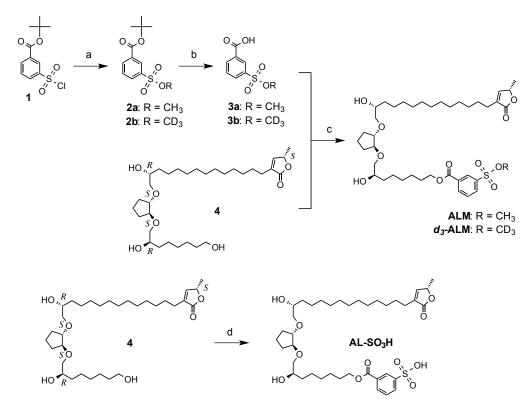
Supporting Information


Specific Methylation of Asp160 (49 kDa subunit) Located Inside the Quinone Binding Cavity of Bovine Mitochondrial Complex I

Masatoshi Murai, Hiroyuki Inaoka, Takahiro Masuya, Shunsuke Aburaya, Wataru Aoki,

and Hideto Miyoshi

Syntheses of ALM, d_3 -ALM, and AL-SO ₃ H	p. 1
Figure S1. Schematic representation of LDT chemistry	p. 6
Figure S2. UV-visible spectra of [ALM-histidine] and [ALM-cysteine] adducts	p. 7
Figure S3. LC-MS/MS analysis of the 49 kDa subunit	p. 8

Scheme 1^a

^{*a*}*Reagents and conditions*: (a) MeOH (MeOH- d_4 for **2b**), aqueous NaOH, THF, 0°C, 2.5 h; (b) trifluoroacetic acid (TFA), CH₂Cl₂, rt, 2 h; (c) 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), *N*,*N*-dimethyl-4-aminopyridine (DMAP), CH₂Cl₂, 0°C, 1 h; (d) 3-(chlorosulfonyl)benzoyl chloride, pyridine, DMAP, CH₂Cl₂, rt, 2 h.

General synthetic methods

All moisture- and air-sensitive reactions were performed in oven-dried glassware under argon atmosphere with dry solvents under anhydrous conditions using standard syringe septum techniques. ¹H-NMR spectra were recorded at 500 or 400 MHz with Bruker AVANCE III 500 or AVANCE III 400 spectrometers, respectively, using tetramethylsilane (TMS) as the internal standard. ¹³C-NMR spectra were recorded at 125 or 100 MHz. Chemical shifts (δ) are given in ppm relative to TMS with coupling constants (*J*) in Hz. Thin-layer chromatography (TLC) was performed on Merk TLC plate silica-gel 60F²⁵⁴, and the spot was detected by iodine, anis, phosphomolybdic acid or UV absorbance. Dry solvents were either used as purchased or freshly distilled using common practices where appropriate.

Synthesis of compound 1

Compound 1 was synthesized according to the procedure described in ref. 1: ¹H NMR (500 MHz; CDCl₃) δ 8.61 (dd, J = 1.7, 1.7 Hz, 1H), 8.36 (ddd, J = 1.3, 1.3, 7.8 Hz, 1H), 8.19 (ddd, J = 1.2, 1.8, 8.0 Hz, 1H), 7.71 (dd, J = 7.9, 7.9 Hz, 1H), 1.63 (s, 9H); ¹³C NMR (125 MHz; CDCl₃) δ 163.37, 144.89, 136.04, 134.20, 130.49, 130.03, 128.13, 83.17, 28.33 (3C).

Synthesis of compound 2a

To an ice-cooled mixture of THF (0.5 mL) and 4.6 M aqueous NaOH (0.196 mL, 0.90 mmol), methanol (10 mg, 0.30 mmol) was added. The solution of **1** in THF (0.5 mL) was then added dropwise, and the mixture was stirred for 2.5 h at 0°C. The reaction mixture was extracted with EtOAc, washed with brine and dried over anhydrous MgSO₄. The crude product was purified by silica gel column chromatography (Wako gel[®] C-200, 20% EtOAc/*n*-hexane) to provide **2a** as a colorless oil (59 mg, 0.22 mmol, 72%): ¹H NMR (400 MHz; CDCl₃) δ 8.47 (t, *J* = 1.6 Hz, 1H), 8.26 (dt, *J* = 7.8 Hz, 1.4 Hz, 1H), 8.05 (dt, *J* = 7.8 Hz, 1.6 Hz, 1H), 7.63 (t, *J* = 7.8 Hz, 1H), 3.78 (s, 3H), 1.63 (s, 9H); ¹³C NMR (100 MHz; CDCl₃) δ 163.72, 134.58 (2C), 133.50, 131.46, 129.38, 128.88, 82.51, 56.54, 28.11 (3C); ESI-MS (*m/z*) 311.0 [M+K]⁺.

