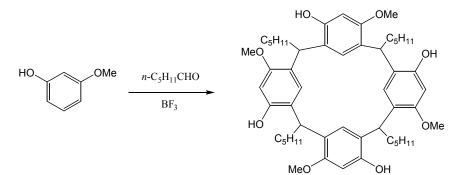
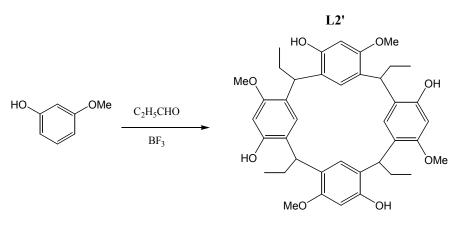
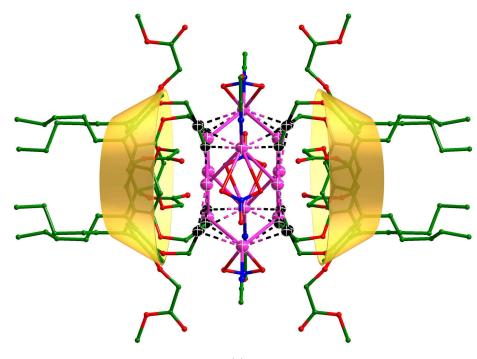

Supporting Information

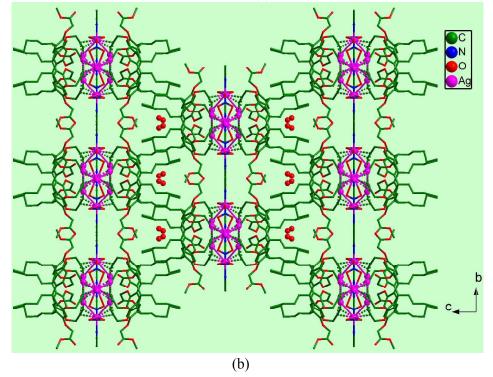

Silver(I) Cage and Infinite Chain Stabilized by Bowl-Shaped Resorcin[4]arene Tetraethynide Ligands


Xue Han,^[a] Shan-Shan Jin,^[a] Jian-Fang Ma,^{*[a]} Jin Yang,^[a] and Thomas C. W. Mak^{*[b]}

 ^[a]Key Lab of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
 ^[b]Department of Chemistry and Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China

* Correspondence authors
E-mail: majf247@yahoo.com (J.-F. Ma)
Fax: +86-431-85098620 (J.-F. Ma)
E-mail: tcwmak@cuhk.edu.hk (T. C. W. Mak)





Scheme S1. Synthetic Procedure of L1', L2' and L3'.

(a)

Figure S1. (a) Perspective view of the sandwich-type Ag_{12} cage embraced by two bowl-shaped resorcin[4]arene tetraethynide units in **1**. The coordinated nitrate and acetonitrile ligands are shown. The hydrogen atoms and lattice water molecules are omitted. (b) Perspective view of the packing structure of **1**. The disordered lattice

water molecules are shown as red balls.

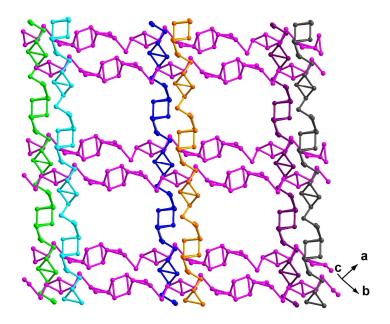
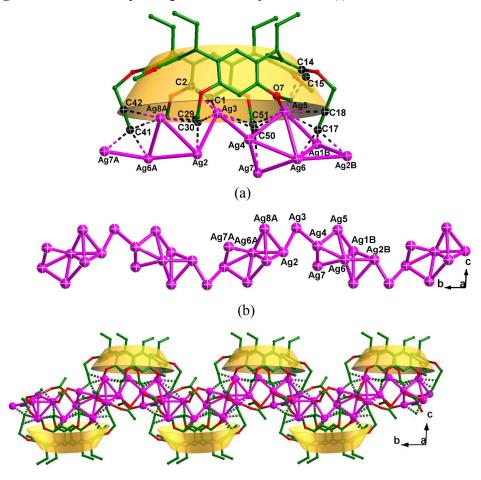



Figure S2. Intersected packing manner of adjacent silver(I) chains in 2.

(c)

Figure S3. (a) Coordination modes of the ethynide groups on the $L3^{4-}$ anion with atom labeling in **4**. (b) Characteristic cationic silver(I) chain formed from the linkage of adjacent Ag₁₁ aggregates *via* argentophilic interactions. (c) Infinite zigzag silver(I) chain alternately decorated by the bowl-shaped resorcin[4]arene tetra-ethynide units *via* Ag···C bonds. Hydrogen atoms, fluorine atoms and acetone molecules are omitted for clarity.

Electrochemical properties

The electrochemical properties were also studied for 3, 4 and AgCF₃CO₂. Cyclic voltammograms of **3** and **4** exhibit quasi-reversible redox couples E_c/E_a (E_c and E_a are cathodic and anionic peak potentials, respectively) of 350 mV/1100 mV and 250 mV/1000 mV, respectively. These peaks are very similar to the redox couples of AgCF₃CO₂ (E_c/E_a of 200 mV/1200 mV) (Figure S4). Thereby, the redox peaks for 3 and 4 mainly account for the redox process of Ag^+/Ag couples. The different E_c and $E_{\rm a}$ values also demonstrate that the bulk ethynide functionalized resorcin[4]arene ligands probably play a role in affecting the redox behaviors. Controlled-potential electrolyses of **3** and **4** show a consumption of 8 electrons per molecule, respectively. These multi-electron transfer processes also hold promise for the generation of mixed-valent silver(0,I) materials by electroreduction of multinuclear silver(I)-alkynyl complexes.

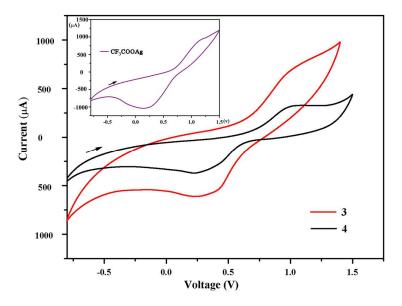
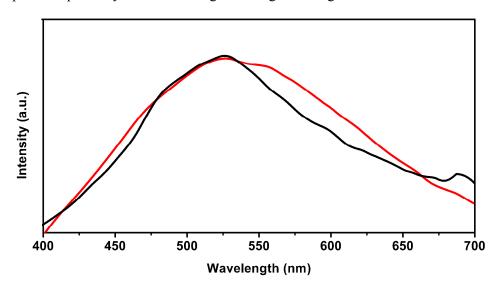



Figure S4. Cyclic voltammograms for 3, 4 and $AgCF_3CO_2$ in methanol solutions containing 1 mol/L LiClO₄ and 0.5 mol/L CF₃COOH.

Luminescence

The luminescent properties of H₄L2 and complex **3** were studied in the solid state at room temperature. As shown in Figure S5, the main emission peak of the free H₄L2 ligand is at 525 nm upon excitation at 370 nm, which is probably from the $\pi^* \rightarrow \pi$ or $\pi^* \rightarrow n$ transition. Complex **3** exhibits an emission peak at 526 nm upon excitation at 363 nm, which is very close to that of the free H₄L2 ligand. Thereby, the emission of complex **3** is probably attributed to ligand-to-ligand charge transition.

Figure 5. Solid state luminescence spectra of H_4L2 (red) and complex **3** (black) at room temperature.