Supporting Information

A Dynamic Kinetic C-P Cross-Coupling for the Asymmetric Synthesis of Axially

Chiral P,N Ligands

Pedro Ramírez-López,§ Abel Ros, *,§ Beatriz Estepa, Rosario Fernández, *∫ Béla Fiser, ‡

Enrique Gómez-Bengoa,*,‡ José M. Lassaletta*,§

 [§] Instituto Investigaciones Químicas (CSIC-US), C/ Américo Vespucio, 49, 41092 Sevilla, Spain. [∫] Departamento de Química Orgánica, C/ Prof. García González, 1, 41012 Sevilla, Spain
 [‡] Departamento de Química Orgánica I, Universidad del País Vasco, UPV/EHU, Apdo. 1072, 20080 San Sebastián, Spain

E-mail: abel.ros@iiq.csic.es, jmlassa@iiq.csic.es, ffernan@us.es, enrique.gomez@ehu.es

Table of contents	page
General Information:	S2
1-(2-methoxynaphthalen-1-yl)phthalazine:	S2-S3
1-(phthalazin-1-yl)naphthalen-2-ol:	S 3
Synthesis of triflates (±)-1D and (±)-9. General procedure.	S4
Characterization of (±)-1D and (±)-9:	S4-S5
Synthesis of Nonaflates (±)-8C-D and (±)-11. General procedure.	S5-S6
Characterization of (±)-8C-D and (±)-11:	S5-S6
Synthesis of Silylphosphines 5a-e. General procedure:	S 6
Characterization of 5a-e:	S7-S 8
Screening of Josiphos ligands and solvents using <i>t</i> -BuMe ₂ SiPPh ₂ :	S8-S10
Dynamic Kinetic Asymmetric C-P Cross-Coupling. General procedure:	S11
Characterization of products 3Aa-Ce:	S11-S21
Experiments with Triflate 9 and Nonaflate 11:	S22
¹ H, ¹³ C, ³¹ P, ¹⁹ F NMR spectra and HPLC traces:	S23-S80
References	S75

General Information.

¹H NMR spectra were recorded at 300 MHz, 400 MHz or 500 MHz; ¹³C NMR spectra were recorded at 75 MHz, 100 MHz or 125 MHz with the solvent peak used as the internal reference (7.26 and 77.0 ppm for ¹H and ¹³C respectively for CDCl₃; 5.32 and 53.8 ppm for ¹H and ¹³C respectively for CD₂Cl₂; 7.16 and 128.1 ppm for ¹H and ¹³C respectively for C₆D₆;); Column chromatography was performed on silica gel (Merck Kieselgel 60). Analytical TLC was performed on aluminum backed plates (1.5 × 5 cm) pre-coated (0.25 mm) with silica gel (Merck, Silica Gel 60 F₂₅₄). Compounds were visualized by exposure to UV light or by dipping the plates in a solution of 5% (NH₄)₂Mo₇O₂₄·4 H₂O in 95% EtOH (w/v) or followed by heating.

The silylphosphines used in this paper are moisture-sensitive compounds, and were stored in a nitrogen-filled glovebox and manipulated in flame-dried glassware using standard Schlenk techniques. Purging refers to an evacuation/argon refilling procedure carried out three times. Anhydrous 1,4-dioxane and THF were obtained by distillation from sodium using benzophenone as indicator. Anhydrous CsF was purchased from Aldrich and stored in a nitrogen-filled glovebox. Pd(dba)₂ was purchased from Aldrich, ligands L1,¹ L2,² L3³ and L4⁴ were prepared following described procedures, and ligands L5-L18 were purchased from Aldrich. Triflates (\pm)-1A⁵, (\pm)-1B-C⁶ and silylphosphines 2 and 4⁷ were synthesized following literature procedures.

1-(2-methoxynaphthalen-1-yl)phthalazine.

A dried Schlenk tube was charged with $Pd(PPh_3)_4$ (5 mol%) and 1chlorophthalazine (9.11 mmol, 1.5 g), and after three cycles of vacuum-argon flushing, DME (18 mL) was added and reaction

mixture was stirred for 30 min at room temperature. (2-Methoxynaphthalen-1-yl)boronic acid (1.2 eq.) and 11 mL of Na₂CO₃ (2M, aq.) were then sequentially added and the reaction mixture was refluxed overnight, then cooled to room temperature, quenched with H₂O (10 mL), and extracted with CH₂Cl₂ (3×20 mL). The organic layer was dried over anhydrous MgSO₄, filtered, concentrated, and

the residue was purified by column chromatography on silica gel (EtOAc/n-hexane 2:1 Et_3N 1%) to afford 1-(2-methoxynaphthalen-1-yl)phthalazine (1.62 g, 62%) as a light brown foam. ¹H NMR (500 MHz, CDCl₃): δ 9.65 (d, 1H, I = 0.6 Hz), 8.06 (d, 2H, I = 8.6Hz), 7.91-7.87 (m, 2H), 7.71 (td, 1H, J = 7.0 and 1.1 Hz), 7.49 (dd, 1H, J = 8.3 and 0.6 Hz), 7.45 (d, 1H, J = 9.1 Hz), 7.35 (td, 1H, J = 6.8 and 1.1 Hz), 7.28 (td, 1H, J = 6.8 and 1.1 Hz), 7.10 (d, 1H, J = 8.6 Hz), 3.78 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 158.1, 155.4, 151.0, 133.9, 132.6, 132.4, 131.4, 129.2, 128.2, 127.6, 127.3, 126.8, 126.6, 126.4, 124.7, 124.0, 118.7, 113.5, 56.8. HRMS (EI) calcd. for C₁₉H₁₄N₂O (M⁺) 286.1106. Found 286.1104.

1-(phthalazin-1-yl)naphthalen-2-ol.

BBr₃ (1.2 eq.) was carefully added to a solution of 1-(2methoxynaphthalen-1-yl)phthalazine (2.97 mmol, 850 mg) in dry CH₂Cl₂ (12 mL) under argon. The reaction mixture was refluxed for 1 hour and stirred overnight at room temperature. The resulting mixture was cooled to 0 $^{\circ}$ C, guenched with H₂O, and the formed precipitated was

vigorously stirred in a CH_2Cl_2/Na_2CO_3 (2M, aq.) mixture. The organic phase was separated and the aqueous layer was extracted with CH₂Cl₂. The combined organic layer was dried (MgSO₄), filtered, concentrated, and the residue was purified by column chromatography on silica gel (CH₂Cl₂:MeOH 50:2 Et₃N 1%) to afford 1-(phthalazin-1-yl)naphthalen-2-ol (646 mg, 80%) as a brown solid. ¹H NMR ((CD₃)₂SO, 500 MHz): δ 9.91 (br s, 1H), 9.78 (s, 1H), 8.27 (d, 1H, I = 8.1 Hz), 8.02-7.99 (m, 2H), 7.92 (d, 1H, / = 7.8 Hz), 7.85 (t, 1H, / = 8.1 Hz), 7.42 (d, 1H, / = 8.8 Hz), 7.40 (d, 1H, / = 9.0 Hz), 7.30 (td, 1H, J = 7.5 and 1.0 Hz), 7.25 (td, 1H, J = 7.7 and 1.3 Hz), 6.90 (d, 1H, J = 8.4 Hz). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ 157.5, 153.2, 150.7, 133.6, 133.0, 132.6, 130.6, 128.1, 127.8, 126.8, 126.7, 126.4, 126.2, 125.5, 123.6, 122.9, 118.2, 115.1. HRMS (EI) calcd. for C₁₈H₁₂N₂O (M⁺) 272.0950. Found 272.0947.

Synthesis of triflates (±)-1D and (±)-9. General procedure.

Following a described procedure,^{6b} triflic anhydride (1.2 eq.) was carefully dropwise added to an under argon solution containing the corresponding alcohol, dry pyridine (1.2 eq.) and DMAP (cat.) in dry CH_2Cl_2 (5 mL/mmol). The reaction mixture was stirred at room temperature overnight, then quenched with NaHCO₃ (sat. aq.) and the organic phase was separated. The aqueous layer was extracted with CH_2Cl_2 , and the combined organic layer was dried (MgSO₄), filtered, concentrated, and the residue was purified by column chromatography on silica gel using EtOAc/*n*-hexane mixtures.

1-(phthalazin-1-yl)naphthalen-2-yl trifluoromethanesulfonate (±)-1D.

Following the general procedure starting from 1-(phthalazin-1yl)naphthalen-2-ol (2.28 mmol, 620 mg), column chromatography (EtOAc/*n*-hexane 1:5 \rightarrow 1.1) afforded **(±)-1D** (552 mg, 60%) as a light brown foam. ¹H NMR (400 MHz, CDCl₃): δ 9.71 (s, 1H), 8.15 (d,

1H, J = 9.1 Hz), 8.12 (d, 1H, J = 8.1 Hz), 8.02 (d, 1H, J = 8.2 Hz), 7.96 (t, 1H, J = 7.7 Hz), 7.78 (t, 1H, J = 7.6 Hz), 7.64 (d, 1H, J = 9.1 Hz), 7.59 (t, 1H, J = 7.6 Hz), 7.46-7.41 (m, 2H), 7.28 (d, 1H, J = 8.8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 154.8, 151.4, 145.2, 133.0, 133.0, 132.9, 132.4, 132.0, 128.3, 128.2, 127.4, 126.9, 126.7, 126.4, 126.1, 126.1, 125.6, 119.5, 118.1 (q, $J_{C,F} = 310$ Hz). HRMS (EI) calcd. for C₁₉H₁₂F₃N₂O₃S (M⁺+1) 405.0519. Found 405.0521.

