{H}^{+}\right)$cations. The H3A atom hydrogen-bonds to Cl 3 but the $\mathrm{H} 3 \mathrm{~A}^{\cdots} \mathrm{Cl} 1$ distance $\left(\mathrm{H}^{\cdots} \mathrm{A}=2.990 \AA\right.$) is slightly too long to be classed as a close interaction. The H3A atom is located between the Cl 1 and Cl 3 atoms but is slightly out of the plane defined by $\mathrm{Pt} 1, \mathrm{Cl} 1$ and Cl 3 . There are also inter-ligand interactions $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 5\left(\mathrm{H}^{\cdots} \mathrm{A}=2.038 \AA\right.$) and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1\left(\mathrm{H}^{\cdots} \mathrm{A}=2.569\right.$ A). Further information on the hydrogen-bonds present are given in Table S3.
[$\left.\left(\mathbf{L}^{23} \mathbf{H}\right)_{\mathbf{2}} \mathbf{P t C l}_{6}\right]$: Orange blocks of $\left[\left(\mathbf{L}^{23} \mathrm{H}\right)_{2} \mathrm{PtCl}_{6}\right]$ obtained by slow evaporation of an aqueous methanolic solution of $\mathbf{L}^{23}, \mathrm{H}_{2} \mathrm{PtCl}_{6}$ and HCl have the triclinic space group P-1. The NH unit of the protonated tertiary amine nitrogen atom forms a H -bond to the neighbouring amide oxygen atom to form a 6-membered "proton chelate". The chelated proton does not make close contacts with $\left[\mathrm{PtCl}_{6}\right]^{2-}$ ions but the chelate ring structure determines which polarised $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ bonds are available to address the outer coordination sphere of a chloridoplatinate through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl} \mathrm{H}$-bonding interactions. A polymeric structure results in which chloridoplatinate shows twelve long
range interactions (within $3 \AA$) between five of its chloride atoms: two amido $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions, $\mathrm{N} 5 \mathrm{~A}-\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{Cl4C}(\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{Cl4C}=2.637 \AA)$ and $\mathrm{N} 5 \mathrm{~B}-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{Cl} 6 \mathrm{C}$ $(\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{Cl} 6 \mathrm{C}=2.468 \AA)$ and a further ten $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions between 2.768 and $2.903 \AA \mathrm{H} \cdots \mathrm{Cl}$ length. A list if the X-H $\cdots \mathrm{Cl}$ contacts shorter than $3 \AA$ is given in Table S4.
$\left[\left(\mathbf{L}^{24} \mathbf{H}\right)_{2} \mathbf{P t C l}_{6}\right]$: Preliminary details of this structure have been published. ${ }^{7}$ Figure 6 provides a comparison with those described for the first time in this work. The assembly formed by $\left[\mathrm{L}^{24} \mathrm{H}\right]^{+}$is fundamentally different in having only $\mathrm{C}-\mathrm{H} . . . \mathrm{Cl}$ interactions because it does not contain any amido $\mathrm{N}-\mathrm{H}$ groups and the ammonium proton is not available as it is chelated by the amido $\mathrm{C}=\mathrm{O}$ group. Four $\mathrm{C}-\mathrm{H}$ groups α to the ammonium nitrogen atoms form close contacts (2.641 to $2.993 \AA$, see Table S5). A further four interactions with aryl $\mathrm{C}-\mathrm{H}$ donors are observed.

Table S1. Intra- and inter-molecular hydrogen-bonds $\mathrm{D}-\mathrm{H}^{\cdots} \mathrm{A}$ in $\mathbf{L}^{11}(\mathrm{D}=$ donor, $\mathrm{A}=$ acceptor, $\mathrm{d}=$ distance)

D- ${ }^{*}$ *	$\mathbf{d}\left(\mathbf{D}_{\AA}^{\AA} \mathbf{H}\right) /$	$\begin{gathered} \mathbf{d}\left(\mathbf{H}^{\cdots} \cdot \mathbf{A}\right) \\ / \AA \end{gathered}$	$\begin{gathered} \mathbf{d}(\mathbf{D} \cdots \mathbf{A}) \\ / \AA \\ \hline \end{gathered}$	$<(\underset{\mathbf{0}}{(\mathbf{D H A})} /$
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{~A} \cdots \mathrm{O} 1$	0.86	2.087	2.8821(14)	153.5
N5-H5A ${ }^{\text {O }}$ 1	0.86	2.127	2.9144(14)	152.1
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 2$	0.86	2.121	2.9044(14)	151.2
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 2$	0.86	2.092	2.8868(14)	153.4
N9-H9A ${ }^{\text {O }}$ 3	0.86	2.161	2.9281(14)	148.3
$\mathrm{N} 10-\mathrm{H} 10 \mathrm{~A}^{\cdots} \mathrm{O} 3$	0.86	2.204	$2.9404(14)$	143.6
N7—H7A ${ }^{\text {O }}$ 4	0.86	2.056	2.8583(14)	154.8

