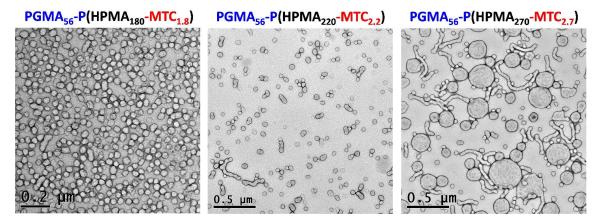
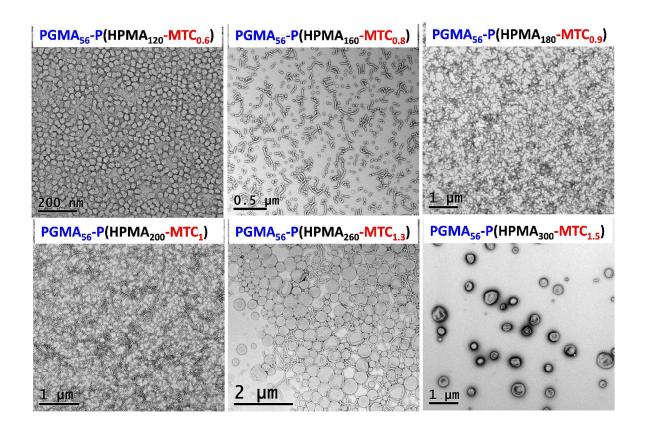
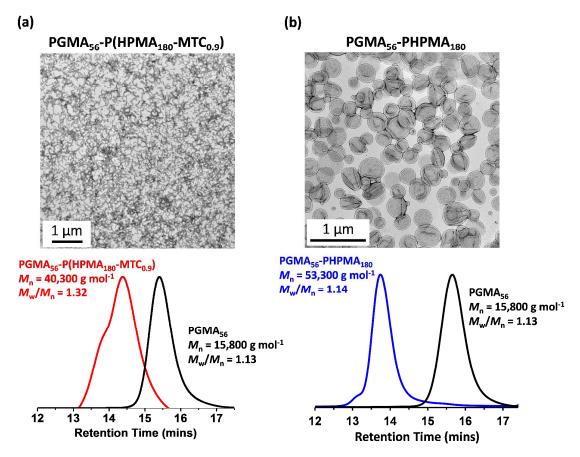

Supporting Information for:

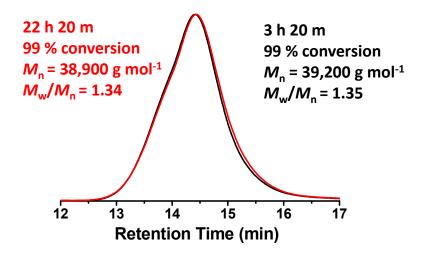
Inducing an order-order morphological transition via chemical degradation of amphiphilic diblock copolymer nano-objects

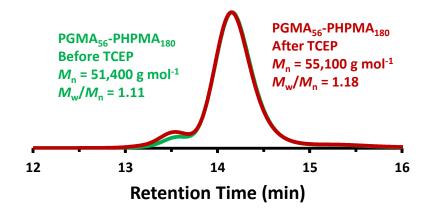

Liam P. D. Ratcliffe^{a*}, Claudie Couchon^a, Steven P. Armes^{a*} and Jos M. J. Paulusse^{b*}

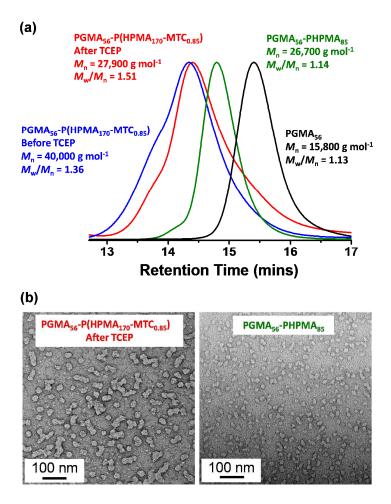

Figure S1. DMF GPC traces for PGMA₅₆-P(HPMA₁₈₀-stat-MTC_z) copolymers with 0.5, 1.0 and 2.0 mol % of MTC (relative to HPMA monomer). All copolymers were prepared *via* RAFT aqueous dispersion polymerization at 70 °C and 10 % w/w.

^aDainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.


^bDepartment of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands


Figure S2. TEM images of 0.2 % w/w dispersions of PGMA_x-P(HPMA_y-stat-MTC_z) copolymers prepared *via* RAFT aqueous dispersion polymerization at 70 °C and 10 % w/w with 1 mol % MTC relative to HPMA.


Figure S3. TEM images of 0.2 % w/w dispersions of PGMA_x-P(HPMA_y-stat-MTC_z) copolymers prepared *via* RAFT aqueous dispersion polymerization at 70 °C and 10 % w/w with 0.5 mol % MTC relative to HPMA.


Figure S4. TEM images for 0.2 % w/w dispersions of (a) PGMA₅₆-P(HPMA₁₈₀-stat-MTC_{0.9}) and (b) PGMA₅₆-PHPMA₁₈₀ copolymers prepared via RAFT aqueous dispersion polymerization at 70 °C and 10 % w/w. DMF GPC traces for both copolymers and the PGMA₅₆ macro-CTA are also shown.

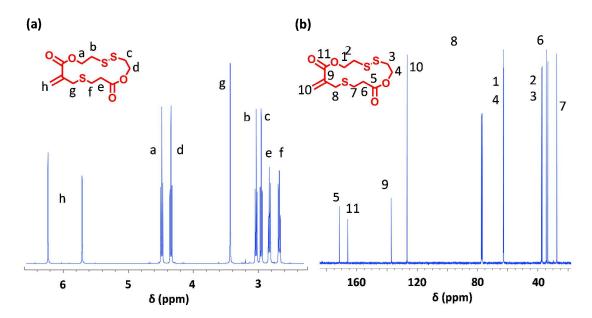

Figure S5. DMF GPC traces for a PGMA₅₆-P(HPMA₁₈₀-stat-MTC_{0.9}) copolymer sampled at 3 h 20 m and 22 h 20 m prepared via RAFT aqueous dispersion polymerization at 70 °C and 10 % w/w.

Figure S6. DMF GPC traces for a PGMA₅₆-PHPMA₁₈₀ copolymer prepared *via* RAFT aqueous dispersion polymerization at 70 °C and 10 % w/w before and 1 day after the addition of 5 equivalents of TCEP (relative to the MTC monomer) to the 10 % w/w dispersion.

Figure S7. (a) DMF GPC curves recorded for PGMA₅₆-P(HPMA₁₇₀-stat-MTC_{0.85}) copolymers prepared *via* RAFT copolymerization of MTC with HPMA using a PGMA₅₆ macro-CTA at 70 °C and 10 % w/w solids, before and after exposure to TCEP (TCEP/MTC molar ratio = 5.0) at pH 8-9 for 8 days at 20 °C. A PGMA₅₆-PHPMA₈₅ copolymer is shown for comparison with the MTC containing copolymer after TCEP cleavage. (b) TEM images obtained for a 0.20 % w/w aqueous dispersion of PGMA₅₆-P(HPMA₁₇₀-stat-MTC_{0.85}) after exposure to TCEP (TCEP/MTC molar ratio = 5.0) at pH 8-9 for 8 days at 20 °C and the PGMA₅₆-PHPMA₈₅ copolymer.

Figure S8. (a) ¹H NMR and (b) ¹³C NMR spectra for MTC monomer recorded using a 400 MHz Bruker Avance-400 spectrometer (64 scans per sample) in CDCl₃.

References

(1) Paulusse, J. M. J.; Amir, R. J.; Evans, R. A.; Hawker, C. J. *J. Am. Chem. Soc.* **2009,** *131*, 9805-9812.