Supporting Information

Specific Methylation of Asp160 (49 kDa subunit) Located Inside the Quinone Binding Cavity of Bovine Mitochondrial Complex I

Masatoshi Murai, Hiroyuki Inaoka, Takahiro Masuya, Shunsuke Aburaya, Wataru Aoki, and Hideto Miyoshi

Syntheses of ALM, d_{3}-ALM, and $\mathrm{AL}^{2}-\mathrm{SO}_{3} \mathrm{H}$ p 1
Figure S1. Schematic representation of LDT chemistry p. 6
Figure S2. UV-visible spectra of [ALM-histidine] and [ALM-cysteine] adducts p. 7
Figure S3. LC-MS/MS analysis of the 49 kDa subunit p. 8

Scheme 1^{a}

${ }^{a}$ Reagents and conditions: (a) $\mathrm{MeOH}\left(\mathrm{MeOH}-d_{4}\right.$ for 2b), aqueous $\mathrm{NaOH}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$; (b) trifluoroacetic acid (TFA), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 2 h ; (c) 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), N, N-dimethyl-4-aminopyridine (DMAP), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (d) 3-(chlorosulfonyl)benzoyl chloride, pyridine, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{rt}, 2 \mathrm{~h}$.

General synthetic methods

All moisture- and air-sensitive reactions were performed in oven-dried glassware under argon atmosphere with dry solvents under anhydrous conditions using standard syringe septum techniques. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded at 500 or 400 MHz with Bruker AVANCE III 500 or AVANCE III 400 spectrometers, respectively, using tetramethylsilane (TMS) as the internal standard. ${ }^{13} \mathrm{C}$-NMR spectra were recorded at 125 or 100 MHz . Chemical shifts (δ) are given in ppm relative to TMS with coupling constants (J) in Hz. Thin-layer chromatography (TLC) was performed on Merk TLC plate silica-gel $60 \mathrm{~F}^{254}$, and the spot was detected by iodine, anis, phosphomolybdic acid or UV absorbance. Dry solvents were either used as purchased or freshly distilled using common practices where appropriate.

Synthesis of compound 1

Compound 1 was synthesized according to the procedure described in ref. $1:{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{dd}, J=1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{ddd}, J=1.3,1.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{ddd}, J=1.2,1.8,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) δ 163.37, 144.89, $136.04,134.20,130.49,130.03,128.13,83.17,28.33$ (3C).

Synthesis of compound 2a

To an ice-cooled mixture of THF (0.5 mL) and 4.6 M aqueous $\mathrm{NaOH}(0.196 \mathrm{~mL}, 0.90 \mathrm{mmol})$, methanol $(10 \mathrm{mg}, 0.30 \mathrm{mmol})$ was added. The solution of $\mathbf{1} \mathrm{in}$ THF (0.5 mL) was then added dropwise, and the mixture was stirred for 2.5 h at $0^{\circ} \mathrm{C}$. The reaction mixture was extracted with EtOAc, washed with brine and dried over anhydrous MgSO_{4}. The crude product was purified by silica gel column chromatography (Wako gel ${ }^{\circledR} \mathrm{C}-200,20 \% \mathrm{EtOAc} / \mathrm{n}$-hexane) to provide 2a as a colorless oil ($59 \mathrm{mg}, 0.22 \mathrm{mmol}, 72 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.47(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dt}, J=7.8 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dt}, J=7.8 \mathrm{~Hz}$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 163.72$, 134.58 (2C), 133.50, 131.46, 129.38, 128.88, 82.51, 56.54, 28.11 (3C); ESI-MS (m / z) $311.0[\mathrm{M}+\mathrm{K}]^{+}$.

Synthesis of compound $2 \boldsymbol{b}$

Compound $\mathbf{2 b}$ was prepared according to the procedure described for $\mathbf{2 a}$ using methanol- d_{4} (yield: 47%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.26(\mathrm{dt}, J=7.8 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dt}, J$ $=7.8 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 163.72$, $135.77,134.58,133.49,131.45,129.39,128.86,82.51,55.83$ (a weak signal derived from d_{3}-methyl group), 28.11 (3C); ESI-MS (m / z) $257.0\left[\mathrm{M}-\mathrm{CD}_{3}\right]^{\top}$.

Synthesis of compound $\mathbf{3 a}$

To a solution of $\mathbf{2 a}(59 \mathrm{mg}, 0.22 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, TFA $(1 \mathrm{~mL})$ was carefully added at room temperature. After stirring for 2 h at room temperature, the solvent was removed in vacuo, leaving a yellow oily residue. TFA remained in the residue was further co-evaporated with toluene to give $\mathbf{3 a}$ as a slightly yellow oil ($46 \mathrm{mg}, 0.21 \mathrm{mmol}, 96 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{t}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.40(\mathrm{dt}, J=7.9 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dt}, J=7.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz; CDCl_{3}) $\delta 170.05,136.35,135.24,132.86,130.68,129.87,129.76,56.68 ;$ ESI-MS (m/z) $215.1[\mathrm{M}-\mathrm{H}]^{-}$.

