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The document includes computational details, quantifying uncertainty in adsorption en-

ergies, scaling relationships and activity volcano plots for Li-O2 and Na-O2 electrochemistry.

Computational Details

Density functional theory (DFT) calculations are carried out using GPAW1 with BEEF-

vdW2 as the exchange-correlation functional using the Atomic Simulation Environment

(ASE).3 All calculations were done with a grid spacing of 0.18 Å, and converged with a

force criterion of < 0.05 eV/Å. A 4 × 4 × 1 k-point grid was used for a unit cell having 3

atoms each in the x and y directions and with 4 layers in the z-direction (3 × 3 × 4). The

bottom two layers of the slab were fixed and the remaining were allowed to be relaxed. For

other types of unit cells considered in the calculation, the k-points were suitably scaled. All

structures were converged with a force criterion of < 0.05 eV/Å.

Quantifying Uncertainty in Adsorption Energies

The recently developed exchange correlation functional, BEEF-vdW (Bayesian Error Esti-

mation Functional),2 allows us to use its unique error estimation capability2 to quantify

error in adsorption energies. The method uses different types of data sets as the empirical

data and fits the GGA exchange enhancement factor, Fx(s) to it.

The expression for the Exchange correlation energy for BEEF-vdW is given by,

Exc =
Mx−1∑
m=0

amE
GGA−x
m + αcE

LDA−c + (1− αc)E
PBE−c + Enl−c. (1)

Where, Mx represents the degree of the polynomial. The coefficients am and αc are the

fitting parameters which are optimized over the data sets. EGGA−x
m represents the GGA

exchange energy, EPBE−c and ELDA−c represent the PBE and LDA correlation energies and

Enl−c represents the non-local correlation energy obtained from the functional vdW-DF2 .4
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BEEF-vdW uses an ensemble of functionals to calculate errors.5 After calculating the

optimum value for the coefficients am and αc, each coefficient is perturbed around its opti-

mal value. From the ensemble of coefficients an ensemble of energies (eq 1) is generated.

The ensemble of energies provides a systematic way to calculate the uncertainty associated

within the GGA class of functionals for a given calculation. This approach provides a com-

putationally tractable way to estimate the uncertainty associated with a given calculation.

Following this approach, an ensemble of exchange correlation functionals results in an

ensemble of adsorption energies, from which the error in the adsorption energy is obtained as

the sensitivity of DFT results to the choice of the exchange-correlation functional. Figures

S1 and S2 show the ensemble of adsorption energies obtained for LiO∗
2 and NaO∗

2 respectively,

with the corresponding normalized frequency.

Using the BEEF-vdW functional, ensembles of adsorption energies for various inter-

mediates involved in the ORR were calculated. Referencing the adsorption energy of any

intermediate with respect to gas phase molecules (here O2(g)) leads to large estimated error.

However, when the reference is changed from the gas phase molecules to a reference element,

for e.g., Pt(111), it is found that this leads to much smaller error estimates due to similarity

in metal-adsorbate bonding characteristics. This is in agreement with the notion that trends

in DFT calculations are more accurate than the individual values due to cancellation of sys-

tematic errors. We use the following methodology to get a combined error estimate for the

adsorption energies of various intermediates. We illustrate the approach using the example

of the intermediate LiO∗
2.

First the ensemble of LiO∗
2 adsorption energy for a given metal facet ‘X’ with respect to a

reference system, chosen as Pt(111), is calculated. This is given by

∆GLiO2(X|Pt(111)) = ∆GLiO2(X)−∆GLiO2(Pt(111)) (2)

The distribution for the calculated ensemble of adsorption energies is centered around the
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mean:

∆GLiO2(X|Pt(111)) = ∆GLiO2(X|Pt(111))− 〈∆GLiO2(X|Pt(111))〉. (3)

We carry out for all the fcc metal (111) and (100) facets considered in this study and a

combined distribution is constructed:

∆GLiO2 =
∑
X

∆GLiO2(X|Pt(111)) (4)

Figure S1 shows the combined adsorption energy distribution for the intermediate LiO∗
2

(∆GLiO∗
2
) calculated for metal facets Ag(111), Au(111), Au(100), Ag(100), -0.5%-Pt(111),

-1%-Pt(111), -1.5%-Pt(111) and -2%-Pt(111), relative to Pt(111). In all, the distribution

contains 20000 values, 2000 for each metal facet considered. The standard deviation for the

distribution (σLiO2) is 0.27 eV.