[1,1'-binaphthalen]-2-yl trifluoromethanesulfonate (±)-9.

Following the general procedure starting from [1,1'-binaphthalen]-2ol (\pm)-10⁸ (1.0 mmol, 270 mg), column chromatography (EtOAc/*n*hexane 1:10) afforded (\pm)-9 (342 mg, 85%) as a colourless viscous oil. Spectroscopic data matched those reported in the literature for the

(R)-enantiomer.9

Synthesis of Nonaflates (±)-8C-D and (±)-11. General procedure.

Following a described procedure,¹⁰ over a suspension of the corresponding alcohol (1.0 equiv) and K₂CO₃ (1.5 equiv) in acetonitrile (0.5 M), perfluorobutanesulfonyl fluoride (90%, 1.2 equiv) was added in one portion, and the resulting mixture was vigorously stirred for 24 h. After completion (TLC monitoring), the reaction mixture was filtered through a Celite pad, the solvent was removed in vacuum, and the residue was purified by flash column chromatography over silica gel.

1-(quinazolin-4-yl)naphthalen-2-yl nonaflate (±)-8C.

Following the general procedure starting from 1-(quinazolin-4yl)naphthalen-2-oli^{Error!} Marcador no definido.b (1.43 mmol, 390 mg), column chromatography (EtOAc/*n*-hexane 2:1) afforded (±)-8C (708 mg, 90%) as a light yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 9.55 (s,

1H), 8.21 (d, 1H, *J* = 8.4 Hz), 8.15 (d, 1H, *J* = 9.1 Hz), 8.02 (d, 1H, *J* = 8.2 Hz), 7.96 (t, 1H, *J* = 8.0 Hz), 7.65-7.58 (m, 2H), 7.53 (t, 1H, *J* = 8.0 Hz), 7.47-7.43 (m, 2H), 7.27 (d, 1H, *J* = 8.0 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 163.3, 154.8, 150.6, 144.6, 134.5, 132.4, 132.3, 132.1, 129.0, 128.4, 128.3, 128.3, 127.5, 126.9, 126.4, 125.9, 125.0, 119.4, (nanoflate group not observed). ¹⁹F NMR (377 MHz, CDCl₃): -80.7 (t, *J*_{*F*-*P*} = 11 Hz), -110.0 (q, *J*_{*F*-*P*} = 15 Hz), -121.1 (m), -126.0 (m). HRMS (ESI) calcd. for C₂₂H₁₂F₉N₂O₃S (M + H⁺) 555.0419. Found 555.0412.

1-(phthalazin-1-yl)naphthalen-2-yl nonaflate (±)-8D.

Following the general procedure starting from 1-(phthalazin-1-yl)naphthalen-2-ol (3.9 mmol, 1.07 g), column chromatography (CH₂Cl₂/MeOH 50:1) afforded (±)-8D (1.2 g, 56%) as a light yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 9.70 (s, 1H), 8.16 (d, 1H, *J* = 9.1 Hz),

8.11 (d, 1H, J = 8.1 Hz), 8.02 (d, 1H, J = 8.2 Hz), 7.96 (t, 1H, J = 7.6 Hz), 7.78 (t, 1H, J = 7.6 Hz), 7.64 (d, 1H, J = 9.2 Hz), 7.59 (t, 1H, J = 7.6 Hz), 7.47-7.41 (m, 2H), 7.28 (d, 1H, J = 8.8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 154.8, 151.4, 145.2, 133.0, 133.0, 132.9, 132.4, 132.0, 128.3, 128.2, 127.4, 126.9, 126.7, 126.4, 126.2, 126.2, 125.6, 119.5, (nanoflate

group not observed). ¹⁹F NMR (377 MHz, CDCl₃): -80.7 (t, $J_{F-P} = 11$ Hz), -110.0 (t, $J_{F-P} = 15$ Hz), -121.2 (m), -126.0 (m). HRMS (ESI) calcd. for $C_{22}H_{12}F_9N_2O_3S$ (M + H⁺): 555.0419. Found: 555.0414.

2'-(dimethylamino)-[1,1'-binaphthalen]-2-yl nonaflate (±)-11.

Following the general procedure starting from 2'-(dimethylamino)-[1,1'-binaphthalen]-2-ol (±)-12¹¹ (0.782 mmol, 245 mg), column chromatography (EtOAc/*n*-hexane 9:1) afforded (±)-11 (430 mg, 92%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J* = 9.1

Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.8 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.61-7.52 (m, 2H), 7.50 (d, J = 9.0 Hz, 1H), 7.47-7.35 (m, 2H), 7.35-7.28 (m, 1H), 7.18 (ddd, J = 8.3, 6.7, 1.4 Hz, 1H), 6.94 (d, J = 8.5 Hz, 1H), 2.50 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 150.8, 145.6, 134.2, 133.6, 132.5, 130.2, 129.9, 129.7, 129.6, 128.3, 127.9, 127.5, 127.3, 126.7, 126.3, 125.2, 123.7, 120.0, 119.8, 119.4, 43.5 (nanoflate group not observed). ¹⁹F NMR (377 MHz, CDCl₃): -80.7 (t, $J_{F-P} = 11$ Hz), -110.6 (q, $J_{F-P} = 11$ Hz), -121.2 (m), -126.1 (m). HRMS (ESI) calcd. for C₂₆H₁₉F₉NO₃S (M + H⁺) 596.0936. Found 596.0926.

Synthesis of Silylphosphines 5a-e. General procedure.

A flamed-dried Schlenk tube was charged with the corresponding phosphine (1 equiv.). After purging with argon, dry THF was added (1.5 mL/mmol phosphine) and the resulting solution was cooled to -78 °C. *n*-BuLi (1.5 equiv) was then added dropwise, the resulting mixture was allowed to reach -60 °C (for aromatic phosphines) or -40 °C (for aliphatic phosphines), stirred for 20 min and cooled again to -78 °C. Finally, Me₃SiCl (1.5 equiv) was added dropwise and the crude mixture was allowed to reach room temperature. and concentrated to dryness. Dry pentane was added to complete precipitation of LiCl and the reaction crude filtered via filter-cannula under Ar. This extraction process was repeated twice, the solvents were removed under vacuum and the residue was either distilled or washed with pentane.

Note: The purity of silvlphophines 5a-e (HPR₂ free) is crucial to get high and reproducible enantioselectivities in the C-P coupling reactions. Different commercially

available Me₃SiPPh₂ samples were checked and did not fulfill the purity requirements for this study.

Yields, procedure details and characterization data for silylphosphines **5a-e** are as follows:

Diphenyl(trimethylsilyl)phosphine 5a.

Following the general procedure starting from diphenylphosphine
(7.3 g, 39.21 mmol), further distillation of the oily crude afforded 5a
(8.95 g, 88%) as a colorless liquid. Spectroscopic and physical data matched those of a commercial sample.¹²

Di(4-fluorophenyl)(trimethylsilyl)phosphine 5b.

F Following the general procedure starting from di(4fluorophenyl)phosphine (4.20 g, 18.90 mmol), further distillation (117°C/2·10⁻⁴ mbar) of the oily crude afforded **5b** (3.95 g, 71%) as a colorless liquid. ¹H NMR (400 MHz, C₆D₆): δ 7.23 (q, 4H, $J_{H,H} = J_{H,F}$

= $J_{H,P}$ = 6.8 Hz), 6.74 (t, 4H, $J_{H,H}$ = $J_{H,F}$ = 8.4 Hz), 0,06 (d, 9H, $J_{H,P}$ = 6.5 Hz). ¹³C NMR (100 MHz, C₆D₆): δ 163.2 (d, J_{C-F} = 246 Hz, 2C), 135.8 (dd, J_{C-P} = 18 and J_{C-F} = 8 Hz, 4C), 131.6 (dd, J_{C-P} = 17 and J_{C-F} = 4 Hz, 2C), 115.9 (dd, J_{C-F} = 21 and J_{C-P} = 7 Hz, 4C), -1.3 (d, J_{C-P} = 13 Hz, 3C). ³¹P NMR (161 MHz, C₆D₆): -59.3 (t, J_{P-F} = 4 Hz). ¹⁹F NMR (377 MHz, C₆D₆): -114.0 (d, J_{F-P} = 4 Hz).

Di-*p*-tolyl(trimethylsilyl)phosphine 5c.

Following the general procedure starting from di-*p*-tolylphosphine (3.94 g, 18.39 mmol), further washing with pentane of the solid crude obtained afforded **5c** (4.38 g, 83 %) as a colorless solid. ¹H NMR (400 MHz, C₆D₆): δ 7.51 (t, 4H, *J*_{H,H} = *J*_{H,P} = 7.7 Hz), 6.95 (d, 4H,

 $J_{H,H} = 7.7$ Hz), 2.07 (s, 6H), 0.20 (d, 9H, $J_{H,P} = 4.7$ Hz). ¹³C NMR (100 MHz, C₆D₆): δ 137.3 (2C), 134.3 (d, $J_{C-P} = 17$ Hz, 4C), 133.1 (d, $J_{C-P} = 15$ Hz, 2C), 129.6 (d, $J_{C-P} = 7$ Hz, 4C), 21.2 (2C), -1.0 (d, $J_{C-P} = 11$ Hz, 3C). ³¹P NMR (161 MHz, C₆D₆): -59.6.