| $\mathrm{N} 8 — \mathrm{H} 8 \mathrm{~A}$ | O 4 | 0.86 | 2.140 | $2.9099(13)$ |
| :--- | :--- | :--- | :--- | :--- | 148.9

*symmetry codes $\mathrm{x}+1 / 2, \mathrm{y}+1 / 2,-\mathrm{z}+1 / 2,-\mathrm{x}+3 / 2, \mathrm{y}-1 / 2, \mathrm{z}+1 / 2$.

Table S2. Inter-molecular hydrogen-bonds in $\left[\left(\mathbf{L}^{11} \mathrm{H}\right){ }_{2} \mathrm{PtCl}_{6}\right](\mathrm{D}=$ donor, $\mathrm{A}=$ acceptor, d = distance).

D- ${ }^{\cdots}$ *	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\begin{gathered} \mathrm{d}\left(\mathbf{H}_{/ \times} \cdot \mathbf{A}\right) \\ / \AA \end{gathered}$	$\begin{gathered} \mathbf{d}\left(\mathbf{D}_{\text {® }} \mathbf{A} \mathbf{A}\right) \\ \hline \end{gathered}$	$\underset{/{ }^{0}}{\langle(\text { DHA })}$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{D} \cdots \mathrm{O} 2$	0.93	2.103	2.912(13)	145
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 1$	0.88	2.069	2.885(7)	154
N3—H3A ${ }^{\text {- }}$ O1	0.88	2.141	2.937(7)	150
N4—H4A ${ }^{\text {Cl2 }}$	0.88	2.604	3.411(7)	153
N4- $\mathrm{H} 4 \mathrm{~A} \cdots \mathrm{Cl} 3$	0.88	2.745	3.386(9)	131
N5-H5A ${ }^{\text {c }} \mathrm{Cl} 2$	0.88	2.729	3.521(5)	151

*symmetry codes $\mathrm{x},-\mathrm{y}+1 / 2, \mathrm{z}-1 / 2,-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+2$.

* The $\mathrm{NH}^{*} \mathrm{Cl}$ and $\mathrm{NH}^{*} \mathrm{O}$ interactions are separated by a horizontal line.

Table S3. Inter-molecular hydrogen-bonds in $\left[\left(\mathbf{L}^{\mathbf{1 3}} \mathrm{H}\right)_{2} \mathrm{PtCl}_{6}\right](\mathrm{D}=$ donor, $\mathrm{A}=$ acceptor, d $=$ distance).

$\mathbf{D}-\mathbf{H}^{\cdots} \mathbf{A}$	$\mathbf{d}(\mathbf{D}-\mathbf{H})$ $/ \AA$	$\mathbf{d}\left(\mathbf{H}^{\cdots} \mathbf{A}\right) / \AA$	$\mathbf{d}(\mathbf{D} \cdots \mathbf{A}) / \AA$	$<(\mathbf{D H A}) /{ }^{\circ}$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~A}^{\cdots} \mathrm{Cl} 2$	0.880	2.464	3.310	161.61
$\mathrm{~N} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{Cl} 3$	0.880	2.581	3.365	148.84
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 5$	0.845	2.038	2.751	141.67
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1$	0.845	2.569	3.154	127.26

*symmetry codes $-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1,-\mathrm{x},-\mathrm{y}+1,-\mathrm{z}+2$.
A horizontal line separates the $\mathrm{NH}{ }^{} \mathrm{Cl}$ and $\mathrm{NH}{ }^{\circ} \mathrm{O}$ interactions

Table S4. Inter-molecular interactions in $\left[\left(\mathbf{L}^{23} \mathrm{H}\right)_{2} \mathrm{PtCl}_{6}\right](\mathrm{D}=$ donor, $\mathrm{A}=$ acceptor, $\mathrm{d}=$ distance).