Figure S1: Normalized frequency as a function of the adsorption energy (mean shifted to
0) of the intermediate, LiO∗

2, obtained from Ag(111), Au(111), Ag(100), Au(100), -0.5%-
Pt(111), -1%-Pt(111), -1.5%-Pt(111) and -2%-Pt(111), relative to Pt(111). The standard
deviation of the combined ensemble, σLiO∗

2
= is 0.27 eV.
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Similarly, Figure S2 shows the combined adsorption energy distribution for the interme-

diate NaO∗
2 (∆GNaO∗

2
) calculated for metal facets Ag(111), Au(111), Au(100) and Ag(100)

relative to Pt(111). The standard deviation for the distribution (σNaO2) is 0.31 eV. The

distribution for the case of LiO∗
2 is tighter due to the ensemble of adsorption energies on the

strained Pt(111) facets.

Figure S2: Normalized frequency as a function of the adsorption energy (mean shifted to 0)
of the intermediate, NaO∗

2, obtained from Ag(111), Au(111), Ag(100) and Au(100), relative
to Pt(111). The standard deviation of the combined ensemble, σNaO∗

2
= is 0.31 eV.
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Based on this analysis, we approximate the uncertainty involved in determining the ad-

sorption energy of an intermediate by the the standard deviation of the calculated adsorption

energy ensemble on the various metal facets. In the next section, we discuss how the obtained

uncertainty translates to uncertainty in the limiting potential in the volcano plots.

Scaling relationships

It has been shown that there exists a linear scaling between the adsorption energies of the

hydrogenated species, AHx and the atom A.6 Using simple bond counting principles it was

shown that the slope of the linear scaling is only dependent on the valency and not on the

specific metal facet considered.7

We explore the trends in adsorption energy between LiO∗
2 and LiO∗, and observe that

the adsorption free energies between LiO∗
2 and LiO∗ scale with each other independent of

the metal facet considered. Similarly, we observe a linear scaling between NaO∗
2 and NaO∗

irrespective of the metal facet considered. We explore the uncertainty in the intercept of

the scaling relationship between the adsorption energies of the adsorbates LiO∗ and LiO∗
2

as well as between adsorbates NaO∗ and NaO∗
2. As mentioned in the main text, we assume

that the slope between the adsorption energies of the intermediates is one. This arises due

to arguments based on the bond order conservation principle.6. Fig. S3 and Fig. S4 show

the best-fit lines, which have R-squared values extremely close to the slope-1 lines.

The expression for the standard deviation of the scaling intercept used is derived in the
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following way:

(σX−Y)2 = E[(X− Y)2]− (E[(X− Y)])2 (5a)

(σX−Y)2 = E[X2 + Y2 − 2XY]− (E[X]− E[Y])2 (5b)

(σX−Y)2 = E[X2] + E[Y2]− 2E[XY]− (E[X])2 − (E[Y])2 + 2E[X]E[Y] (5c)

(σX−Y)2 = (σX)2 + (σY)2 − 2(E[XY]− E[X]E[Y]) (5d)

(σX−Y)2 = (σX)2 + (σY)2 + (µXY − µXµY) (5e)

This relation derived above from statistics, holds for any two random variables X and Y .

The relation, σ2
(LiO∗−LiO∗

2)
= σ2

LiO∗ + σ2
LiO∗

2
− 2(µ(LiO∗LiO∗

2)
- µLiO∗µLiO∗

2
), was used to generate

the standard deviation of the intercept, where σLiO∗ , µLiO∗ and σLiO∗
2
, µLiO∗

2
are the standard

deviations and mean values for ∆GLiO∗ and ∆GLiO∗
2
. µLiO∗LiO∗

2
is the mean associated with

the distribution of ∆GLiO∗ × ∆GLiO∗
2
. σ(LiO∗−LiO∗

2)
is the standard deviation for the scaling

relationship.

Scaling between the free energies of LiO∗2 and LiO∗, with the best-fit

regression line

Fig. S3 shows the best-fit regression line, which has an R2 value of 0.93. The regres-

sion line (shown in black bold) is obtained by fitting the adsorption energies on Pt(111),

-0.5%−Pt(111),-1%−Pt(111),-1.5%−Pt(111),-2%−Pt(111), Au(111), Ag(111), Au(100) and

Ag(100). On considering a slope of 1 based on bond conservation principles, we observe an

R2 value that’s extremely close to the best-fit line as reported in the main text.
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Figure S3: Best-fit linear line with adsorption energies of LiO∗
2 and LiO∗ on Pt(111), -

0.5%−Pt(111),-1%−Pt(111),-1.5%−Pt(111),-2%−Pt(111), Au(111), Ag(111), Au(100) and
Ag(100). The slope (0.94) is close to slope 1 as expected from bond conservation principles.
The R2 value for the best-fit line is 0.93 (same as the slope-1 line).
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Scaling between the free energies of NaO∗2 and NaO∗, with the best-

fit regression line

Fig. S4 shows the best-fit regression line, which has an R2 value of 0.98. The regression line

