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Monte Carlo Sampling

In order to sample the phase space of long chains efficiently, we utilized the Pruned-Enriched

Rosenbluth Method (PERM) first described by Grassberger,1 which corresponds to a stochastic

chain-growth scheme. Each configuration {Rn} of length N (n = 1, . . . ,N) is reweighted by its

Rosenbluth weight

WN = Π
N
n=1wn , (1)
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where the individual, monomeric weights wn are given by the Boltzmann factors of k random trial

directions:

wn =
k

∑
m=1

exp

(
−u(R1, . . . ,R

(m)
n )

kBT

)
(2)

Here, u(R1, . . . ,R
(m)
n ) contains the energetic interaction of the trial move m for monomer n with

all previously grown monomers 1, . . . ,n− 1. Out of the k trial directions, one is chosen with

probability pm ∝ exp(−u(R1, . . . ,R
(m)
n )/(kBT )). After having generated a set of M chains of

length n, the average of any thermodynamic quantity A may then be evaluated as

〈A〉= ∑
M
i=1 AiWN,i

∑
M
i=1WN,i

. (3)

What sets the PERM algorithm apart from simple Rosenbluth sampling is that it suppresses the

fluctuations of the WN,i, which become especially severe in the limit of long chains, via population

control. To this end, we calculated the ratio r of the current weight WN,i and the average weight

during each growth step, i.e. r = WN,i/〈WN〉, as proposed by Prellberg et al.2 If r > 1, brc+ 1

copies of the current configuration are created with probability p = r−brc (with brc being the

closest integer value smaller than r), or, alternatively, brc copies are made with 1− p. This is

done in a depth-first implementation, so that several configurations branch off from a single parent

structure. On the other hand, if r < 1, the current branch is stopped with probability p = 1− r. In

either case, one sets WN,i← 〈WN〉. All structural quantities were computed on the fly (see ref 3).

To increase the performance of our code, we employed a neighbor-list scheme as described

elsewhere,3 which makes the energy calculation (roughly) independent of chain size. In the re-

maining steps during which the neighbor list for a given monomer n is constructed, we addition-

ally exploited the chain connectivity in the following way: If one considers two remote monomers

n and m (n > m) separated by rnm � rcut (rcut being the cutoff radius of the Lennard-Jones po-

tential), one can skip the next m′ = b(rnm− rcut)/bmaxc monomers (i.e. m+ 1, . . . ,m+m′) in the

energy evaluation, where bmax = 1.4σ is an arbitrary upper limit for the bond length (note that

our choice of bmax involves a thermal activation of about 100kBT ). In this manner, the original
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computational cost (complexity of O(N) at each step n due to the fact that all interactions with

the previously grown monomers have to calculated, giving rise to a total complexity of O(N2)) is

drastically reduced. This algorithm – in combination with neighbor lists – has also been used in

the MD simulations.

Determination of the Θ-Temperature
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Figure 1: Bond-vector autocorrelation function 〈r(n+ s) ·r(n)〉 between two bond vectors n and m
separated by s = |n−m| other monomers.

In order to determine the Θ-point, we use the predictions by Shirvanyants et al.4 for the bond-

vector autocorrelation function 〈r(n+ s) · r(n)〉 between two distinct bonds separated by s other

bonds. This is due to the fact that this quantity has been proven to be highly sensitive to a zero

or non-zero second virial coefficient. In particular, at T = Θ, one has4 〈r(n+ s) · r(n)〉 ∝ s−3/2.

Figure 1 shows 〈r(n+ s) ·r(n)〉 s3/2 for a chain of length N = 10000 monomers at various temper-

atures around Θ. While for small s the curves are dominated by the details of the chain chemistry

(i.e. the local packing of the beads in case of our simulation model), the expected power law

〈r(n+ s) · r(n)〉 ∝ s−3/2 emerges for larger s at T = Θ≈ 3.0.
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Figure 2: Pair correlation functions for various types of monomer pairs: all monomer pairs (black
curve), all monomer pairs without nearest neighbors (red), monomer pairs between distinct halves
(blue) and monomer pairs between distinct halves without the two central monomers (green). The
inset shows the short-distance regime in combination with the nonbonded interaction potential, i. e.
the Lennard-Jones potential (cyan).

Pair Correlation Function

Figure 2 shows the pair correlation function g(r) for all monomer pairs and for monomer pairs from

distinct halves. For the latter, the pair arising from the trivial, central bond has been neglected. The

inset shows the regime of short distances in combination with the monomeric interaction potential

(Lennard-Jones potential).

Separation Criterion in the MD Simulations

The time τ for a given configuration to disentangle is measured as follows: After each MD step

we compute the centers of mass Rc1 and Rc2 for both half-chains and dc = Rc2−Rc1. Then, we

project the monomer positions onto the unit vector d̂c. If all projections of the first half are lower

than any projection of the second half, the two subchains are regarded as disentangled, since they

can then be separated by a plane orthogonal to dc. This criterion is illustrated in Figure 3 via

snapshots of three successive stages in the MD simulations. The graphs in the lower half show the

smoothed monomer densities projected onto this coordinate at each stage.
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Figure 3: Snapshots of the disentanglement process in the MD simulations: entangled starting
configuration (left), disentanglement and loss of topological constraints (center) and ultimate sep-
aration (right). Two subchains are considered as disentangled if both halves can be separated by a
plane (green square in the central snapshot) perpendicular to the vector connecting their respective
centers of mass (green arrow). The graphs show the smoothed monomer densities projected onto
this coordinate at each stage. All snapshots have been created with VMD.5
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