Di(4-methoxyphenyl)(trimethylsilyl)phosphine 5d.

Following the general procedure, starting from di(4methoxyphenyl)phosphine (2.0 g, 8.12 mmol), further washing with pentane of the solid crude afforfded **5d** (1.90 g, 73%) as a colorless solid. ¹H NMR (400 MHz, C₆D₆): δ 7.51 (t, 4H, $I_{H,H} = I_{H,P}$

= 7.8 Hz), 6.76 (d, 4H, $J_{H,H}$ = 8.2 Hz), 3.27 (s, 6H), 0.21 (d, 9H, $J_{H,P}$ = 4.7 Hz). ¹³C NMR (100 MHz, C₆D₆): δ 160.0 (2C), 135.6 (d, I_{C-P} = 18 Hz, 4C), 127.2 (d, I_{C-P} = 14 Hz, 2C), 114.6 (d, *J*_{C-P} = 7 Hz, 4C), 54.7 (2C), -1.0 (d, *J*_{C-P} = 13 Hz, 3C). ³¹P NMR (161 MHz, CDCl₃): -62.0.

Diisobutyl(trimethylsilyl)phosphine 5e.

³¹P NMR (161 MHz, C₆D₆): -113.5.

Following the general procedure starting from diisobutylphosphine (5.17 g, 35.36 mmol), further distillation ($55^{\circ}C/1.2 \cdot 10^{-1}$ mbar) of the oily crude afforded **3e** (7.12 g, 92%) as a colorless liquid. ¹H NMR (400 MHz, C₆D₆): δ 1.69 (m, 2H) 1.46-1.34 (m, 4H), 1.05 (t, 12H, *J*_{H-H} = *J*_{H-P} = 7.6 Hz), 0.13 (br s, 9H). ¹³C NMR (100 MHz, C_6D_6): δ 33.4 (d, J_{C-P} = 16 Hz, 2C), 28.9 (d, J_{C-P} = 15 Hz, 2C), 24.5 (d, I_{C-P} = 9 Hz, 2C), 23.8 (d, I_{C-P} = 10 Hz, 2C), -2.0 (d, I_{C-P} = 11 Hz, 3C).

Table 1. Screening of Josiphos ligands and different solvents using tBuMe₂SiPPh₂:

Ph ₂ P Fe PtBu ₂	(10)	Pd ₂ (dba) ₃ 5%	6	THF (0.05M)	58	77:23
Ph ₂ P Fe PtBu ₂	(10)	Pd(dba)2 10%	6	THF (0.05M)	66	74.5:25.5
Ph ₂ P Fe PtBu ₂	(20)	Pd(dba)210%	6	THF (0.05M)	57	77:23
F ₃ C F ₈ C F ₃ C	(10)	Pd2(dba)35%	6	THF (0.05M)	70	67:33
MeO Fe MeO	(10)	Pd2(dba)35%	6	THF (0.05M)	30	78.5:21.5
P Fe P/Bu ₂	(10)	Pd2(dba)35%	6	THF (0.05M)	traces	nd
Fe Fe PfBu ₂	(10)	$Pd_2(dba)_35\%$	6	THF (0.05M)	65	67:33
P Fe Fe P/Bu ₂	(10)	$Pd_2(dba)_35\%$	6	THF (0.05M)	traces	nd
Fe PrBu ₂	10%	$Pd_2(dba)_35\%$	6	THF (0.05M)	8	nd
Ph ₂ P Fe PtBu ₂	10%	Pd2(dba)35%	6	THF (0.0125M)	50	75.5:24.5

Ph ₂ P Fe PtBu ₂	10%	Pd ₂ (dba) ₃ 5%	6	THF (0.05M)	-	73.5:26.5
Ph ₂ P Fe PtBu ₂	10%	Pd(OAc) ₂ 10%	6	THF (0.05M)	61	73:27
Ph ₂ P Fe PtBu ₂	10%	$Pd_2(dba)_35\%$	6	DME (0.025M)	63	72.5:27.5
Ph ₂ P Fe PtBu ₂	10%	$Pd_2(dba)_35\%$	6	DMF (0.025M)	88 ^b	70.5:29.5
Ph ₂ P Fe PtBu ₂	10%	Pd2(dba)3 5%	6	Toluene (0.025M)	43	77:23
Ph ₂ P Fe P <i>t</i> Bu ₂	10%	Pd2(dba)35%	6	1,2-DCE (0.025M)	21	86:14
Ph ₂ P Fe PtBu ₂	10%	$Pd_2(dba)_35\%$	6	DMSO (0.025M)	94 ^b	87.5:12.5
Ph ₂ P Fe PtBu ₂	10%	Pd2(dba)3 5%	6	1,4-dioxane (0.025M)	39	82:18
Ph ₂ P Fe PtBu ₂	10%	$Pd_2(dba)_35\%$	6	CHCl3 (0.025M)	traces	nd
Ph ₂ P Fe PtBu ₂	10%	$Pd_2(dba)_35\%$	6	EtOH (0.025M)	12	94.5:5.5
Ph ₂ P Fe PtBu ₂	10%	Pd2(dba)35%	6	MeCN (0.025M)	66	80:20

^a Conversion was estimated by ¹H NMR. The exclusive formation of QUINAP + QUINAPO is assumed. ^b High consumption of the starting triflate was observed but the major product was the hydrolyzed triflate.

Dynamic Kinetic Asymmetric C-P Cross-Coupling. General procedure:

A flame-dried Schlenk tube was charged with triflate (\pm)-1A-D or nonaflate (\pm)-8C-D (0.1 mmol), Pd(dba)₂ (10 mol%) and the required ligand (L12 or L16) (10 mol%). After purging with argon, the tube was introduced in a nitrogen-filled glovebox and anhydrous CsF (0.2 mmol), deoxygenated dry THF (2 mL) and the appropriate silylphosphine (0.2 mmol) were sequentially added. The sealed Schlenk tube was brought out of the glovebox and placed into a preheated oil-bath at 40 °C until completion of the reaction (TLC monitoring). After reaching room temperature, the reaction crude was filtered through a pad of Celite and the solvents were removed under vacuum. The resulting residue was purified by column chromatography over silica gel under nitrogen. Starting materials, yields, reaction times, solvents used for chromatography, and characterization data for phosphines **3** are as follows:

Note: Partial oxidation of phosphine **3** was observed inside HPLC chiral columns. Therefore, phosphine samples were oxidized (H_2O_2 in acetone) to the corresponding phosphine oxides in order to determine the er's. The racemic phosphine oxides references were directly prepared by heating a mixture of the corresponding starting triflates (0.1 mmol, 1.0 equiv.) and HP(O)Ar₂ (0.11 mmol, 1.1 equiv.), dppp (5 mol%), Pd(OAc)₂ (5 mol%), iPr₂NEt (0.4 mmol, 4.0 equiv.) in DMSO (0.5 mL) at 100 °C overnight.

Characterization of products 3Aa-Ce:

(S)-1-(2-(diphenylphosphanyl)naphthalen-1-yl)isoquinoline 3Aa.

Following the general procedure using triflate (±)-1A and 5a as starting materials and L12 as the ligand, after 15 hours at 40 °C purification of the reaction crude through a short pad of SiO₂ (DCM/*n*-hexane 7:3 to DCM) afforded 3Aa (41.5 mg, 95%) as a white

solid. Spectroscopic and physical data matched those reported in the literature.^{iError!} ^{Marcador no definido.} [α]²⁰_D –138.0 (*c* 1.0, CHCl₃) for er 95.5:4.5. [Lit.:^{iError!} Marcador no definido. [α]²⁵_D= –165.0 (*c* 1.0, CHCl₃) for (*S*)-enantiomer (er 99.5:0.5)]. HPLC (IA column, Hex:Isop 85:15, T= 30°C, F= 1mL/min): t_R 23.59 min (major) and 30.78 min (minor). Note: A sample of **3Aa** with er 95.5:4.5 was crystallized from a hot Toluene/CH₂Cl₂ 10:1 mixture, affording the enantioenriched product **3Aa** with er >99.5:0.5.

(S)-2-(2-(diphenylphosphanyl)naphthalen-1-yl)-3-methylpyridine 3Ba.

Following the general procedure using triflate (\pm) -1B and 5a as starting materials and L12 as the ligand, after 15 hours at 40 °C purification of the reaction crude through a short pad of SiO₂ (DCM/*n*-hexane 7:3 to DCM) afforded **3Ba** (36.0 mg, 89%) as a white

solid. $[\alpha]^{20}{}_{D} - 27.5$ (*c* 1.0, CHCl₃) for er 95:5.¹H NMR (400 MHz, CDCl₃): δ 8.49 (d, 1H, *J* = 4.0 Hz), 7.85 (d, 1H, *J* = 8.0 Hz), 7.81 (d, 1H, *J* = 8.4 Hz), 7.61 (d, 1H, *J* = 8.0 Hz), 7.48 (t, 1H, *J* = 7.6 Hz), 7.36 (t, 1H, *J* = 8.0 Hz), 7.33-7.23 (m, 12H), 7.19 (d, 1H, *J* = 8.4 Hz), 1.94 (s, 3H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 157.0 (d, *J*_{*C*-*P*} = 6 Hz), 146.0, 145.0 (d, *J*_{*C*-*P*} = 34 Hz), 137.1 (d, *J*_{*C*-*P*} = 13 Hz), 136.6 (d, *J*_{*C*-*P*} = 12 Hz), 136.6, 133.0, 133.0, 132.8, 132.7, 132.5 (d, *J*_{*C*-*P*} = 10 Hz), 132.5, 132.4 (d, *J*_{*C*-*P*} = 2 Hz), 131.0 (d, *J*_{*C*-*P*} = 8 Hz), 129.3 (d, *J*_{*C*-*P*} = 2 Hz), 127.8, 127.7, 127.6, 127.5, 127.4, 127.4, 126.2, 125.9, 125.1 (d, *J*_{*C*-*P*} = 2 Hz), 122.0, 18.1 (d, *J*_{*C*-*P*} = 3 Hz). ³¹P NMR (161 MHz, CDCl₃): -13.6. HRMS (ESI) calcd. for C₂₈H₂₃NP (M + H⁺) 404.1563. Found 404.1558. HPLC (IA column, Hex:Isop 75:25, T= 30°C, F= 1mL/min): t_R 10.20 min (major) and 13.06 min (minor).

