Supporting Information for:

The Impact of Short-range Forces on Defect Production from High-energy Collisions

R. E. Stoller ${ }^{1}$, A. Tamm 2,3, L. K. Beland ${ }^{1}$, G. D. Samolyuk ${ }^{1}$, G. M. Stocks ${ }^{1}$, A. Caro ${ }^{3}$, L. V. Slipchenko ${ }^{4}$, Yu. N. Osetsky ${ }^{1}$, A. Aabloo ${ }^{2}$, M. Klintenberg ${ }^{5}$, and Y. Wang ${ }^{6}$
${ }^{1}$ Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 3781, USA
${ }^{2}$ IMS Lab, Institute of Technology, University of Tartu, 50411 Tartu, Estonia
${ }^{3}$ Materials Science and Technology Division, Los Alamos National Laboratory Los Alamos NM 87544, USA
${ }^{4}$ Department of Chemistry, Purdue University, West Lafayette, IN 47906
${ }^{5}$ Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden
${ }^{6}$ Pittsburgh Supercomputer Center, Carnegie-Mellon University, Pittsburgh, PA 15213, USA
email: stollerre@ornl.gov

Research sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes

S1. Equation of state and dimer energy in the EAM formalism

The energy of a single element crystal lattice per atom can be written within the EAM formalism as:

$$
\begin{equation*}
E(a)=\frac{1}{2} \sum_{i \in N_{n}} N_{i} \varphi\left(\alpha_{i} a_{o}\right)+F(\bar{\rho}), \tag{S1}
\end{equation*}
$$

where

$$
\bar{\rho}=\sum_{i \in N_{n}} N_{i} \rho\left(\alpha_{i} a_{o}\right)
$$

is the local density at a site i and sum goes over all the neighboring shells. N_{i} is the number of atoms in the i -th shell and the term $\alpha_{i} a_{o}$ is the distance between a given site and atoms in the specified shell. The symbol a_{o} is the lattice parameter. The number of atoms and the distances associated with the first six neighbor shells are listed in Table S1.

Table S1: Number of atoms and distances from origin for first six nearest neighbor shells for an fcc lattice						
Shell	1	2	3	4	5	6
N_{i}	12	6	24	12	24	8
α_{i}	$\sqrt{0.5}$	1.0	$\sqrt{1.5}$	$\sqrt{2.0}$	$\sqrt{2.5}$	$\sqrt{3.0}$

The error introduced by using a finite number of neighbor shells can be reduced by rewriting Eq. (S1) in terms of differences with respect to the equilibrium energy, E_{0} :

$$
\begin{gather*}
E(a)=E_{0}+\frac{1}{2} \sum_{i \in N_{n}} N_{i}\left(\varphi\left(\alpha_{i} a\right)-\varphi\left(\alpha_{i} a_{0}\right)\right)+F\left(\bar{\rho}_{0}+\Delta \bar{\rho}\right)-F\left(\bar{\rho}_{0}\right) \\
\Delta \bar{\rho}=\sum_{i \in N_{n}} N_{i}\left(\rho\left(\alpha_{i} a\right)-\rho\left(\alpha_{i} a_{0}\right)\right) \tag{S3}
\end{gather*}
$$

Similar to the case for the analytical EOS, a formula can be written for the dimer energy in the crystal lattice. The formula has the following form:

$$
\begin{gather*}
E(r)=E_{0}+\frac{1}{2} \sum_{i \in N_{n}} N_{i}\left(\varphi\left(r_{i}(r)\right)-\varphi\left(r_{i}\left(r_{0}\right)\right)+F\left(\bar{\rho}_{0}+\Delta \bar{\rho}\right)-F\left(\bar{\rho}_{0}\right)\right. \tag{S4}\\
\Delta \bar{\rho}=\sum_{i \in N_{n}} N_{i}\left(\rho\left(r_{i}(r)\right)-\rho\left(r_{i}\left(r_{0}\right)\right)\right)
\end{gather*}
$$

The term N_{i} is related to the number of atoms contributing, which for the case $i=1$ involves only the nearest neighbor. The distance function $r_{i}(r)$ is shown in Table S 2 for different site contributions, where the term r_{0} is the equilibrium separation between nearest neighbor atoms.

Table S2: Terms contributing to sum in Eqns. (S4) and (S5)						
Contribution	1	2	3	4	5	
N_{i}	1	4	2	4	1	
$r_{i}(r)$	r	$\sqrt{r^{2}-r r_{0}-r_{0}^{2}}$	$\sqrt{r_{0}^{2}+\left(r_{0}-r\right)^{2}}$	$\sqrt{3 r_{0}^{2}-3 r r_{0}+r^{2}}$	$2 r_{0}-r$	

S2. LAMMPS overlay method for joining ZBL to equilibrium potentials

The LAMMPS hybrid/overlay method can be used to superimpose two interatomic potentials such as joining the ZBL to an EAM potential at short atomic separation distances ${ }^{\text {s1 }}$. The general form is:

$$
\begin{equation*}
E(\mathbf{r})=E_{E A M}(\mathbf{r})+E_{Z B L+S}(\boldsymbol{r}) . \tag{S6}
\end{equation*}
$$

The ZBL implementation of LAMMPS requires that the user provide the atomic number of the interacting atoms, as well as an inner cutoff $\left(r_{1}\right)$ and outer cutoff $\left(r_{c}\right)$ radius. The outer cutoff radius is the global cutoff distance for the ZBL interaction, while the inner cutoff radius is the distance where a "switching" function, $S(r)$, is used to smoothly join the ZBL to the equilibrium potential:

$S(r)=C \quad r<r_{1}$	
$S(r)=\frac{A}{3}\left(r-r_{1}\right)^{3}+\frac{B}{4}\left(r-r_{1}\right)^{4}+C \quad r_{1}<r<r_{c}$	
$A=\left(-3 E_{Z B L}^{\prime}\left(r_{c}\right)+\left(r_{c}-r_{1}\right) E_{Z B L}^{\prime \prime}\left(r_{c}\right)\right) /\left(r_{c}-r_{1}\right)^{2}$	$(\mathrm{~S} 7)$
$B=\left(2 E_{Z B L}^{\prime}\left(r_{c}\right)+\left(r_{c}-r_{1}\right) E_{Z B L}^{\prime \prime}\left(r_{c}\right)\right) /\left(r_{c}-r_{1}\right)^{3}$	
$C=-E_{Z B L}\left(r_{c}\right)+\frac{1}{2}\left(r_{c}-r_{1}\right) E_{Z B L}^{\prime}\left(r_{c}\right)-\frac{1}{12}\left(r_{c}-r_{1}\right)^{2} E_{Z B L}^{\prime \prime}\left(r_{c}\right)$	

This switching function is added to the ZBL interaction:

$$
\begin{equation*}
E_{Z B L+S}(r)=E_{Z B L}+S(r) \quad r<r_{c} . \tag{S8}
\end{equation*}
$$

References

S1. The LAMMPS overlay method is described in the on-line manual at: http://lammps.sandia.gov/doc/pair_hybrid.html, http://lammps.sandia.gov/doc/pair_zbl.html, http://lammps.sandia.gov/doc/pair_gromacs.html, (Accessed Dec. 15, 2015).

