Clusters Evolution at Early Stages of 1,3,5-Triamino-2,4,6-trinitrobenzene under Various Heating Conditions: A Molecular Reactive Force Field Study #### Yushi Wen, XiangguiXue, Xinping Long, and Chaoyang Zhang* Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), P. O. Box 919-311, Mianyang, Sichuan 621900, China. #### **Supporting Information** #### **Table of Contents** - S1 The detailed information of the supercells. - S2 Bond order minimum values used to determine molecules and the products of heated TATB. - S3 The products of TATB heated under various conditions. - S4 Primary reactions under various heating conditions. ## S1. The detailed information of the supercells Table s1. The detailed information of the supercells. | supercells | TATB | | | |-----------------------------------|---------|---------|---------| | enlargement times from unit cells | 6×6×6 | | | | Lattice Parameters | a | b | с | | | 54.06 Å | 54.17 Å | 40.87 Å | | | α | β | γ | | | 108.58° | 119.97° | 91.82° | | Amounts of molecules | 432 | | | | Amounts of atoms | 10368 | | | Fig. s1 Supercells of TATB. The carbon, hydrogen, oxygen and nitrogen atoms are indicated in grey, white, red and blue, respectively. #### S2. List of bond order minimum values used to determine molecules Table s2. List of bond order minimum values used to determine molecules. | Atom type | Atom type | Bond order | |-----------|-----------|------------| | С | N | 0.3 | | С | С | 0.55 | | С | О | 0.65 | | С | Н | 0.4 | | О | О | 0.65 | | N | О | 0.4 | | О | Н | 0.4 | | Н | Н | 0.55 | | Н | N | 0.55 | | N | N | 0.55 | #### S3. The products of TATB heated under various conditions. Fig. s2 The products of TATB programmed heated at a rate of 20 K/ps. Fig. s3 The products of TATB programmed heated at a rate of 100 K/ps. Fig. s4 The products of TATB programmed heated at a rate of 200 K/ps. Fig. s5 The products of TATB heated at 3000 K. Fig. s6 The products of TATB adiabatic heated from 3000 K. ## S4 Primary reactions under various heating conditions. Table s3. Primary reactions and their frequencies under programmed heating with rate of 20 K/ps (time of statistics is 0~135ps with an interval of 1ps). | Frequency | Reactants | | Products | |-----------|--|----|--| | 31 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₆ N ₆ +C ₆ H ₇ O ₆ N ₆ | | 28 | C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₅ N ₆ +HO | | 14 | C ₆ H ₇ O ₆ N ₆ | => | C ₆ H ₆ O ₅ N ₆ +HO | | 10 | C ₆ H ₆ O ₆ N ₆ +HO | => | C ₆ H ₅ O ₆ N ₆ +H ₂ O | | 10 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₅ N ₆ +C ₆ H ₅ O ₆ N ₆ +H ₂ O | | 9 | $C_6H_6O_6N_6$ | => | C ₆ H ₄ O ₅ N ₆ +H ₂ O | | 9 | C ₆ H ₆ O ₆ N ₆ +HO | => | $C_6H_7O_7N_6$ | | 9 | $C_6H_7O_6N_6$ | => | C ₆ H ₅ O ₅ N ₆ +H ₂ O | | 9 | H_2N_2 | => | H ₂ +N ₂ | | 8 | H ₂ N+H ₂ O | => | H ₃ N+HO | | 8 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₆ O ₅ N ₆ +C ₆ H ₆ O ₇ N ₆ | | 8 | НО+НО | => | H ₂ O ₂ | | 6 | Н+НО | => | H ₂ O | | 6 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₆ N ₆ +C ₆ H ₆ O ₅ N ₆ +HO | | 5 | HO ₃ N | => | HO+NO ₂ | Table s4. Primary reactions and their frequencies under programmed heating with rate of 100 K/ps (time of statistics is 0~27 ps with an interval of 1 ps) | Frequency | Reactants | | Products | |-----------|--|----|--| | 28 | $C_6H_6O_6N_6$ | => | C ₆ H ₅ O ₅ N ₆ +HO | | 17 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₆ N ₆ +C ₆ H ₇ O ₆ N ₆ | | 7 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₅ N ₆ +C ₆ H ₅ O ₆ N ₆ +H ₂ O | | 7 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₆ O ₅ N ₆ +C ₆ H ₆ O ₇ N ₆ | | 6 | C ₆ H ₆ O ₆ N ₆ +HO | => | C ₆ H ₅ O ₆ N ₆ +H ₂ O | | 5 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₅ N ₆ +C ₆ H ₇ O ₇ N ₆ | | 5 | $C_6H_6O_6N_6$ | => | C ₆ H ₅ O ₆ N ₆ +H | | 5 | $C_6H_7O_7N_6$ | => | C ₆ H ₆ O ₆ N ₆ +HO | | 5 | $C_6H_7O_6N_6$ | => | C ₆ H ₆ O ₅ N ₆ +HO | | 4 | $C_6H_6O_6N_6$ | => | C ₆ H ₆ O ₄ N ₅ +NO ₂ | | 4 | $C_6H_6O_6N_6$ | => | C ₆ H ₄ O ₅ N ₆ +H ₂ O | | 4 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | $C_{12}H_{12}O_{12}N_{12}$ | | 4 | C ₆ H ₆ O ₇ N ₆ | => | C ₆ H ₆ O ₅ N ₅ +NO ₂ | | 4 | C ₆ H ₅ O ₅ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₆ N ₆ +C ₆ H ₆ O ₅ N ₆ | | 4 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₆ N ₆ +C ₆ H ₆ O ₅ N ₆ +HO | Table s5. Primary reactions and their frequencies under programmed heating with rate of 200 K/ps (time of statistics is $0\sim13.5$ ps with an interval of 1ps) | Frequency | Reactants | | Products | |-----------|--|----|---| | 29 | $C_6H_6O_6N_6$ | => | C ₆ H ₅ O ₅ N ₆ +HO | | 21 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₆ N ₆ +C ₆ H ₇ O ₆ N ₆ | | 9 | $C_6H_6O_6N_6$ | => | C ₆ H ₆ O ₄ N ₅ +NO ₂ | | 8 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₅ N ₆ +C ₆ H ₅ O ₆ N ₆ + H ₂ O | | 8 | $C_6H_6O_6N_6$ | => | C ₆ H ₅ O ₆ N ₆ +H | | 8 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₆ N ₆ +C ₆ H ₆ O ₅ N ₆ +HO | | 7 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₆ O ₅ N ₆ +C ₆ H ₆ O ₇ N ₆ | | 5 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | $C_{12}H_{12}O_{12}N_{12} \\$ | | 3 | $C_6H_7O_6N_6$ | => | C ₆ H ₅ O ₅ N ₆ +H ₂ O | | 3 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₇ O ₆ N ₆ | => | C ₆ H ₅ O ₆ N ₆ +C ₆ H ₆ O ₅ N ₆ +H ₂ O | | 3 | $3C_6H_6O_6N_6$ | => | C ₆ H ₅ O ₆ N ₆ +C ₆ H ₆ O ₅ N ₆ +C ₆ H ₇ O ₇ N ₆ | | 2 | C ₆ H ₆ O ₆ N ₆ +HO | => | C ₆ H ₄ O ₇ N ₅ +NH ₃ | | 2 | C ₆ H ₅ O ₅ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₄ N ₆ +C ₆ H ₅ O ₆ N ₆ +HO | | 2 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₆ O ₅ N ₅ +C ₆ H ₆ O ₅ N ₆ +NO ₂ | | 2 | C ₆ H ₅ O ₆ N ₆ +H | => | C ₆ H ₅ O ₅ N ₆ +HO | Table s6. Primary reactions and their frequencies under constant temperature heating (T=3000 K and the time of statistics is $0\sim5$ ps with an interval of 0.1ps) | Frequency | Reactants | | Products | |-----------|--|----|--| | 22 | $C_6H_6O_6N_6$ | => | C ₆ H ₆ O ₄ N ₅ +NO ₂ | | 21 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₆ N ₆ +C ₆ H ₇ O ₆ N ₆ | | 18 | $C_6H_6O_6N_6$ | => | C ₆ H ₅ O ₅ N ₆ +HO | | 15 | C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₆ N ₆ +H | | 8 | C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₆ O ₅ N ₆ +O | | 6 | C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₄ O ₆ N ₅ +H ₂ N | | 6 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₅ N ₆ +C ₆ H ₅ O ₆ N ₆ +H ₂ O | | 5 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | $C_{12}H_{12}O_{12}N_{12}$ | | 5 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₆ O ₅ N ₆ +C ₆ H ₆ O ₇ N ₆ | | 5 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₆ N ₆ +C ₆ H ₆ O ₅ N ₆ +HO | | 5 | C ₆ H ₆ O ₆ N ₆ +O | => | C ₆ H ₆ O ₇ N ₆ | | 5 | C ₆ H ₆ O ₆ N ₆ +HO | => | C ₆ H ₅ O ₆ N ₆ +H ₂ O | | 4 | C ₆ H ₇ O ₆ N ₆ | => | C ₆ H ₄ O ₆ N ₅ +NH ₃ | | 4 | C ₆ H ₅ O ₆ N ₆ | => | C ₆ H ₄ O ₅ N ₆ +HO | | 4 | C ₆ H ₆ O ₆ N ₆ +H | => | C ₆ H ₆ O ₅ N ₆ +HO | Table s7. Primary reactions and their frequencies under adiabatic heating with preheating at 3000 K for 0.5 ps (the time of statistics is $0\sim5\text{ps}$ with an interval of 0.1ps) | Frequency | Reactants | | Products | |-----------|--|----|--| | 33 | $C_6H_6O_6N_6$ | => | C ₆ H ₅ O ₅ N ₆ +HO | | 16 | C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₆ O ₄ N ₅ +NO ₂ | | 13 | C ₆ H ₆ O ₆ N ₆ +HO | => | C ₆ H ₇ O ₇ N ₆ | | 11 | C ₆ H ₇ O ₆ N ₆ | => | C ₆ H ₆ O ₅ N ₆ +HO | | 11 | C ₆ H ₆ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | C ₆ H ₅ O ₆ N ₆ +C ₆ H ₇ O ₆ N ₆ | | 8 | $C_6H_5O_5N_6$ | => | C ₆ H ₄ O ₄ N ₆ +HO | | 6 | C ₆ H ₅ O ₆ N ₆ +HO | => | C ₆ H ₄ O ₆ N ₆ +H ₂ O | | 6 | C ₆ H ₅ O ₆ N ₆ +C ₆ H ₆ O ₆ N ₆ | => | $C_{12}H_{11}O_{12}N_{12}$ | | 6 | C ₆ H ₆ O ₆ N ₆ +H | => | C ₆ H ₇ O ₆ N ₆ | | 5 | $C_6H_6O_7N_6$ | => | C ₆ H ₆ O ₅ N ₅ +NO ₂ | | 5 | C ₆ H ₇ O ₆ N ₆ | => | C ₆ H ₅ O ₅ N ₆ +H ₂ O | | 5 | $C_6H_6O_5N_6$ | => | C ₆ H ₅ O ₄ N ₆ +HO | | 5 | $C_6H_5O_5N_6$ | => | C ₆ H ₅ O ₃ N ₅ +NO ₂ | | 5 | C ₆ H ₄ O ₄ N ₄ | => | C ₆ H ₃ O ₃ N ₄ +HO | | 5 | O ₂ N | => | O+NO |