Supporting Information for:

The Impact of Short-range Forces on Defect Production from High-energy Collisions

R. E. Stoller¹, A. Tamm^{2,3}, L. K. Beland¹, G. D. Samolyuk¹, G. M. Stocks¹, A. Caro³, L. V. Slipchenko⁴, Yu. N. Osetsky¹, A. Aabloo², M. Klintenberg⁵, and Y. Wang⁶

¹Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 3781, USA

²IMS Lab, Institute of Technology, University of Tartu, 50411 Tartu, Estonia

³Materials Science and Technology Division, Los Alamos National Laboratory Los Alamos NM 87544, USA

⁴Department of Chemistry, Purdue University, West Lafayette, IN 47906

⁵Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden

⁶Pittsburgh Supercomputer Center, Carnegie-Mellon University, Pittsburgh, PA 15213, USA

email: stollerre@ornl.gov

Research sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes

S1. Equation of state and dimer energy in the EAM formalism

The energy of a single element crystal lattice per atom can be written within the EAM formalism as:

$$E(a) = \frac{1}{2} \sum_{i \in N_n} N_i \varphi(\alpha_i a_o) + F(\bar{\rho}) , \qquad (S1)$$

where

$$\bar{\rho} = \sum_{i \in N_n} N_i \rho(\alpha_i a_o)$$

is the local density at a site *i* and sum goes over all the neighboring shells. N_i is the number of atoms in the i-th shell and the term $\alpha_i a_o$ is the distance between a given site and atoms in the specified shell. The symbol a_o is the lattice parameter. The number of atoms and the distances associated with the first six neighbor shells are listed in Table S1.

Table S1: Number of atoms and distances from origin for first six nearest neighbor shells for an fcc lattice									
Shell	1	2	3	4	5	6			
N _i	12	6	24	12	24	8			
α_i	$\sqrt{0.5}$	1.0	$\sqrt{1.5}$	$\sqrt{2.0}$	$\sqrt{2.5}$	$\sqrt{3.0}$			

The error introduced by using a finite number of neighbor shells can be reduced by rewriting Eq. (S1) in terms of differences with respect to the equilibrium energy, E_0 :

$$E(a) = E_0 + \frac{1}{2} \sum_{i \in N_n} N_i \left(\varphi(\alpha_i a) - \varphi(\alpha_i a_0) \right) + F(\bar{\rho}_0 + \Delta \bar{\rho}) - F(\bar{\rho}_0)$$
(S2)
$$\Delta \bar{\rho} = \sum_{i \in N_n} N_i \left(\rho(\alpha_i a) - \rho(\alpha_i a_0) \right)$$
(S3)

Similar to the case for the analytical EOS, a formula can be written for the dimer energy in the crystal lattice. The formula has the following form:

$$E(r) = E_0 + \frac{1}{2} \sum_{i \in N_n} N_i (\varphi(r_i(r)) - \varphi(r_i(r_0)) + F(\bar{\rho}_0 + \Delta \bar{\rho}) - F(\bar{\rho}_0)$$
(S4)
$$\Delta \bar{\rho} = \sum_{i \in N_n} N_i (\rho(r_i(r)) - \rho(r_i(r_0)))$$
(S5)

The term N_i is related to the number of atoms contributing, which for the case i = 1 involves only the nearest neighbor. The distance function $r_i(r)$ is shown in Table S2 for different site contributions, where the term r_0 is the equilibrium separation between nearest neighbor atoms.

Table S2: Terms contributing to sum in Eqns. (S4) and (S5)								
Contribution	1	2	3	4	5			
N _i	1	4	2	4	1			
$r_i(r)$	r	$\sqrt{r^2 - rr_0 - r_0^2}$	$\sqrt{r_0^2 + (r_0 - r)^2}$	$\sqrt{3r_0^2 - 3rr_0 + r^2}$	$2r_0 - r$			

S2. LAMMPS overlay method for joining ZBL to equilibrium potentials

The LAMMPS hybrid/overlay method can be used to superimpose two interatomic potentials such as joining the ZBL to an EAM potential at short atomic separation distances^{\$1}. The general form is:

$$E(\mathbf{r}) = E_{EAM}(\mathbf{r}) + E_{ZBL+S}(\mathbf{r}).$$
(S6)

The ZBL implementation of LAMMPS requires that the user provide the atomic number of the interacting atoms, as well as an inner cutoff (r_1) and outer cutoff (r_c) radius. The outer cutoff radius is the global cutoff distance for the ZBL interaction, while the inner cutoff radius is the distance where a "switching" function, *S*(*r*), is used to smoothly join the ZBL to the equilibrium potential:

$S(r) = C \qquad r < r_1$	
$S(r) = \frac{A}{3}(r - r_1)^3 + \frac{B}{4}(r - r_1)^4 + C \qquad r_1 < r < r_c$	
$A = (-3E'_{ZBL}(r_c) + (r_c - r_1)E''_{ZBL}(r_c))/(r_c - r_1)^2$	(\$7)
$B = (2E'_{ZBL}(r_c) + (r_c - r_1)E''_{ZBL}(r_c))/(r_c - r_1)^3$	
$C = -E_{ZBL}(r_c) + \frac{1}{2}(r_c - r_1)E'_{ZBL}(r_c) - \frac{1}{12}(r_c - r_1)^2E''_{ZBL}(r_c)$	

This switching function is added to the ZBL interaction:

$$E_{ZBL+S}(r) = E_{ZBL} + S(r) \qquad r < r_c.$$
(S8)

References

S1. The LAMMPS overlay method is described in the on-line manual at: http://lammps.sandia.gov/doc/pair_hybrid.html, http://lammps.sandia.gov/doc/pair_zbl.html, http://lammps.sandia.gov/doc/pair_gromacs.html, (Accessed Dec. 15, 2015).