Synthesis of compound 2b

Compound **2b** was prepared according to the procedure described for **2a** using methanol- d_4 (yield: 47%): ¹H NMR (400 MHz; CDCl₃) δ 8.46 (t, J = 1.6 Hz, 1H), 8.26 (dt, J = 7.8 Hz, 1.4 Hz, 1H), 8.04 (dt, J = 7.8 Hz, 1.5 Hz, 1H), 7.63 (t, J = 7.8 Hz, 1H), 1.63 (s, 9H); ¹³C NMR (100 MHz; CDCl₃) δ 163.72, 135.77, 134.58, 133.49, 131.45, 129.39, 128.86, 82.51, 55.83 (a weak signal derived from d_3 -methyl group), 28.11 (3C); ESI-MS (m/z) 257.0 [M-CD₃]⁻.

Synthesis of compound 3a

To a solution of **2a** (59 mg, 0.22 mmol) in anhydrous CH_2Cl_2 (3 mL), TFA (1 mL) was carefully added at room temperature. After stirring for 2 h at room temperature, the solvent was removed *in vacuo*, leaving a yellow oily residue. TFA remained in the residue was further co-evaporated with toluene to give **3a** as a slightly yellow oil (46 mg, 0.21 mmol, 96%); ¹H NMR (400 MHz; CDCl₃) δ 8.65 (t, *J* = 1.6 Hz, 1H), 8.40 (dt, *J* = 7.9 Hz, 1.5 Hz, 1H), 8.17 (dt, *J* = 7.8 Hz, 1.6 Hz, 1H), 7.73 (t, *J* = 7.9 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz; CDCl₃) δ 170.05, 136.35, 135.24, 132.86, 130.68, 129.87, 129.76, 56.68; ESI-MS (*m/z*) 215.1 [M-H]⁻.

Synthesis of compound 3b

Compound **3b** was prepared from **2b** according to the procedure described for **3a** (yield: 58%): ¹H NMR (400 MHz; CDCl₃) δ 8.48 (t, J = 1.6 Hz, 1H), 8.34 (dt, J = 7.8 Hz, 1.4 Hz, 1H), 8.11 (dt, J = 7.9 Hz, 1.5 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H); ¹³C NMR (100 MHz; CDCl₃) δ 167.31, 137.42, 136.11, 133.05, 131.26, 130.16, 129.34, 57.803 (a weak signal derived from d_3 -methyl group); ESI-MS (m/z) 218.1 [M-H]⁻.

Synthesis of compound 4

Compound **4** was synthesized according to the procedure described in refs. 1 and 2: ¹H NMR (400 MHz; CDCl₃) δ 6.99 (m, 1H), 5.00 (dq, J = 1.7, 6.8 Hz, 1H), 3.80-3.77 (m, 2H), 3.75-3.72 (m, 2H), 3.64 (t, J = 6.6 Hz, 2H), 3.54 (dd, J = 2.9, 9.5 Hz, 2H), 3.28 (dd, J = 3.0, 9.6 Hz, 1H), 3.26 (dd, J = 3.1, 9.6 Hz, 1H), 2.30-2.23 (m, 2H), 1.96-1.85 (m, 2H), 1.71-1.59 (m, 2H), 1.58-1.53 (m, 4H), 1.45-1.26 (m, 28H), 1.41 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz; CDCl₃) δ 174.14, 149.08, 134.55, 85.88, 77.63, 77.43, 74.27, 74.20, 70.89, 70.80, 63.13, 33.30, 33.15, 32.86, 29.89 (2C), 29.80 (3C), 29.76 (2C), 29.72, 29.55, 29.51, 29.39, 27.61, 25.81, 25.74, 25.65, 25.38, 20.97, 19.42.