(shown in black bold) is obtained by fitting the adsorption energies on Pt(111), Au(111),

Ag(111), Au(100) and Ag(100). On considering a slope of 1 based on bond conservation

principles, we observe an R2 value that’s extremely close to the best-fit line as reported in

the main text.
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Figure S4: Best-fit linear line with adsorption energies of NaO∗
2 and NaO∗ on Pt(111),

Au(111), Ag(111), Au(100) and Ag(100). The slope (1.05) is close to slope 1 as expected
from bond conservation principles. The R2 value for the best-fit line is 0.98 (same as the
slope-1 line).
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Volcano Plots for Li-O2 electrochemistry

In this section, volcano plots are discussed for the 2e− oxygen reduction to Li2O2 in the case

of the Li-O2 battery and the 1e− reduction to Na2O in the case of the Na-O2 battery, based

on the primary discharge product. In Fig. S5, the limiting potential (bold black line) is

plotted as a function of the descriptor, GLiO∗
2

relative to Pt(111). The red dots represent

the 100 facets and the blue dots represent the 111 facets. The black dotted lines represent

the 1-σ bounds (uncertainty) obtained from the combined ensemble of adsorption energies

of ∆GLiO∗
2
.

Activity volcano for the 2e− reduction to Li2O2 with 1σ bounds

Fig. S5 shows the limiting potential (black bold) with uncertainty (1σ) bounds (black dotted

lines). The highest limiting potential possible for the Li-O2 battery is 2.96 V vs. the Li/Li+

reference electrode, which fixes the bound for the black dotted lines near the top of the

volcano.
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Figure S5: Limiting potential as a function of the free energy of LiO∗
2 with respect to that

on Pt(111). The black dotted lines represents the 1σ limit for the limiting potential for any
given adsorption energy value.. The standard deviation (σ) is calculated from an ensemble of
adsorption energies on Pt(111), -0.5%−Pt(111),-1%−Pt(111),-1.5%−Pt(111),-2%−Pt(111),
Au(111), Ag(111), Au(100) and Ag(100).
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Activity volcano for the 2e− reduction to Li2O2 with error bars

As discussed in the section on quantifying uncertainty , for each metal facet, the uncertainty

is calculated from the ensemble of adsorption energies with respect to Pt(111). For a metal

facet, ’X’, the standard deviation of the distribution, ∆GLiO2(X|Pt(111)) (refer eqn. 2) is

approximated as the uncertainty, which is represented by the error bars in Fig. S6.

Figure S6: Limiting potential as a function of the free energy of LiO∗
2 with respect to that on

Pt(111). The error bars show standard deviation in the adsorption energies on each metal
facet. For each metal facet, the uncertainty is calculated as the standard deviation of the
ensemble of adsorption energies on the respective metal surface relative to that on Pt(111)
(Refer eqn. 2)

.
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Activity volcano for the 2e− reduction to Li2O2, showing the ex-

pected limiting potential (UEL)

The uncertainty is predicted using a parameter that we define as the expected limiting

potential, UEL, which is the expected value of UL. The deviation of the expected limiting

potential, UEL, from the thermodynamic limiting potential, UL is a qualitative estimate of

the prediction uncertainty and can be used to identify trends in predictability. We notice that

the expected limiting potential, UEL, and the limiting potential, UL deviate from each other

close to the top of the activity volcano, which implies that the activity predictions from the

thermodynamic activity volcano become less reliable in this region. Figures S5 and S6 provide

a way to understand the uncertainties associated with the limiting potentials, however, they

do not provide a visual representation of the probability distribution associated with the

limiting potential, UL.

To determine the probability distribution, we first determine the probability distribution

for the limiting potential UL as a function of the free energy of the intermediate LiO∗
2 relative

to Pt(111). Then, we consider a random variable ∆GLiO∗
2
∼ N(〈∆GLiO∗

2
〉, σLiO∗

2
) where,

〈∆GLiO∗
2
〉 is the mean and σLiO∗

2
is the standard deviation corresponding to the adsorption

energy of the intermediate, LiO∗
2. A given value of the mean, 〈∆GLiO∗

2
〉 represents a calculated

value of the free energy while the random variable, ∆GLiO∗
2
, accounts for the uncertainty of

the calculated value. This gives rise to a probability distribution of the limiting potential,

UL as a function of the mean, 〈∆GLiO∗
2
〉. From the probability distribution, the expected

limiting potential (UEL) is derived, which is the expectation value of the limiting potential,

