Supporting Information ## Cell penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer Ramin A. Morshed ¹, Megan E. Muroski ², Qing Dai ³, Michelle L. Wegscheid ¹, Brenda Auffinger ¹, Dou Yu ², Yu Han ², Lingjiao Zhang ¹, Meijing Wu ², Yu Cheng ⁴,*, Maciej S. Lesniak ²,* ## **Author Affiliations** ¹ The Brain Tumor Center, The University of Chicago, Chicago, IL, USA ² Northwestern University Feinberg School of Medicine, 676 N. St Clair Street, Suite 2210, Chicago, IL 60611, USA ³ Department of Chemistry, Institute of Biophysics Dynamics and Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA ⁴ Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China **Supplemental Figure 1**. Treatment with TAT-Au and unconjugated Dox. MTT assay results after 48 h incubation with TAT-Au and unconjugated Dox (red curves) vs. Dox alone (black curves) at concentrations ranging from $0.05{\text -}10~\mu\text{M}$ in MDA-MB-231/MDA-MB-231-Br and CN34/CN34-Br (n=4 per condition). There was no improvement in the IC50 values for TAT-Au and unconjugated Dox compared to free Dox across cell lines.