Synthesis of ALM

To a stirred solution of **3a** (9.3 mg, 0.043 mmol) and **4** (20 mg, 0.036 mmol) in anhydrous CH₂Cl₂, EDC (14 mg, 0.072 mmol) and DMAP (4 mg, 0.04 mmol) were added at 0°C under N₂ atmosphere. The mixture was stirred for an hour at 0°C, then the reaction was quenched with saturated NH₄Cl, extracted with CH₂Cl₂, and dried over anhydrous MgSO₄. The crude product was purified by silica gel column chromatography (Wako gel[®] C-200, 70-100% EtOAc/*n*-hexane) to provide **ALM** as a colorless oil (5.2 mg, 6.9 µmol, 19%): ¹H NMR (400 MHz; CDCl₃) δ 8.55 (t, *J* = 1.6 Hz, 1H), 8.33 (dt, *J* = 7.8 Hz, 1.6 Hz, 1H), 8.09 (dt, *J* = 7.9 Hz, 1.5 Hz, 1H), 7.67 (t, *J* = 7.8 Hz, 1H), 6.98 (d, *J* = 1.6 Hz, 1H), 4.99 (qd, *J* = 5.1 Hz, 1.7 Hz, 1H), 4.36 (t, *J* = 6.7 Hz, 2H), 3.80 (s, 3H), 3.80-3.72 (m, 4H), 3.52 (dd, *J* = 6.9 Hz, 2.6 Hz, 2H), 3.29-3.23 (m, 2H), 2.28-2.23 (m, 2H), 1.94-1.89 (m, 2H), 1.79 (quint, *J* = 7.3 Hz, 2H), 1.67 (quint, *J* = 7.4 Hz, 2H) 1.60-1.24 (m, 32H), 1.40 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz; CDCl₃) δ 173.90, 164.73, 148.85, 136.02, 134.69, 134.36, 131.99, 131.85, 129.57, 129.05, 85.67, 85.65, 77.40, 74.05, 74.02, 70.67, 70.56, 65.95, 56.56, 37.05, 33.10, 32.95, 30.34, 29.72, 29.68, 29.60, 29.57, 29.52, 29.31, 29.27, 29.19, 28.57, 27.41, 25.90, 25.55, 25.42, 25.18, 21.02, 20.82, 19.23; ESI-MS (*m/z*) 775.5 [M+Na]⁺.

Synthesis of d₃-ALM

*d*₃-ALM was prepared from **3b** and **4** according to the procedure described for ALM (yield: 31%): ¹H NMR (400 MHz; CDCl₃) δ 8.55 (t, *J* = 1.6 Hz, 1H), 8.32 (dt, *J* = 7.8 Hz, 1.5 Hz, 1H), 8.09 (dt, *J* = 7.9 Hz, 1.5 Hz, 1H), 7.67 (t, *J* = 7.8 Hz, 1H), 6.98 (d, *J* = 1.6 Hz, 1H), 4.99 (qd, *J* = 5.1 Hz, 1.7 Hz, 1H), 4.36 (t, *J* = 6.7 Hz, 2H), 3.80-3.71 (m, 4H), 3.52 (dd, *J* = 9.5 Hz, 2.6 Hz, 2H), 3.28-3.23 (m, 2H), 2.28-2.23 (m, 2H), 1.94-1.89 (m, 2H), 1.77 (quint, *J* = 7.1 Hz, 2H), 1.67 (quint, *J* = 7.4 Hz, 2H) 1.61-1.25 (m, 32H), 1.40 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃) δ 173.87, 164.74, 148.84, 136.15, 134.67, 134.39, 131.83, 130.37, 129.57, 129.04, 85.68, 85.34, 77.39, 75.07, 74.07, 70.70, 70.59, 65.96, 33.15, 33.10, 30.37, 29.74, 29.70, 29.60, 29.57, 29.52, 29.44, 29.32, 29.28, 29.20, 28.59, 27.44, 25.91, 25.56, 25.43, 25.20, 21.04, 20.83, 19.23; ESI-MS (*m*/*z*) 778.5 [M+Na]⁺. The signal derived from *d*₃-methyl group (-O*C*D₃) was not observed in ¹³C-NMR.

Synthesis of AL-SO₃H

To an ice-cooled solution of **4** (15 mg, 0.027 mmol) in anhydrous CH₂Cl₂ (0.5 mL), anhydrous pyridine (4.4 μ L, 0.054 mmol) and DMAP (2 mg, 0.001 mmol) were added at 0°C and the mixture was stirred for 5 min. Then, 3-(chlorosulfonyl)benzoyl chloride (10 mg, 0.04 mmol) in anhydrous CH₂Cl₂ (0.5 mL) was carefully added to the mixture and the stirring was continued for 15 min at 0°C, and for another 2 h at room temperature. The solvents were removed *in vacuo*, and the residue was purified by silica gel column chromatography (Wako gel[®] C-200, 50-100% EtOAc/*n*-hexane), and further purified using 0-20% MeOH/CHCl₃ as an another eluent to provide **AL-SO₃H** as a colorless oil (4.5 mg, 6.1 µmol, 23%): ¹H NMR (400 MHz; CDCl₃) δ 8.45 (m, 1H), 8.09 (m, 1H), 8.07 (m, 1H), 7.45 (t, *J* = 7.7 Hz, 1H), 6.99 (d, *J* = 1.4 Hz, 1H), 5.00 (qd, *J* = 5.1 Hz, 1.7 Hz, 1H), 4.33-4.28 (m, 2H), 3.99 (m, 2H), 3.88 (m, 2H), 3.56-3.49 (m, 4H), 2.26 (t, *J* = 7.5 Hz, 2H), 2.06-1.23 (m, 40H), 1.40 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃) δ 173.85, 165.72, 148.86, 144.54, 134.33, 131.52, 130.96, 130.62, 128.48, 126.97, 77.56, 75.05, 73.50 (2C), 71.33 (2C), 65.55, 65.34, 41.51, 39.35, 37.04, 32.63, 32.31, 30.34, 29.68, 29.62, 29.52, 29.42, 29.30, 29.19, 28.46, 28.32, 27.43, 27.36, 25.67, 25.46, 25.18, 24.66, 19.20; ESI-MS (*m/z*) 737.4 [M-H]^{*}. The HMBC spectra of AL-SO₃H showed a cross peak between methylene proton (-C*H*₂O-) and ester carbonyl carbon (-*C*O-Ph-SO₃H) at 4.30 and 165.72, respectively.