(S)-4-(2-(diphenylphosphanyl)naphthalen-1-yl)quinazoline 3Ca.

Following the general procedure using triflate (\pm) -1C and 5a as starting materials and L12 as the ligand, after 20 hours at 40 °C purification of the reaction crude through a short pad of SiO₂ (EtOAc/*n*-hexane 1:4 to 3:7) afforded **3Ca** (39.2 mg, 89%) as a light

yellow solid. $[\alpha]^{20}{}_{D} -152$ (*c* 1.0, CHCl₃) for er 95:5. After washing with acetone, a white solid is obtained (er >99.5:0.5). ¹H NMR (400 MHz, CDCl₃): δ 9.44 (s, 1H), 8.16 (d, 1H, *J* = 8.5 Hz), 7.95 (d, 1H, *J* = 8.5 Hz), 7.92 (d, 1H, *J* = 8.2 Hz), 7.86 (ddd, 1H, *J* = 8.4, 5.2 and 3.2 Hz), 7.52 (t, 1H, *J* = 7.6 Hz), 7.46 (dd, 1H, *J*_{H-H} = 8.5 and *J*_{H-P} = 3.2 Hz), 7.35-7.16 (m, 13H), 7.09 (d, 1H, *J* = 8.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 169.4 (d, *J*_{C-P} = 7 Hz), 154.7, 150.1, 141.5 (d, *J*_{C-P} = 33 Hz), 136.7 (d, *J*_{C-P} = 10 Hz), 136.5 (d, *J*_{C-P} = 11 Hz), 134.6 (d, *J*_{C-P}

= 15 Hz), 133.9, 133.8, 133.6, 133.4, 133.3, 133.1, 131.8 (d, J_{C-P} = 8 Hz), 129.8, 129.3, 128.7, 128.6, 128.4, 128.3, 128.3, 128.3, 128.1, 127.5, 127.1, 127.0, 127.0, 126.0 (d, J_{C-P} = 2 Hz), 125.7 (d, J_{C-P} = 3 Hz). ³¹P NMR (161 MHz, CDCl₃): –14.0. HRMS (ESI) calcd. for C₃₀H₂₂N₂P (M + H⁺) 441.1515. Found 441.1506. HPLC for phosphine oxide (IA column, Hex:Isop 75:25, T= 30°C, F= 1mL/min): t_R 20.30 min (major) and 26.28 min (minor).

Note: A lack of reproducibility was observed in terms of enantioselectivity most probably due to undetectable impurities accompanying triflate (\pm) -1C. Replacement of triflate (\pm) -1C by nonaflate (\pm) -8C gave rise to high levels of enantioselectivity and consistent reproducibility (er 94.5:5.5, 90% isolated yield).

(S)-1-(2-(diphenylphosphanyl)naphthalen-1-yl)phthalazine 3Da.

Following the general procedure using triflate (\pm) -1D and 5a as starting materials and L12 as the ligand, after 20 hours at 40 °C purification of the reaction crude through a short pad of SiO₂ (EtOAc/*n*-hexane 1:4 to 2:3) afforded 3Da (31.1 mg, 71%) as a white

solid. $[\alpha]^{20}{}_{D} -77.3$ (*c* 1.2, CH₂Cl₂) for er 85.5:14.5. ¹H NMR (400 MHz, CDCl₃): δ 9.65 (s, 1H), 8.05 (d, 1H, *J* = 8.4 Hz), 7.95 (d, 1H, *J* = 8.4 Hz), 7.92 (d, 1H, *J* = 8.0 Hz), 7.85 (t, 1H, *J* = 8.0 Hz), 7.57-7.45 (m, 3H), 7.33-7.19 (m, 11H), 7.17-7.11 (m 2H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 160.6 (d, *J*_{*C*-*P*} = 6 Hz), 151.3, 141.3 (d, *J*_{*C*-*P*} = 33 Hz), 137.5 (d, *J*_{*C*-*P*} = 13 Hz), 137.1 (d, *J*_{*C*-*P*} = 11 Hz), 135.9 (d, *J*_{*C*-*P*} = 14 Hz), 134.0, 134.0, 133.8, 133.7, 133.5, 133.1 (d, *J*_{*C*-*P*} = 8 Hz), 132.9, 132.7, 130.4, 129.7, 129.0, 128.8, 128.8, 128.7, 128.7, 128.5, 127.9 (d, *J*_{*C*-*P*} = 3 Hz), 127.5, 127.3, 126.9, 126.7, 126.5 (d, *J*_{*C*-*P*} = 2 Hz), 126.2. ³¹P NMR (161 MHz, CDCl₃): -14.1. HRMS (ESI) calcd. for C₃₀H₂₂N₂P (M + H⁺) 441.1515. Found 441.1509. HPLC (IA column, Hex:Isop 50:50, T= 30°C, F= 1mL/min): t_R 14.56 min (minor) and 27.94 min (major).

(S)-1-(2-(bis(4-fluorophenyl)phosphanyl)naphthalen-1-yl)isoquinoline 3Ab.

Following the general procedure using triflate (±)-1A and 5b as starting materials and L12 as the ligand, after 18 hours at 40

°C purification of the reaction crude through a short pad of SiO₂ (DCM/*n*-hexane 7:3 to DCM) afforded **3Ab** (41.9 mg, 88%) as a white foam. $[\alpha]^{20}{}_{D}$ –98.2 (*c* 0.8, CHCl₃) for er 90:10. ¹H NMR (400 MHz, CDCl₃): δ 8.62 (d, 1H, *J* = 5.6 Hz), 7.94-7.90 (m, 3H), 7.76 (d, 1H, *J* = 5.6 Hz), 7.64-7.62 (m, 1H), 7.50 (t, 1H, *J* = 8.0 Hz), 7.36 (d, 1H, *J* = 8.4 Hz), 7.31-7.18 (m, 5H), 7.14-7.10 (m, 3H), 6.99 (t, 2H, *J*_{*H*,*H*} = *J*_{*H*,*F*} = 8.4 Hz), 6.91 (t, 2H, *J*_{*H*,*H*} = *J*_{*H*,*F*} = 8.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 163.2 (d, *J*_{*C*-*F*} = 247 Hz), 163.0 (d, *J*_{*C*-*F*} = 247 Hz), 160.1 (d, *J*_{*C*-*F*} = 6 Hz), 144.0 (d, *J*_{*C*-*F*} = 32 Hz), 142.2, 135.9, 135.6 (dd, *J*_{*C*-*F*} = 24 Hz), 130.0, 129.3, 128.9, 127.9, 127.3, 127.0, 127.0, 126.9, 126.8, 126.5 (d, *J*_{*C*-*F*} = 2 Hz), 120.4, 115.6 (dd, *J*_{*C*-*F*} = 1 Hz, 2C), 115.5 (dd, *J*_{*C*-*F*} = 21 and *J*_{*C*-*F*} = 2 Hz), 120.4, 115.6 (dd, *J*_{*C*-*F*} = 5 Hz). HRMS (ESI) calcd. for C₃₁H₂₁F₂NP (M + H⁺) 476.1374. Found 476.1366. HPLC for phosphine oxide (IA column, Hex:Isop 85:15, T= 30°C, F= 1mL/min): t_R 22.99 min (major) and 39.58 min (minor).

(*S*)-2-(2-(bis(4-fluorophenyl)phosphanyl)naphthalen-1-yl)-3-methylpyridine 3Bb.

