Supporting Information for:

A New Route for Surface Modification: Fluorine-Induced

Superhydrophilicity

Zhi-Yong Luo, Kai-Xuan Chen, Dong-Chuan Mo* and Shu-Shen Lyu*

School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275,

China

*Tel: +86-020-84113985. E-mail: modongch@mail.sysu.edu.cn

*Tel: +86-020-84112151. E-mail: lvshsh@mail.sysu.edu.cn

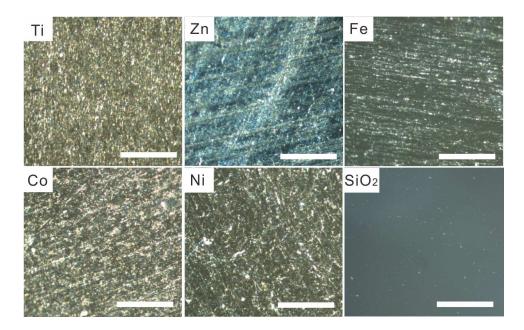
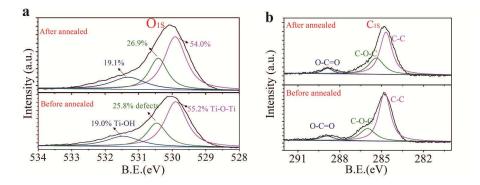
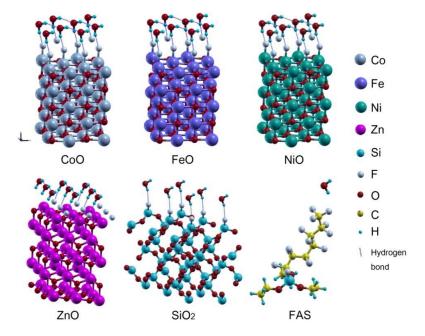
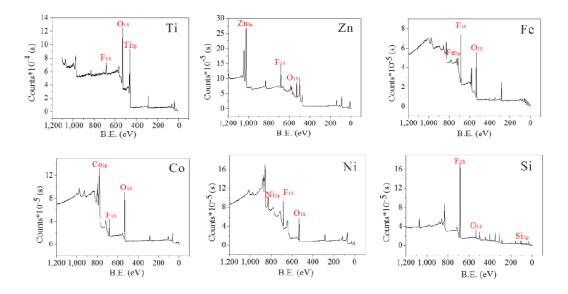
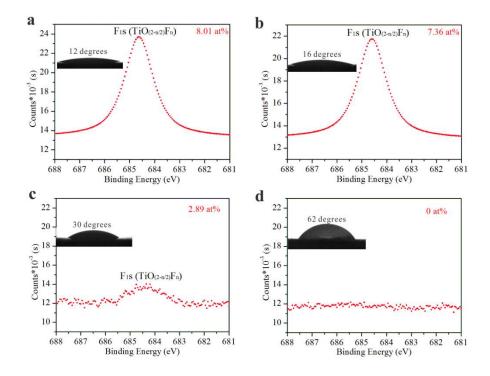



Figure S1 The micrographs of Ti, Zn, Fe, Co, Ni and glass (SiO_2) before oxy-fluoridation, respectively. The bar is 200 μ m.

Figure S2 The XPS analysis of O and C of TiO_2 island arrays (TiIAs). (a) the XPS analysis of O element. The O element represents for three components, the surface hydroxyl species (H₂O and Ti-OH) which will affect the wettability of TiIAs are almost unchanged after annealed. (b) the XPS analysis of C element. The C element also represents for three components, their contents are almost remain the same after annealed.


Figure S3 Computational models of interaction forces between oxy-fluoridized interfaces and water molecules.

Surface	Bond Energy kJ·mol ⁻¹	Surface	Bond Energy kJ·mol ⁻¹
TiO ₂ -F	26.16	ZnO-F	27.23
TiO ₂ -OH	17.88	NiO-F	19.24
SiO _{2_quartz-F}	7.232	CoO-F	19.14
FAS molecular	5.469	FeO-F	16.48

 Table S1. Details of computational data of bond energies.

Figure S4 X-ray photoelectron spectrums of oxy-fluoridized interfaces. Each interface mainly consists of O, F and element itself.

Figure S5 The stability of fluorine-induced superhydrophilicity (FIS) under anealing. (a) asprepared specimen and anealed under (b) 100 °C; (c) 200 °C; (d) 300 °C for 2 h. The FIS can bear about 100 °C temperature, the wettability of specimens is degenerated as the content of oxyfluorides decreased.