$\mathbf{D}-\mathbf{H} \cdots \mathbf{A}$	$\mathbf{d}(\mathbf{D}-\mathbf{H}) / \AA$	$\mathbf{d}(\mathbf{H} \cdots \mathbf{A}) / \AA$	$\mathbf{d}(\mathbf{D} \cdots \mathbf{A}) / \AA$	$<(\mathbf{D H A}) /{ }^{\circ}$
N5B-H5B $\cdots \mathrm{Cl}$ C	0.881	2.468	3.324	163.98
N5A-H5A $\cdots \mathrm{Cl} 4 \mathrm{C}$	0.881	2.637	3.513	173.20

C9B-H9B2 2 Cl6C	0.990	2.768	3.321	115.77
C3A-H3A1 ${ }^{\text {Cl3C }}$	0.990	2.832	3.713	148.65
C17B-H17F ${ }^{\text {Cl4C }}$	0.979	2.834	3.557	131.32
C17B-H17E ${ }^{\text {c }}$ Cl5C	0.980	2.842	3.615	136.36
C18A-H18B ${ }^{\text {Cl1C }}$	0.979	2.850	3.881	167.44
C17A-H17B ${ }^{\text {Cl6 }}$ C	0.980	2.861	3.794	159.28
C15B-H15D ${ }^{\text {Cl3C }}$	0.991	2.862	3.817	162.06
C13B-H13F ${ }^{\text {Cl3C }}$	0.981	2.889	3.556	126.15
C11A-H11A ${ }^{\text {c }}$ Cl5C	0.990	2.893	3.781	149.64
C12B-H12B*Cl3C	1.000	2.903	3.536	121.99

Table S5. Inter-molecular interactions in $\left[\left(\mathbf{L}^{24} \mathrm{H}\right)_{2} \mathrm{PtCl}_{6}\right](\mathrm{D}=$ donor, $\mathrm{A}=$ acceptor, $\mathrm{d}=$ distance).

$\mathbf{D}-\mathbf{H} \cdots \mathbf{A}$	$\mathbf{d}(\mathbf{D}-\mathbf{H}) / \AA$	$\mathbf{d}(\mathbf{H} \cdots \mathbf{A}) / \AA$	$\mathbf{d}(\mathbf{D} \cdots \mathbf{A}) / \AA$	$\left\langle(\mathbf{D H A}) /^{\mathbf{0}}\right.$
$\mathrm{C} 45-\mathrm{H} 45 \mathrm{~B} \cdots \mathrm{Cl} 4$	0.990	2.938	3.438	113.33
$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A} \cdots \mathrm{Cl} 2$	0.989	2.864	3.664	138.50
$\mathrm{C} 47-\mathrm{H} 47 \cdots \mathrm{Cl} 2$	0.950	2.946	3.762	144.81
$\mathrm{C} 52-\mathrm{H} 52 \mathrm{~B} \cdots \mathrm{Cl} 5$	0.990	2.993	3.923	178.51
$\mathrm{C} 23-\mathrm{H} 23 \mathrm{~B} \cdots \mathrm{Cl} 6$	0.990	2.647	3.437	136.90
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{Cl6}$	0.950	2.883	3.788	156.76
$\mathrm{C} 23-\mathrm{H} 23 \mathrm{~B} \cdots \mathrm{Cl} 6$	0.990	2.861	3.561	128.34
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{Cl} 3$	0.950	2.814	3.487	128.72
$\mathrm{C} 32-\mathrm{H} 32 \cdots \mathrm{Cl} 3$	0.951	2.820	3.710	156.42

Section 3. ${ }^{1} \mathbf{H ~ n m r}$ data for all protons in titration of $\mathrm{L}^{4} \cdot \mathbf{H C l}$ with $\left[\left(\mathrm{Oct}_{4} \mathrm{~N}\right)_{2} \mathrm{PtCl}_{6}\right]$

Figure SI7. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{L}^{4} \cdot \mathrm{HCl}(10 \mathrm{mM})$ with $\left[\left(\mathrm{Oct}_{4} \mathrm{~N}\right)_{2} \mathrm{PtCl}_{6}\right]$ in CDCl_{3}. Chemical shift changes for the hydrogen atoms $(a-g)$ in the host are presented on arbitrary scales to show their different behaviour upon increasing concentration of the guest anion. The dotted lines mark the $2: 1$ host : guest ratio (0.5 eq. of guest added).

Section 4. Listing of CIF files.

SI File: ic6b00848_si_001.pdf
SI File: ic6b00848_si_002.cif
SI File: ic6b00848_si_003.cif
SI File: ic6b00848_si_004.cif
SI File: ic6b00848_si_005.cif