Following the general procedure using triflate (±)-1B and 5b as starting materials and **L12** as the ligand, after 18 hours at 40 °C purification of the reaction crude through a short pad of SiO₂ (DCM/*n*-hexane 7:3 to DCM) afforded **3Bb** (35.8 mg, 82%) as a white foam. $[\alpha]^{20}$ –88.9 (*c* 1.4, CHCl₃) for er 92.5:7.5. ¹H

NMR (400 MHz, CDCl₃): δ 8.46 (d, 1H, *J* = 4.6 Hz), 7.86 (d, 1H, *J* = 8.2 Hz), 7.83 (d, 1H, *J* = 8.5 Hz), 7.62 (d, 1H, *J* = 7.6 Hz), 7.50 (t, 1H, *J* = 8.0 Hz), 7.37 (t, 1H, *J* = 8.0 Hz), 7.29-7.22 (m, 4H), 7.20-7.17 (m, 3H), 7.03 (t, 2H, *J*_{*H*,*H*} = *J*_{*H*,*F*} = 8.6 Hz), 6.97 (t, 2H, *J*_{*H*,*H*} = *J*_{*H*,*F*} = 8.6 Hz), 1.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 163.2 (d, *J*_{*C*-*F*} = 248 Hz), 163.1 (d, *J*_{*C*-*F*} = 247 Hz), 157.8 (d, *J*_{*C*-*P*} = 6 Hz), 146.8, 144.2 (d, *J*_{*C*-*P*} = 33 Hz), 137.4, 135.5 (dd, *J*_{*C*-*P*} = 22 and *J*_{*C*-*F*} = 8 Hz, 2C), 135.2 (dd, *J*_{*C*-*P*} = 11 and *J*_{*C*-*F*} = 8 Hz, 2C), 132.9 (d, *J*_{*C*-*P*} = 12 Hz), 132.8 (dd, *J*_{*C*-*P*} = 13 and *J*_{*C*-*F*} = 4 Hz), 132.7 (d, *J*_{*C*-*P*} = 2 Hz), 122.8, Hz), 129.2, 128.5, 128.1, 127.0, 126.8, 125.7 (d, *J*_{*C*-*P*} = 2 Hz), 122.8,

115.7 (dd, J_{C-F} = 21 and J_{C-P} = 7 Hz, 2C), 115.0 (dd, J_{C-F} = 21 and J_{C-P} = 8 Hz, 2C), 19.0 (d, J_{C-P} = 3 Hz). ³¹P NMR (161 MHz, CDCl₃): -15.4 (t, J_{P-F} = 5 Hz). ¹⁹F NMR (377 MHz, CDCl₃): -112.4 (d, J_{F-P} = 5 Hz), -113.0 (d, J_{F-P} = 5 Hz). HRMS (ESI) calcd. for C₂₈H₂₁F₂NP (M + H⁺) 440.1374. Found 440.1366. HPLC for phosphine oxide (IA column, Hex:Isop 75:25, T= 30°C, F= 1mL/min): t_R 9.98 min (major) and 16.49 min (minor).

(S)-4-(2-(bis(4-fluorophenyl)phosphanyl)naphthalen-1-yl)quinazoline 3Cb.

Following the general procedure and using nonaflate (±)-8C and **5b** as starting materials and **L12** as the ligand, after 18 hours at 40 °C purification of the reaction crude through a short pad of SiO₂ (EtOAc/*n*-hexane 1:4 to 3:7) afforded **3Cb** (41.6 mg, 87%) as a white foam. $[\alpha]^{20}$ –48.0 (*c* 0.5, CHCl₃) for

er 93:7. ¹H NMR (400 MHz, CDCl₃): δ 9.36 (s, 1H), 8.10 (d, 1H, *J* = 8.0 Hz), 7.91 (d, 1H, *J* = 8.5 Hz), 7.87 (d, 1H, *J* = 8.0 Hz), 7.82 (t, 1H, *J* = 8.0 Hz), 7.48 (t, 1H, *J* = 8.0 Hz), 7.31 (dd, 1H, *J*_{H-H} = 8.4 and *J*_{H-P} = 3 Hz), 7.30-7.24 (m, 2H), 7.24-7.18 (m, 1H), 7.13 (m, 2H), 7.12-7.04 (m, 3H), 6.95 (t, 2H, *J*_{H,H} = *J*_{H,F} = 8.6 Hz), 6.87 (t, 2H, *J*_{H,H} = *J*_{H,F} = 8.6 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 169.1 (d, *J*_{C-P} = 6 Hz), 163.3 (d, *J*_{C-F} = 248 Hz), 163.2 (d, *J*_{C-F} = 247 Hz), 154.7, 150.2, 141.3 (d, *J*_{C-P} = 32 Hz), 135.6 (dd, *J*_{C-P} = 22 and *J*_{C-F} = 8 Hz, 2C), 135.1 (dd, *J*_{C-P} = 21 and *J*_{C-P} = 8 Hz, 2C), 134.2 (d, *J*_{C-P} = 15 Hz), 134.0, 133.4, 132.0-131.7 (3C), 129.5, 129.2, 128.8, 128.1, 127.6, 127.3, 127.2, 126.8, 125.9 (d, *J*_{C-P} = 2 Hz), 125.5 (d, *J*_{C-P} = 3 Hz), 115.8 (dd, *J*_{C-F} = 21 and *J*_{C-P} = 2 Hz, 2C), 115.7 (dd, *J*_{C-F} = 21 and *J*_{C-P} = 3 Hz, 2C). ³¹P NMR (161 MHz, CDCl₃): -16.0 (t, *J*_{P-F} = 4 Hz). ¹⁹F NMR (377 MHz, CDCl₃): -111.9 (d, *J*_{F-P} = 4 Hz), -112.5 (d, *J*_{F-P} = 5 Hz). HRMS (ESI) calcd. for C₃₀H₂₀F₂N₂P (M + H⁺) 477.1327. Found 477.1324. HPLC (IA column, Hex:Isop 75:25, T= 30°C, F= 1mL/min): t_R 11.18 min (major) and 19.33 min (minor).

(S)-1-(2-(bis(4-fluorophenyl)phosphanyl)naphthalen-1-yl)phthalazine 3Db.

Following the general procedure and using triflate (±)-1D and **5b** as starting materials and **L12** as the ligand, after 20 hours at 40 °C purification of the reaction crude through a short pad

of SiO₂ (EtOAc/*n*-hexane 1:4 to 2:3) afforded **3Db** (34.6 mg, 73%) as a light yellow solid. $[\alpha]^{20}_{D} - 120.0$ (*c* 0.4, CHCl₃) for er 91:9. ¹H NMR (400 MHz, CDCl₃): δ 9.63 (s, 1H), 8.05 (d, 1H, *J* = 8.0 Hz), 7.97 (d, 1H, *J* = 8.0 Hz), 7.92 (d, 1H, *J* = 8.0 Hz), 7.87 (t, 1H, *J* = 7.6 Hz), 7.58 (t, 1H, *J* = 7.6 Hz), 7.52 (t, 1H, *J* = 7.6 Hz), 7.38 (dd, 1H, *J*_{H,H} = 8.4 and *J*_{H,P} = 3.3 Hz), 7.31 (t, 1H, *J* = 8.0 Hz), 7.24-7.18 (m, 3H), 7.12-7.07 (m, 3H), 6.98 (t, 2H, *J*_{H,H} = *J*_{H,F} = 8.4 Hz), 6.91 (t, 2H, *J*_{H,H} = *J*_{H,F} = 8.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 163.2 (d, *J*_{C-F} = 248 Hz), 163.1 (d, *J*_{C-F} = 247 Hz), 160.0 (d, *J*_{C-P} = 6 Hz), 150.9, 140.4 (d, *J*_{C-P} = 32 Hz), 135.5 (dd, *J*_{C-F} = 8 Hz, 2C), 135.3 (d, *J*_{C-P} = 14 Hz), 135.1 (dd, *J*_{C-P} = 20 and *J*_{C-P} = 8 Hz, 2C), 133.5, 132.6 (d, *J*_{C-F} = 7 Hz), 132.4 (d, *J*_{C-P} = 3 Hz), 127.2, 127.1, 126.5, 126.2, 126.1, 125.9, 115.7 (dd, *J*_{C-F} = 7 and *J*_{C-P} = 7 Hz, 2C), 115.5 (dd, *J*_{C-F} = 7 and *J*_{C-F} = 6 Hz). -112.6 (d, *J*_{F-P} = 5 Hz). -112.6 (d, *J*_{F-P} = 5 Hz). HRMS (ESI) calcd. for C₃₀H₂₀F₂N₂P (M + H⁺) 477.1327. Found 477.1321. HPLC (IA column, Hex:Isop 70:30, T = 30°C, F = 1mL/min): t_R 19.51 min (minor) and 23.49 min (major).

(S)-1-(2-(Di-p-tolylphosphanyl)naphthalen-1-yl)isoquinoline 3Ac.

Following the general procedure using triflate (±)-1A and 5c as starting materials and L12 as the ligand, after 18 hours at 40 °C purification of the reaction crude through a short pad of SiO₂ (DCM/*n*-hexane 7:3 to DCM) afforded **3Ac** (39.3 mg, 84%) as a

white solid. Spectroscopic and physical data matched those reported in the literature.¹³ $[\alpha]^{20}_{D}$ –82.5 (*c* 0.6, CHCl₃) for er 92:8. [Lit.:^{iError!} Marcador no definido. $[\alpha]^{25}_{D}$ = –86.1 (*c* 2.0, CHCl₃) for (*S*)-enantiomer (er 96:4)]. HPLC for phosphine oxide (ADH column, Hex:Isop 70:30, T= 30°C, F= 1mL/min): t_R 14.74 min (major) and 16.53 min (minor).

Note: A sample of **3Ac** with er 89:11 was crystallized by slow diffusion of n-hexane in a solution of the product in OEtAc, affording the formation of racemic crystals and the enantioenriched product **3Ac** (er 97.5:2.5, 80% yield) was obtained from the mother liquor.

(S)-2-(2-(Di-p-tolylphosphanyl)naphthalen-1-yl)-3-methylpyridine 3Bc.