Synthesis of compound $\mathbf{3 b}$

Compound $\mathbf{3 b}$ was prepared from 2b according to the procedure described for $\mathbf{3 a}$ (yield: 58%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{dt}, J=7.8 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dt}, J=7.9 \mathrm{~Hz}$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 167.31,137.42,136.11,133.05$, 131.26, 130.16, 129.34, 57.803 (a weak signal derived from d_{3}-methyl group); ESI-MS (m / z) 218.1 $[\mathrm{M}-\mathrm{H}]^{-}$.

Synthesis of compound 4

Compound 4 was synthesized according to the procedure described in refs. 1 and 2: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 6.99(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{dq}, J=1.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{dd}, J=2.9,9.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{dd}, J=3.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=3.1,9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.26(\mathrm{~m}, 28 \mathrm{H})$, $1.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 174.14,149.08,134.55,85.88,77.63,77.43$, $74.27,74.20,70.89,70.80,63.13,33.30,33.15,32.86,29.89$ (2C), 29.80 (3C), 29.76 (2C), 29.72, 29.55, 29.51, 29.39, 27.61, 25.81, 25.74, 25.65, 25.38, 20.97, 19.42.

Synthesis of ALM

To a stirred solution of $\mathbf{3 a}(9.3 \mathrm{mg}, 0.043 \mathrm{mmol})$ and $\mathbf{4}(20 \mathrm{mg}, 0.036 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, EDC ($14 \mathrm{mg}, 0.072 \mathrm{mmol}$) and DMAP ($4 \mathrm{mg}, 0.04 \mathrm{mmol}$) were added at $0^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred for an hour at $0^{\circ} \mathrm{C}$, then the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried over anhydrous MgSO_{4}. The crude product was purified by silica gel column chromatography (Wako gel ${ }^{\circledR} \mathrm{C}-200,70-100 \% \mathrm{EtOAc} / n$-hexane) to provide ALM as a colorless oil (5.2 $\mathrm{mg}, 6.9 \mu \mathrm{~mol}, 19 \%):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dt}, J=7.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.09(\mathrm{dt}, J=7.9 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{qd}, J=5.1$ $\mathrm{Hz}, 1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{dd}, J=6.9 \mathrm{~Hz}, 2.6 \mathrm{~Hz}$, 2 H), 3.29-3.23 (m, 2H), 2.28-2.23 (m, 2H), 1.94-1.89 (m, 2H), 1.79 (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.67 (quint, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}) 1.60-1.24(\mathrm{~m}, 32 \mathrm{H}), 1.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 173.90$, $164.73,148.85,136.02,134.69,134.36,131.99,131.85,129.57,129.05,85.67,85.65,77.40,74.05,74.02$, $70.67,70.56,65.95,56.56,37.05,33.10,32.95,30.34,29.72,29.68,29.60,29.57,29.52,29.31,29.27$, 29.19, 28.57, 27.41, 25.90, 25.55, 25.42, 25.18, 21.02, 20.82, 19.23; ESI-MS $(m / z) 775.5[\mathrm{M}+\mathrm{Na}]^{+}$.

Synthesis of \boldsymbol{d}_{3}-ALM

\boldsymbol{d}_{3}-ALM was prepared from 3b and $\mathbf{4}$ according to the procedure described for ALM (yield: 31%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{dt}, J=7.8 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dt}, J=7.9 \mathrm{~Hz}$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{qd}, J=5.1 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.80-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{dd}, J=9.5 \mathrm{~Hz}, 2.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.28-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.23(\mathrm{~m}, 2 \mathrm{H})$, 1.94-1.89 (m, 2H), 1.77 (quint, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 1.67 (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$) $1.61-1.25(\mathrm{~m}, 32 \mathrm{H}), 1.40(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 173.87,164.74,148.84,136.15,134.67,134.39,131.83$, 130.37, 129.57, 129.04, 85.68, 85.34, 77.39, 75.07, 74.07, 70.70, 70.59, 65.96, 33.15, 33.10, 30.37, 29.74, 29.70, 29.60, 29.57, 29.52, 29.44, 29.32, 29.28, 29.20, 28.59, 27.44, 25.91, 25.56, 25.43, 25.20, 21.04, 20.83, 19.23; ESI-MS $(m / z) 778.5[\mathrm{M}+\mathrm{Na}]^{+}$. The signal derived from d_{3}-methyl group $\left(-\mathrm{OCD}_{3}\right)$ was not observed in ${ }^{13} \mathrm{C}$-NMR.

