Supporting Information

Heteroatom-bridged ortho-Biferrocenes: Stereoselective Synthesis, Structural Features and Electrochemical Properties

Jiawei Chen,^a Alain C. Tagne Kuate,^{a,b} Roger A. Lalancette,^a and Frieder Jäkle^a*

^a Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102,

USA.

^bDepartment of Chemistry, Faculty of Sciences, University of Dschang, P.O. Box 67, Dschang,

Cameroon

* To whom correspondence should be addressed. E-mail: <u>fjaekle@rutgers.edu</u>

X-RAY CRYSTALLOGRAPHY STUDIES

Figure S1. During the refinement of the structure for **2-SnSi**, another set of Q peaks, representing an alternative orientation of the disordered diferrocene unit, could be found (dashed line, all hydrogens and methyl carbons are omitted for clarity). However, the disorder was not modeled. Constraints such as ISOR and DELU were used to compensate this issue.

Figure S2. Plot of the single crystal X-ray structure of the doubly oxidized, hydrolyzed species **3-BSi** derived from **2-BSi** (hydrogen atoms omitted except for B-OH). The structure solution suffered from disorder issues and is only presented to demonstrate connectivity.

Figure S3. Plot illustrating the supramolecular structure of 2-SnSi

Figure S4. Plot illustrating the supramolecular structure of 2-BSi

Compound	(p <i>R</i> ,p <i>R</i> , <i>S</i> _S , <i>S</i> _S)- 1-Sn	(p <i>R</i> , p <i>R</i>)- 2-SnSi	(p <i>R</i> , p <i>R</i>)- 2-SnP	(p <i>R</i> , p <i>R</i>)- 2-BSi
CSD Entry	1470561	1470562	1470563	1470564
empirical formula	$C_{36}H_{36}Fe_2O_2S_2Sn$	$C_{20}H_{28}Fe_2SiSn$	C ₂₆ H ₃₄ BFe ₂ PSn	C ₂₈ H ₂₇ BFe ₂ Si
MW	795.16	574.94	618.70	514.10
<i>Т</i> , К	100(2)	100(2)	100(2)	100(2)
wavelength, Å	1.54178	1.54178	1.54178	1.54178
crystal system	Triclinic	Monoclinic	Orthorhombic	Monoclinic
space group	<i>P</i> 1	<i>C</i> 2	$P2_{1}2_{1}2_{1}$	$P2_1$
a, Å	7.6712 (2)	13.2479 (4)	12.1285 (2)	9.0969 (2)
b, Å	10.7861 (2)	13.5201 (4)	13.3506 (2)	7.3330 (1)
<i>c</i> , Å	10.8306 (2)	13.9401 (6)	15.4421 (2)	17.4165 (3)
α , deg	64.332 (1)	90	90	90
β , deg	83.343 (1)	117.891 (2)	90	93.957 (1)
γ, deg	77.207 (1)	90	90	90
$V, Å^3$	787.46 (3)	2206.81 (13)	2500.43 (6)	1159.04 (5)
Ζ	1	4	4	2
$ ho_{ m calc}, { m g~cm^{-3}}$	1.677	1.730	1.644	1.473
μ (Cu K α), mm ⁻¹	15.04	19.89	17.74	10.62
crystal size, mm	0.41×0.29×0.22	0.39×0.20×0.13	0.30×0.23×0.12	0.39×0.26×0.06
θ range, deg	4.5-73.7	3.6-70.7	4.4-71.3	2.5-70.4
limiting indices	<i>−</i> 9≤ <i>h</i> ≤9	–16≤h≤15	<i>−</i> 10 <i>≤h≤</i> 14	<i>−</i> 10 <i>≤h≤</i> 10
-	<i>−</i> 11 <i>≤k≤</i> 13	–16≤k≤16	<i>−</i> 15 <i>≤k≤</i> 16	<i>–</i> 8≤ <i>k</i> ≤7
	<i>−</i> 12≤ <i>l</i> ≤12	–16≤l≤16	–18≤ <i>l</i> ≤17	<i>−</i> 19 <i>≤l≤</i> 20
reflns collected	7944	9272	24052	9201
independent reflns	3836 [<i>R</i> (int) = 0.024]	3538 [<i>R</i> (int) = 0.036]	4398 [<i>R</i> (int) = 0.035]	3271 [R(int) = 0.035]
absorption correction	Numerical	Numerical	Numerical	Numerical
data/restraints/para's	3836 / 3 / 392	3538 / 8 / 261	4398 / 0 / 286	3271 / 1 / 291
goodness-of-fit on F^2	1.04	1.17	1.05	1.01
final R indices	R1 = 0.025	R1 = 0.050	R1 = 0.032	R1 = 0.025
$[I > 2\sigma(I)]^{[a]}$	wR2 = 0.060	wR2 = 0.114	wR2 = 0.044	wR2 = 0.062
<i>R</i> indices (all data) ^[a]	R1 = 0.022	R1 = 0.052	R1 = 0.019	R1 = 0.026
	wR2 = 0.060	wR2 = 0.117	wR2 = 0.044	wR2 = 0.062
peak _{max} /hole _{min} (e Å ⁻³)	0.94 /0.49	1.02 / -1.12	0.52 / -0.32	0.38 /0.22
Flack parameter	0.018(3)	0.114(17)	0.008(4)	0.007(3)