Following the general procedure using triflate (\pm) -1B and 5c as starting materials and L12 as the ligand, after 18 hours at 40 °C purification of the reaction crude through a short pad of SiO₂ (DCM to DCM/MeOH 100:1) afforded **3Bc** (35.2 mg, 81%) as a

light white foam. $[\alpha]^{20}_{D}$ –84.6 (*c* 1.3, CHCl₃) for er 93:7.¹H NMR (400 MHz, CDCl₃): δ 8.51 (d, 1H, *J* = 4.8 Hz), 7.86 (d, 1H, *J* = 8.2 Hz), 7.82 (d, 1H, *J* = 8.4 Hz), 7.63 (d, 1H, *J* = 7.7 Hz), 7.49 (t, 1H, *J* = 8.2 Hz), 7.39-7.35 (m, 2H), 7.29 (m, 1H), 7.24-7.09 (m, 9H), 2.37 (s, 3H), 2.33 (s, 3H), 1.96 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.3 (d, *J*_{*C*-*P*} = 6 Hz), 146.7, 145.0 (d, *J*_{*C*-*P*} = 33 Hz), 138.3, 137.9, 137.3, 134.1 (d, *J*_{*C*-*P*} = 11 Hz), 133.9 (d, *J*_{*C*-*P*} = 14 Hz), 133.8 (d, *J*_{*C*-*P*} = 20 Hz, 2C), 133.3 (d, *J*_{*C*-*P*} = 19 Hz, 2C), 133.1 (d, *J*_{*C*-*P*} = 3 Hz), 131.7 (d, *J*_{*C*-*P*} = 8 Hz), 129.8 (d, *J*_{*C*-*P*} = 2 Hz, 2C), 129.1 (d, *J*_{*C*-*P*} = 7 Hz, 2C), 129.0 (d, *J*_{*C*-*P*} = 3 Hz). ³¹P NMR (161 MHz, CDCl₃): –15.2. HRMS (ESI) calcd. for C₃₀H₂₇NP (M + H⁺) 432.1876. Found 432.1867. HPLC for phosphine oxide (IA column, Hex:Isop 70:30, T= 30°C, F= 1mL/min): t_R 11.13 min (major) and 17.55 min (minor).

(S)-4-(2-(di-p-tolylphosphanyl)naphthalen-1-yl)quinazoline 3Cc.

Following the general procedure and using nonaflate (\pm) -8C and 5c as starting materials and L12 as the ligand, after 18 hours at 40 °C purification of the reaction crude through a short pad of SiO₂ (EtOAc/*n*-hexane 1:4 to 3:7) afforded 3Cc

(41.6 mg, 89%) as a light white foam. $[\alpha]^{20}_{D} - 102.1$ (*c* 0.9, CHCl₃) for er 93:7.¹H NMR (400 MHz, CDCl₃): δ 9.41 (s, 1H), 8.13 (d, 1H, *J* = 8.4 Hz), 7.92 (d, 1H, *J* = 8.7 Hz), 7.90 (d, 1H, *J* = 8.4 Hz), 7.84 (m, 1H), 7.50 (t, 1H, *J* = 7.6 Hz), 7.44 (dd, 1H, *J*_{H,H} = 8.5 and *J*_{H,P} = 3.3 Hz), 7.32-7.28 (m, 3H), 7.14-7.09 (m, 4H), 7.06-7.00 (m, 5H), 2.32 (s, 3H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 169.4 (d, *J*_{C-P} = 7 Hz), 154.7, 150.1, 141.0 (d, *J*_{C-P} = 32 Hz), 138.6, 138.2, 135.3 (d, *J*_{C-P} = 16 Hz), 133.8, 133.7, 133.6, 133.3, 133.3, 133.2, 133.1, 133.0 (d, *J*_{C-P} = 5 Hz), 131.8 (d, *J*_{C-P} = 7 Hz), 129.7, 129.2, 129.1, 129.1, 129.0, 128.6, 128.0, 127.4, 127.1, 126.9, 125.9 (d, *J*_{C-P} = 2 Hz), 125.6 (d, *J*_{C-P} = 3 Hz), 21.2, 21.2. ³¹P NMR (161 MHz, CDCl₃): –15.2. HRMS (ESI) calcd. for $C_{32}H_{26}N_2P$ (M + H⁺) 469.1828. Found 469.1818. HPLC for phosphine oxide (IA column, Hex:Isop 75:25, T= 30°C, F= 1mL/min): t_R 18.19 min (major) and 25.41 min (minor).

(S)-1-(2-(bis(4-methoxyphenyl)phosphanyl)naphthalen-1-yl)isoquinoline 3Ad.

Following the general procedure using triflate (±)-1A and **5d** as starting materials and **L12** as the ligand, after 18 hours at 40 °C purification of the reaction crude through a short pad of SiO₂ (EtOAc/*n*-hexane 1:4 to 3:7) afforded **3Ad** (37.2 mg, 74%) as a white foam. $[\alpha]^{20}_{\text{D}}$ –40.0 (*c* 1.0, CHCl₃)

for er 78:22. ¹H NMR (400 MHz, CDCl₃): δ 8.64 (d, 1H, *J* = 5.6 Hz), 7.92-7.89 (m, 3H), 7.74 (d, 1H, *J* = 5.6 Hz), 7.61 (t, 1H, *J* = 7.3 Hz), 7.49-7.43 (m, 2H), 7.29-7.17 (m, 5H), 7.11-7.07 (m, 3H), 6.88 (d, 2H, *J* = 8.2 Hz), 6.74 (d, 2H, *J* = 8.2 Hz), 3.79 (s, 3H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 160.4 (d, *J*_{*C*-*P*} = 6 Hz), 159.9, 159.7, 143.3 (d, *J*_{*C*-*P*} = 32 Hz), 142.2, 135.9 (d, *J*_{*C*-*P*} = 14 Hz), 135.8, 135.2 (d, *J*_{*C*-*P*} = 22 Hz, 2C), 134.7 (d, *J*_{*C*-*P*} = 20 Hz, 2C), 133.4, 132.6 (d, *J*_{*C*-*P*} = 7 Hz), 129.9, 129.6, 128.9 (d, *J*_{*C*-*P*} = 3 Hz), 128.5, 128.3, 128.2 (d, *J*_{*C*-*P*} = 1 Hz), 127.8, 127.5, 126.8, 126.7, 126.6, 126.5, 126.4 (d, *J*_{*C*-*P*} = 2 Hz), 120.2, 113.9 (d, *J*_{*C*-*P*} = 7 Hz, 2C), 113.8 (d, *J*_{*C*-*P*} = 7 Hz, 2C), 55.1 (2C). ³¹P NMR (161 MHz, CDCl₃): –16.6. HRMS (ESI) calcd. for C₃₃H₂₇NO₂P (M + H⁺) 500.1774. Found 500.1763. HPLC (IA column, Hex:Isop 70:30, T= 30°C, F= 1mL/min): t_R 17.78 min (major) and 22.36 min (minor).

(*S*)-2-(2-(bis(4-methoxyphenyl)phosphanyl)naphthalen-1-yl)-3-methylpyridine 3Bd.

Following the general procedure using triflate (±)-1B and **5d** as starting materials and **L12** as the ligand, after 18 hours at 40 °C purification of the reaction crude through a very short pad of SiO₂ (EtOAc/*n*-hexane 1:4 to 3:7) afforded **3Bd** (35.8 mg, 77%) as a light vellow foam. $[\alpha]^{20}_{\text{D}}$ –10.4 (*c*

1.3, CHCl₃) for er 85:15. ¹H NMR (400 MHz, CDCl₃): δ 8.51 (d, 1H, *J* = 4.8 Hz), 7.87 (d,

1H, *J* = 8.2 Hz), 7.84 (d, 1H, *J* = 8.4 Hz), 7.63 (d, 1H, *J* = 7.6 Hz), 7.50 (t, 1H, *J* = 7.6 Hz), 7.39-7.32 (m, 2H), 7.30-7.24 (m, 3H), 7.21-7.17 (m, 3H), 6.90 (d, 2H, *J* = 8.1 Hz), 6.85 (d, 2H, *J* = 8.2 Hz), 3.83 (s, 3H), 3.80 (s, 3H), 1.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 160.0, 159.7, 158.1 (d, *J*_{C-P} = 6 Hz), 146.7, 144.5 (d, *J*_{C-P} = 32 Hz), 137.3, 135.2 (d, *J*_{C-P} = 21 Hz, 2C), 134.8 (d, *J*_{C-P} = 20 Hz, 2C), 134.3 (d, *J*_{C-P} = 13 Hz), 133.6, 133.1 (d, *J*_{C-P} = 3 Hz), 131.7 (d, *J*_{C-P} = 7 Hz), 129.5, 128.4 (d, *J*_{C-P} = 9 Hz), 128.2 (d, *J*_{C-P} = 8 Hz), 128.0, 128.0, 126.5 (d, *J*_{C-P} = 2 Hz), 125.7 (d, *J*_{C-P} = 3 Hz), 122.6, 114.0 (d, *J*_{C-P} = 7 Hz, 2C), 113.8 (d, *J*_{C-P} = 7 Hz, 2C), 55.1, 55.1, 19.0 (d, *J*_{C-P} = 3 Hz). ³¹P NMR (161 MHz, CDCl₃): –16.3. HRMS (ESI) calcd. for C₃₀H₂₇NO₂P (M + H⁺) 464.1774. Found 464.1763. HPLC for phosphine oxide (IA column, Hex:Isop 50:50, T= 30°C, F= 1mL/min): t_R 8.40 min (major) and 16.43 min (minor).

(S)-4-(2-(bis(4-methoxyphenyl)phosphanyl)naphthalen-1-yl)quinazoline 3Cd.