Synthesis of $\mathbf{A L - S O} \mathbf{S}_{3} \boldsymbol{H}$

To an ice-cooled solution of $4(15 \mathrm{mg}, 0.027 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$, anhydrous pyridine $(4.4 \mu \mathrm{~L}, 0.054 \mathrm{mmol})$ and DMAP $(2 \mathrm{mg}, 0.001 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 5 min . Then, 3 -(chlorosulfonyl)benzoyl chloride ($10 \mathrm{mg}, 0.04 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.5 \mathrm{~mL})$ was carefully added to the mixture and the stirring was continued for 15 min at $0^{\circ} \mathrm{C}$, and for another 2 h at room temperature. The solvents were removed in vacuo, and the residue was purified by silica gel column chromatography (Wako gel ${ }^{\circledR} \mathrm{C}-200,50-100 \% \mathrm{EtOAc} / n$-hexane), and further purified
 23%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{~m}, 1 \mathrm{H}), 8.09(\mathrm{~m}, 1 \mathrm{H}), 8.07(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.99(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{qd}, J=5.1 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.28(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~m}, 2 \mathrm{H})$, 3.56-3.49 (m, 4H), 2.26 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-1.23(\mathrm{~m}, 40 \mathrm{H}), 1.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 173.85,165.72,148.86,144.54,134.33,131.52$, 130.96, 130.62, 128.48, 126.97, 77.56, $75.05,73.50(2 \mathrm{C}), 71.33$ (2C), $65.55,65.34,41.51,39.35,37.04,32.63,32.31,30.34,29.68,29.62,29.52$, 29.42, 29.30, 29.19, 28.46, 28.32, 27.43, 27.36, 25.67, 25.46, 25.18, 24.66, 19.20; ESI-MS (m / z) 737.4 $[\mathrm{M}-\mathrm{H}]^{-}$. The HMBC spectra of $\mathrm{AL}-\mathrm{SO}_{3} \mathrm{H}$ showed a cross peak between methylene proton ($-\mathrm{CH}_{2} \mathrm{O}-$) and ester carbonyl carbon $\left(-\mathrm{CO}-\mathrm{Ph}-\mathrm{SO}_{3} \mathrm{H}\right)$ at 4.30 and 165.72 , respectively.

Reference

1. Masuya, T., Murai, M., Ifuku, K., Morisaka, H., and Miyoshi, H. (2014) Site specific chemical labeling of mitochondrial respiratory complex I through ligand-directed tosylate chemistry, Biochemistry 53, 2307-2317.
2. Fujita, D., Ichimaru, N., Abe, M., Murai, M., Hamada, T., Nishioka, T., and Miyoshi, H. (2005) Synthesis of non-THF analogs of acetogenin toward simplified mimics, Tetrahedron Lett. 46, 5775-5779.

Figure S1.
Schematic representation of LDT chemistry technique.

Figure S2.
UV-visible spectra of ALM in the presence of histidine or cysteine in water. (A) ALM ($50 \mu \mathrm{M}$) and histidine $(5.0 \mathrm{mM})$ were incubated in a buffer $(2.5 \mathrm{~mL})$ containing 250 mM sucrose and $50 \mathrm{mM} \mathrm{KPi}(\mathrm{pH}$ 7.4) at $30^{\circ} \mathrm{C}$: time point zero (black line), after 24 h incubation (red line). (B) ALM ($50 \mu \mathrm{M}$) and cysteine (5.0 mM) were incubated in a buffer $(2.5 \mathrm{~mL})$ containing 250 mM sucrose and $50 \mathrm{mM} \mathrm{KPi}(\mathrm{pH}$ 7.4) at $30^{\circ} \mathrm{C}$: time point zero (black line), after 24 h incubation (red line).

```
    1 ARQWQPDVEW AEQYGGAVMY PTKETAHWKP PPWNDVDPPK DTLVSNLTLN FGPQHPAAHG
6 1 ~ V L R L V M E L S G ~ E M V R K C D P H I ~ G L L H R G T E K L ~ I E Y K T Y L Q A L ~ P Y F D R L D Y V S ~ M M C N E Q A Y S L ~
1 2 1 ~ A V E K L L N I Q P ~ P P R A Q W I R V L ~ F G E I T R L L N H ~ I M A V T T H A L D ~ I G A M T P F F W M ~ F E E R E K M F E F '
1 8 1 ~ Y E R V S G A R M H ~ A A Y V R P G G V H ~ Q D L P L G L M D D ~ I Y E F S K N F S L ~ R I D E L E E M L T ~ N N R I W R N R T V ~
24 DIGIVTAEDA LNYGFSGVML RGSGIQWDLR KTQPYDVYDQ VEFDVPIGSR GDCYDRYLCR
301 VEEMRQSIRI ISQCLNKMPP GEIKVDDAKV SPPKRAEMKT SMESLIHHFK LYTEGYQVPP
3 6 1 \text { GATYTAIEAP KGEFGVYLVS DGSSRPYRCK IKAPGFAHLA GLDKMSKGHM LADVVAIIGT}
421 QDIVFGEVDR
```


Figure S3

Characterization of the 49 kDa subunit of bovine complex I by LC-MS. The sequences of the tryptic digests of the 49 kDa subunit were analyzed by an Orbitrap mass spectrometer, and the identified sequences are shown in red. The sequences matched with "high-confidence" in two independent experiments are underlined. The methylated residue is highlighted in orange. Total 29 peptides were detected and the sequence coverage was 89.3%. The residue number refers to the mature sequence of the bovine 49 kDa subunit (P17694).