Reference

- Masuya, T., Murai, M., Ifuku, K., Morisaka, H., and Miyoshi, H. (2014) Site specific chemical labeling of mitochondrial respiratory complex I through ligand-directed tosylate chemistry, *Biochemistry* 53, 2307-2317.
- Fujita, D., Ichimaru, N., Abe, M., Murai, M., Hamada, T., Nishioka, T., and Miyoshi, H. (2005) Synthesis of non-THF analogs of acetogenin toward simplified mimics, *Tetrahedron Lett.* 46, 5775-5779.

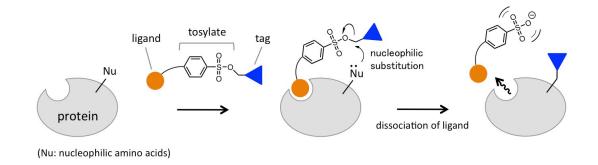


Figure S1.

Schematic representation of LDT chemistry technique.

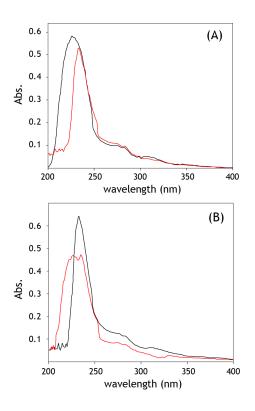


Figure S2.

UV-visible spectra of ALM in the presence of histidine or cysteine in water. (A) ALM (50 μ M) and histidine (5.0 mM) were incubated in a buffer (2.5 mL) containing 250 mM sucrose and 50 mM KPi (pH 7.4) at 30°C: time point zero (black line), after 24 h incubation (red line). (B) ALM (50 μ M) and cysteine (5.0 mM) were incubated in a buffer (2.5 mL) containing 250 mM sucrose and 50 mM KPi (pH 7.4) at 30°C: time point zero (black line), after 24 h incubation (red line).

1	AR <u>QWQPDVEW</u>	AEQYGGAVMY	PTKETAHWKP	PPWNDVDPPK	DTLVSNLTLN	FGPQHPAAHG
61	VLRLVMELSG	EMVRKCDPHI	GLLHRGTEK <mark>L</mark>	IEYKTYLQAL	PYFDRLDYVS	MMCNEQAYSL
121	AVEK LLNIQP	ppraqwir <mark>vl</mark>	FGEITRLLNH	IMAVTTHAL <mark>D</mark>	IGAMTPFFWM	FEEREKMFEF
181	<u>YER</u> VSGAR <u>MH</u>	AAYVRPGGVH	QDLPLGLMDD	IYEFSKNFSL	RIDELEEMLT	NNRIWRNRTV
241	DIGIVTAEDA	LNYGFSGVML	RGSGIQWDLR	KTQPYDVYDQ	VEFDVPIGSR	GDCYDRYLCR
301	<u>VEEMR</u> QSIR <u>I</u>	ISQCLNKMPP	GEIKVDDAKV	<u>SPPKRAEMKT</u>	SMESLIHHFK	LYTEGYQVPP
361	GATYTAIEAP	KGEFGVYLVS	<u>DGSSRPYR</u> CK	IK <u>APGFAHLA</u>	GLDKMSKGHM	LADVVAIIGT
421	QDIVFGEVDR					

Figure S3

Characterization of the 49 kDa subunit of bovine complex I by LC-MS. The sequences of the tryptic digests of the 49 kDa subunit were analyzed by an Orbitrap mass spectrometer, and the identified sequences are shown in *red*. The sequences matched with "high-confidence" in two independent experiments are *underlined*. The methylated residue is highlighted in *orange*. Total 29 peptides were detected and the sequence coverage was 89.3 %. The residue number refers to the mature sequence of the bovine 49 kDa subunit (P17694).