Following the general procedure and using nonaflate (±)-8C as starting material and **L12** as the ligand, after 18 hours at 40 °C purification of the reaction crude through a very short pad of SiO₂ (EtOAc/*n*-hexane 1:4 to 35:65) afforded **3Cd** (37.0 mg, 74%) as a light yellow foam. $[\alpha]^{20}_{D}$ –39.4 (*c* 0.5,

CHCl₃) for er 89.5:10.5. ¹H NMR (400 MHz, CDCl₃): δ 9.41 (s, 1H), 8.12 (d, 1H, *J* = 8.5 Hz), 7.93 (d, 1H, *J* = 9.1 Hz), 7.90 (d, 1H, *J* = 9.4 Hz), 7.84 (m, 1H), 7.49 (t, 1H, *J* = 7.8 Hz), 7.42 (dd, 1H, *J*_{H-H} = 8.5 and *J*_{H-P} = 3.4 Hz), 7.32-7.23 (m, 3H), 7.16 (d, 1H, *J* = 7.4 Hz), 7.14 (d, 1H, *J* = 7.4 Hz), 7.09-7.04 (m, 3H), 6.84 (d, 2H, *J* = 7.9 Hz), 6.73 (d, 2H, *J* = 8.6 Hz), 3.79 (s, 3H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 169.4 (d, *J*_{C-P} = 6 Hz), 160.1, 159.9, 154.8, 150.1, 140.5 (d, *J*_{C-P} = 31 Hz), 135.9 (d, *J*_{C-P} = 16 Hz), 135.3 (d, *J*_{C-P} = 22 Hz, 2C), 134.8 (d, *J*_{C-P} = 22 Hz, 2C), 133.7, 133.3, 131.8 (d, *J*_{C-P} = 7 Hz), 129.5, 129.1, 128.6, 128.1, 127.6 (d, *J*_{C-P} = 2 Hz), 127.5, 127.4, 127.1, 126.9, 126.8, 125.8 (d, *J*_{C-P} = 2 Hz), 125.6 (d, *J*_{C-P} = 3 Hz), 114.1 (d, *J*_{C-P} = 8 Hz, 2C), 114.0 (d, *J*_{C-P} = 8 Hz, 2C), 55.1, 55.1. ³¹P NMR (161 MHz, CDCl₃): –16.3. HRMS (ESI) calcd. for C₃₂H₂₆N₂O₂P (M + H⁺) 501.1726. Found 501.1700. HPLC for phosphine oxide (IA column, Hex:Isop 70:30, T= 30°C, F= 1mL/min): t_R 17.29 min (major) and 27.00 min (minor).

(S)-2-(2-(diisobutylphosphanyl)naphthalen-1-yl)-3-methylpyridine 3Be.

Following the general procedure using triflate (\pm) -1B and 5e as starting materials and L16 as the ligand, after 40 hours at 40 °C purification of the reaction crude through a short pad of SiO₂ (EtOAc/*n*-hexane 5:95 to 1:9) afforded **3Be** (33.8 mg, 93%) as a

white foam. $[\alpha]^{20}{}_{D} - 73.7$ (*c* 1.1, CHCl₃) for er 85:15. ¹H NMR (400 MHz, CDCl₃): δ 8.58 (d, 1H, *J* = 3 Hz), 7.91 (d, 1H, *J* = 8.4 Hz), 7.86 (d, 1H, *J* = 8.1 Hz), 7.70 (d, 1H, *J* = 8.4 Hz), 7.64 (d, 1H, *J* = 7.6 Hz), 7.46 (t, 1H, *J* = 7.9 Hz), 7.35-7.30 (m, 2H), 7.13 (d, 1H, *J* = 8.3 Hz), 2.01 (s, 3H), 1.84 (m, 1H), 1.71 (m, 1H), 1.60-1.49 (m, 3H), 1.39 (m, 1H), 0.95 (d, 3H, *J* = 6.4 Hz), 0.92 (d, 3H, *J* = 6.3 Hz), 0.82 (d, 3H, *J* = 6.3 Hz), 0.78 (d, 3H, *J* = 6.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 159.0 (d, *J*_{C-P} = 6 Hz), 146.7, 145.2 (d, *J*_{C-P} = 32 Hz), 137.4, 135.9 (d, *J*_{C-P} = 17 Hz), 133.8, 133.0 (d, *J*_{C-P} = 3 Hz), 131.8 (d, *J*_{C-P} = 7 Hz), 128.3, 128.1, 126.6, 126.5, 126.4 (d, *J*_{C-P} = 3 Hz), 126.0 (d, *J*_{C-P} = 2 Hz), 122.7, 41.5 (d, *J*_{C-P} = 13 Hz), 38.7 (d, *J*_{C-P} = 14 Hz), 26.7 (d, *J*_{C-P} = 14 Hz), 26.1 (d, *J*_{C-P} = 13 Hz), 25.0 (d, *J*_{C-P} = 3 Hz), 24.6 (d, *J*_{C-P} = 9 Hz), 24.2 (d, *J*_{C-P} = 10 Hz), 24.0 (d, *J*_{C-P} = 9 Hz), 19.1 (d, *J*_{C-P} = 3 Hz). ³¹P NMR (161 MHz, CDCl₃): -43.9. HRMS (ESI) calcd. for C₂₄H₃₀NP (M + H⁺) 364.2189. Found 364.2177. HPLC (ADH column, Hex:Isop 95:5, T= 30°C, F= 1mL/min): t_R 17.49 min (major) and 18.32 min (minor).

(S)-4-(2-(diisobutylphosphanyl)naphthalen-1-yl)quinazoline 3Ce.

Following the general procedure and using nonaflate (\pm)-8C and **5e** as starting materials and **L16** as the ligand, after 40 hours at 40 °C purification of the reaction crude through a short pad of SiO₂ (DCM to DCM/MeOH 50:1) afforded **3Ce** (28.8 mg, 72%) as a

white solid. $[\alpha]^{20}_{D}$ –29.5 (*c* 1.0, CHCl₃) for er 72.5:27.5. ¹H NMR (400 MHz, CDCl₃): δ 9.49 (s, 1H), 8.18 (d, 1H, *J* = 8.5 Hz), 8.05 (d, 1H, *J* = 8.5 Hz), 7.94 (d, 1H, *J* = 8.2 Hz), 7.89 (t, 1H, *J* = 7.7 Hz), 7.80 (d, 1H, *J* = 8.6 Hz), 7.50 (t, 1H, *J* = 7.5 Hz), 7.44-7.38 (m, 2H), 7.31 (t, 1H, *J* = 7.8 Hz), 7.06 (d, 1H, *J* = 8.5 Hz), 1.79-1.76 (m, 2H), 1.55 (m, 1H), 1.43-1.37 (m, 3H), 0.87 (d, 3H, *J* = 6.5 Hz), 0.83 (d, 3H, *J* = 6.5 Hz), 0.74 (d, 3H, *J* = 5.8 Hz), 0.62 (d, 3H, *J* = 5.7Hz). ¹³C NMR (100 MHz, CDCl₃): δ 170.3 (d, *J_{C-P}* = 7 Hz), 154.6, 150.0,

141.7 (d, J_{C-P} = 33 Hz), 137.0 (d, J_{C-P} = 19 Hz), 133.8, 133.4, 131.6 (d, J_{C-P} = 8 Hz), 129.3, 128.7, 128.0, 127.6, 127.0, 126.9, 126.7, 126.2 (d, J_{C-P} = 3 Hz), 126.0, 126.0, 40.8 (d, J_{C-P} = 13 Hz), 38.9 (d, J_{C-P} = 13 Hz), 26.2 (d, J_{C-P} = 14 Hz), 26.0 (d, J_{C-P} = 13 Hz), 24.7 (d, J_{C-P} = 8 Hz), 24.5 (d, J_{C-P} = 9 Hz), 23.8 (d, J_{C-P} = 9 Hz), 23.7 (d, J_{C-P} = 10 Hz). ³¹P NMR (161 MHz, CDCl₃): -44.3. HRMS (ESI) calcd. for C₂₆H₃₀N₂P (M + H⁺) 401.2141. Found 401.2132. HPLC (ADH column, Hex:Isop 85:15, T= 30°C, F= 1mL/min): t_R 5.79 min (minor) and 6.33 min (major).

Figure S1. Experiments with Triflate 9 and Nonaflate 11.

Following the general procedure for the Dynamic Kinetic Asymmetric C-P Cross-Coupling using **L12** as the ligand and triflate **9** or nonaflate **11** as the starting materials, after 18 hours at 40 °C and 60 °C respectively, the formation of the hydrolisis products **10**, **12** together with the starting materials was observed.