UL. For a given value of 〈∆GLiO∗
2
〉, the expected limiting potential represents the value

that would be expected given a large number of experiments on materials with the same

calculated value.
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Figure S7: Limiting potential as a function of the free energy of LiO∗
2 with respect to that

on Pt(111). The blue line shows the expected limiting potential. Points near the top of the
volcano are associated with a higher uncertainty compared to the other points
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Sabatier volcano for the 1e− reduction of O2 to Na2O

involving a chemical nucleation step

Since there is a chemical step involved, we perform a Sabatier analysis8 to determine the

activity of materials. For chemical steps, the upper limit to the forward rate is given by9

rC =
kBT

h
exp
(
− ∆G

kBT

)
(6)

where ∆G is the activation free energy. For electrochemical steps, due to the presence of

solvent, there is an additional contribution from the requirement for the reorganization of

solvent molecules around the reaction center undergoing the ion-coupled electron transfer.

The rate of an electrochemical step is given by

rEC =
kBT

h
exp
(
− λNa

kBT

)
exp
(
− ∆Gi

kBT

)
(7)

The rate curves for the individual steps are shown in Fig. S8. It can be seen that the

left leg is limited by the chemical step that involves the nucleation of NaO2 from NaO∗
2. The

plateau and the right leg are limited by the step involving the electrochemical activation of O2

as NaO∗
2. Maximum current density is approached at the plateau when the electrochemical

adsorption step becomes barrier-less. We observe that the nucleation rate (current density)

for NaO2 is highest on Au(111), Ag(111) and Au(100).
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Figure S8: Sabatier volcano for the 1e− volcano. The current density relative to that on
Pt(111) depends on the minimum rate of the two steps involved, the adsorption (electro-
chemical) step and the nucleation (chemical) step. The left leg is limited by the chemical
step that involves the nucleation of NaO2 from NaO∗

2. The plateau and the right leg are
limited by the step involving the electrochemical activation of O2 as NaO∗

2.
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Volcano plots for Na-O2 electrochemistry

Activity volcano for the 1e− reduction to NaO2, for reorganization

energies (λNa) of 0.1 eV, 0.3 eV and 0.5 eV

Fig. S9 shows the discharge current density for three different reorganization energies of

solvents, 0.1 eV, 0.3 eV and 0.5 eV. As expected, an increase in the reorganization energy

causes a lower current density due to a correspondingly higher energy barrier for the adsorp-

tion step. For the case of λNa=0.3 eV, we observe that the nucleation rate (current density)

of NaO2 on Au(111), Ag(111) and Au(100) is the highest and they lie in the plateau region.
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Figure S9: Current density normalized with respect to the current density on Pt(111) as
a function of free energy of NaO∗

2 with respect to that on Pt(111). Three cases of λNa

are considered here to analyze the effect of different solvents. The left leg is limited by
the chemical step that involves the nucleation of NaO2 from NaO∗

2. The plateau and the
right leg are limited by the step involving the electrochemical activation of O2 as NaO∗

2.
Maximum current density is approached at the plateau when the electrochemical adsorption
step becomes barrier-less with highest adsorption rate. We observe that the nucleation rate
(current density) of NaO2 on Au(111), Ag(111) and Au(100) is the highest and they lie in
the plateau region for λNa=0.3 eV
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Activity volcano for the 1e− reduction to NaO2 for λNa of 0.3 eV

with error bars

As discussed in the section on quantifying uncertainty, for each metal facet, the uncertainty

is calculated from the ensemble of adsorption energies with respect to Pt(111). For a metal

facet, ’X’, the standard deviation of the distribution, ∆GNaO2(X|Pt(111)) (refer eqn. 2) is

approximated as the uncertainty, which is represented by the error bars in Fig. S10.

Figure S10: Current density normalized with respect to the current density on Pt(111) as a
function of free energy of NaO∗

2 with respect to that on Pt(111) for λNa=0.3 eV. The error
bars show the standard deviation in the adsorption energies, calculated as the standard
deviation of the ensemble of adsorption energies on the respective metal surface.
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Activity volcano for the 1e− reduction to NaO2 for λNa of 0.3 eV

with 1σ bounds

Fig. S11 shows the limiting potential (blue bold) with uncertainty (1σ) bounds (black dotted

lines).

Figure S11: Current density normalized with respect to the current density on Pt(111) as
a function of free energy of NaO∗

2 with respect to that on Pt(111) for λNa=0.3 eV. The
black dotted lines represents the 1σ limit. The standard deviation (σ) is calculated from an
ensemble of adsorption energies on Pt(111), Au(111), Ag(111), Au(100) and Ag(100).
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