Table S1. Crystal data and structure refinement details for (pR,pR,S_S,S_S) -**1-Sn**, (pR, pR)-**2-SnSi**, (pR, pR)-**2-SnP**, and (pR, pR)-**2-BSi**.

 $[a] R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; wR2 = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]]^{1/2}$

UV-VIS SPECTRAL ANALYSES

Figure S5. UV/Vis absorption spectra of 2-SnSn (blue), 2-SnSi (red), and 2-SnP (purple), and 2-BSi (black) in CH_2Cl_2

CHIRAL HPLC ANALYSES

Figure S6. Chiral HPLC trace and the corresponding UV-Vis spectrum of **2-SnSi** using hexanes/THF (98:2) as eluent

Figure S7. Chiral HPLC trace and the corresponding UV-Vis spectrum of **2-SnP** using hexanes/THF (90:10) as eluent

Figure S8. Chiral HPLC trace and the corresponding UV-Vis spectrum of **2-BSi** using hexanes/THF (98:2) as eluent

COPIES OF NMR SPECTRA

Figure S9. ¹H NMR spectrum of 1-Si' in CDCl₃

Figure S10. ¹³C NMR spectrum of 1-Si' in CDCl₃.

Figure S11. ²⁹Si NMR spectrum of 1-Si' in CDCl₃.

Figure S12. ¹H NMR spectrum of 1-Sn in CDCl₃

Figure S13. ¹³C NMR spectrum of 1-Sn in CDCl₃.

Figure S14. ¹¹⁹Sn NMR spectrum of 1-Sn in CDCl₃.

Figure S16. ¹³C NMR spectrum of 2-SnSn in C_6D_6

Figure S17. ¹¹⁹Sn NMR spectrum of 2-SnSn in C_6D_6

Figure S18. ¹H NMR spectrum of 2-SnSi in CDCl₃

Figure S19. ¹³C NMR spectrum of 2-SnSi in C_6D_6

Figure S20. ²⁹Si NMR spectrum of 2-SnSi in C_6D_6

Figure S21. ¹¹⁹Sn NMR spectrum of 2-SnSi in C₆D₆

Figure S22. ¹H NMR spectrum of 2-SnP in CDCl₃

Figure S23. ¹³C NMR spectrum of 2-SnP in CDCl₃

Figure S24. ¹¹B NMR spectrum of 2-SnP in CDCl₃

Figure S26. ¹¹⁹Sn NMR spectrum of 2-SnP in CDCl₃

Figure S27. ¹H NMR spectrum of intermediate Fc₂SiMe₂Hg₂Cl₂ in CDCl₃

Figure S28. ¹³C NMR spectrum of intermediate $Fc_2SiMe_2Hg_2Cl_2$ in C_6D_6

Figure S29. ²⁹Si NMR spectrum of intermediate $Fc_2SiMe_2Hg_2Cl_2$ in C_6D_6

Figure S30. ¹H NMR spectrum of 2-BSi in CDCl₃

Figure S31. ¹³C NMR spectrum of 2-BSi in CDCl₃

Figure S32. ¹¹B NMR spectrum of 2-BSi in CDCl₃

Figure S33.²⁹Si NMR spectrum of 2-BSi in CDCl₃

Figure S34. ¹H NMR spectrum of doubly oxidized 2-BSi in CD₂Cl₂

Figure S36. ¹⁹F NMR spectrum of doubly oxidized **2-BSi** in CD₂Cl₂

COPIES OF HIGH-RES MASS SPECTRA

Figure S37. MALDI-MS data of compounds 1-Si', 2-SnSn, 2-SnSi, 2-SnP and 2-BSi