NMR spectra and HPLC traces:

Figure S3.¹³C NMR (CDCl₃, 100 MHz) of (±)-1D

9.55 9.75 1.77,568 1.77,558 1.77,568 1.77,568 1.77,558 1.77,558 1.77,558 1.77,558 1.77,558 1.77,558 1.77,558 1.77,558 1.77,558 1.77,558 1.77,558 1.77,558 1.72,558 1,

Figure S4. ¹H NMR (CDCl₃, 400 MHz) of (±)-8C

Figure S5. ¹³C NMR (CDCl₃, 100 MHz) of (±)-8C

9.70 9.77 9.77 9.77 9.77 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.71 9.71 9.71 9.71 9.72

Figure S7. ¹³C NMR (CDCl₃, 100 MHz) of (±)-8D

Figure S9. ¹³C NMR (CDCl₃, 100 MHz) of (±)-11

Figure S10. ¹H NMR (400 MHz, C_6D_6) of **5b**

Figure S11. ¹³C NMR (100 MHz, C₆D₆) of **5b**

Figure S13. ¹⁹F NMR (377 MHz, C₆D₆) of **5b**

Figure S14. $^1\mathrm{H}$ NMR (400 MHz, C_6D_6) of 5c

Figure S15. $^{\rm 13}C$ NMR (100 MHz, C₆D₆) of 5c

Figure S16. ³¹P NMR (161 MHz, C₆D₆) of 5c

Figure S17. ¹H NMR (400 MHz, C₆D₆) of 5d

Figure S18. $^{\rm 13}C$ NMR (100 MHz, $C_6D_6)$ of 5d

Figure S19. ³¹P NMR (161 MHz, C₆D₆) of 5d

Figure S20. ¹H NMR (400 MHz, C_6D_6) of **5e**

Figure S21. ¹³C NMR (100 MHz, C₆D₆) of 5e

Figure S22. $^{31}\mathrm{P}$ NMR (161 MHz, C₆D₆) of 5e

Figure S24. ¹³C NMR (100 MHz, CDCl₃) of (S)-3Aa

Figure S25. ³¹P NMR (161 MHz, CDCl₃) of (S)-3Aa

Figure S26. Phosphine oxide racemic sample: IA column, Hex:Isop 85:15, T= 30°C,

Figure S27. Phosphine oxide enantioriched sample: er 95.5:4.5.

Figure S29. ¹³C NMR (100 MHz, CD₂Cl₂) of (S)-3Ba

Figure S30. ³¹P NMR (161 MHz, CDCl₃) of (S)-3Ba

Figure S31. Phosphine oxide racemic sample: IA column, Hex:Isop 75:25, T= 30°C, F= 1mL/min.

Figure S32. Phosphine oxide enantioriched sample: er 95:5.

9
 9
 9
 10
 11
 12
 12
 13
 14
 15
 15
 16
 16
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 18
 17

Figure S34. ¹³C NMR (100 MHz, CDCl₃) of (S)-3Ca

120 110 100 90 80 70 60 50 40 30 20 10 11 10 -10 -10 -10 -30 -30 -40 -50 -60 -70 -80 -90 -100 -110 -12

Figure S35. ³¹P NMR (161 MHz, CDCl₃) of (S)-3Ca

Figure S36. Phosphine oxide racemic sample: IA column, Hex:Isop 75:25, T= 30°C, F= 1mL/min.

Figure S37. Phosphine oxide enantioriched sample: er 95:5.

Figure S38. After washing with acetone, er >99:1.

Figure S40. ¹³C NMR (100 MHz, CD₂Cl₂) of (S)-3Da

Figure S41. ³¹P NMR (161 MHz, CDCl₃) of (S)-3Da

Figure S42. Phosphine oxide racemic sample: IA column, Hex:Isop 50:50, T= 30°C, F= 1mL/min.

Figure S43. Phosphine oxide enantioriched sample: er 14.5:85.5.

Figure S44. ¹H NMR (400 MHz, CDCl₃) of (S)-3Ab

Figure S45. ¹³C NMR (100 MHz, CDCl₃) of (S)-3Ab

Figure S46. ³¹P NMR (161 MHz, CDCl₃) of (S)-3Ab

Figure S47. ¹⁹F NMR (377 MHz, CDCl₃) of (S)-3Ab

Figure S48. Phosphine oxide racemic sample: IA column, Hex:Isop 85:15, T= 30°C, F= 1mL/min.

Figure S49. Phosphine oxide enantioriched sample: er 90:10.

Figure S50. ¹H NMR (400 MHz, CDCl₃) of (S)-3Bb

Figure S51. ¹³C NMR (100 MHz, CDCl₃) of (S)-3Bb

Figure S52. ³¹P NMR (161 MHz, CDCl₃) of (S)-3Bb

Figure S53. ¹⁹F NMR (377 MHz, CDCl₃) of (S)-3Bb

Figure S54. Phosphine oxide racemic sample: IA column, Hex:Isop 75:25, T= 30°C, F= 1mL/min.

Figure S55. Phosphine oxide enantioriched sample: er 92.5:7.5.

180 170 160 150 140 130 120 110 100 100 11 (ppm) 180 170 160 150 140 130 120 110 100 11 (ppm)

Figure S57. ¹³C NMR (100 MHz, CDCl₃) of (S)-3Cb

Figure S58. ³¹P NMR (161 MHz, CDCl₃) of (S)-3Cb

Figure S59. ¹⁹F NMR (377 MHz, CDCl₃) of (S)-3Cb

Figure S60. Phosphine oxide racemic sample: IA column, Hex:Isop 75:25, T= 30°C, F= 1mL/min.

Figure S61. Phosphine oxide enantioriched sample: er 93:7.

Figure S62. ¹H NMR (400 MHz, CDCl₃) of (S)-3Db

Figure S63. ¹³C NMR (100 MHz, CDCl₃) of (S)-3Db

Figure S65. ¹⁹F NMR (377 MHz, CDCl₃) of (S)-3Db

Figure S66. Phosphine oxide racemic sample: IA column, Hex:Isop 70:30, T= 30°C, F= 1mL/min.

Figure S67. Phosphine oxide enantioriched sample: er 9:91.

2.34

Figure S69. ¹³C NMR (100 MHz, CDCl₃) of (S)-3Ac

Figure S70. ³¹P NMR (161 MHz, CDCl₃) of (S)-3Ac

Figure S71. Phosphine oxide racemic sample: AD-H column, Hex:Isop 70:30, T= 30°C, F= 1mL/min.

Figure S72. Phosphine oxide enantioriched sample: er 92:8.

Figure S73. Enantioenriched product (er 97:5:2.5) from the mother liquor after crystallization from a EtOAc/*n*-hexane mixture.

Figure S75. ¹³C NMR (100 MHz, CDCl₃) of (S)-3Bc

Figure S76. ³¹P NMR (161 MHz, CDCl₃) of (S)-3Bc

Figure S77.Phosphine oxide racemic sample: IA column, Hex:Isop 70:30, T= 30°C, F= 1mL/min.

Figure S78. Phosphine oxide enantioriched sample: er 93:7.

Figure S79. ¹H NMR (400 MHz, CDCl₃) of (S)-3Cc

Figure S80. ¹³C NMR (100 MHz, CDCl₃) of (S)-3Cc

Figure S81. ³¹P NMR (161 MHz, CDCl₃) of (S)-3Cc

Figure S82. Phosphine oxide racemic sample: IA column, Hex:Isop 75:25, T= 30°C, F= 1mL/min.

Figure S83. Phosphine oxide enantioriched sample: er 93:7.

Figure S84. 1H NMR (400 MHz, CDCl3) of (S)-3Ad

Figure S85. 13C NMR (100 MHz, CDCl₃) of (S)-3Ad

Figure S86. ³¹P NMR (161 MHz, CDCl₃) of (S)-3Ad

Figure S87. Phosphine oxide racemic sample: IA column, Hex:Isop 70:30, T= 30°C, F= 1mL/min.

Figure S88. Phosphine oxide enantioriched sample: er 78:22.

3.83

Figure S89. ¹H NMR (400 MHz, CDCl₃) of (S)-3Bd

Figure S90. ¹³C NMR (100 MHz, CDCl₃) of (S)-3Bd

Figure S91. ³¹P NMR (161 MHz, CDCl₃) of (S)-3Bd

Figure S92. Phosphine oxide racemic sample: IA column, Hex:Isop 50:50, T= 30°C, F= 1mL/min.

Figure S93. Phosphine oxide enantioriched sample: er 85:15.

Figure S95. ¹³C NMR (100 MHz, CDCl₃) of (S)-3Cd

Figure S96. ³¹P NMR (161 MHz, CDCl₃) of (S)-3Cd

Figure S97. Phosphine oxide racemic sample: IA column, Hex:Isop 70:30, T= 30°C, F= 1mL/min.

Figure S98. Phosphine oxide enantioriched sample: er 89.5:10.5.

Figure S100. ¹³C NMR (100 MHz, CDCl₃) of (S)-3Be

Figure S101. ³¹P NMR (161 MHz, CDCl₃) of (*S*)-3Be

Figure S102. Phosphine oxide racemic sample: ADH column, Hex:Isop 95:5, T= 30°C, F= 1mL/min.

Figure S103. Phosphine oxide enantioriched sample: er 15:85.

Figure S104. ¹H NMR (400 MHz, CDCl₃) of (*S*)-3Ce

Figure S105. ¹³C NMR (100 MHz, CDCl₃) of (*S*)-3Ce

Figure S106. ³¹P NMR (161 MHz, CDCl₃) of (*S*)-3Ce

Figure S107. Phosphine racemic sample: ADH column, Hex:Isop 85:15, T= 30°C, F= 1mL/min.

Figure S108. Phosphine enantioriched sample: er 27.5:72.5.

References

1. Ros, A.; Estepa, B.; Bermejo, A.; Álvarez, E.; Fernández, R.; Lassaletta, J. M. *J. Org. Chem.* **2012**, *77*, 4740-4750.

2. Lassaletta, J. M.; Alcarazo, M.; Fernández, R. Chem. Commun. 2004, 298-299.

3. Peer, M.; de Jong, J. C.; Kiefer, M.; Langer, T.; Rieck, H.; Schell, H.; Sennhenn, P.; Sprintz, J.; Steinhagen, H.; Wiese, B.; Helmchen, G. *Tetrahedron* **1996**, *52*, 7547-7583.

4. Alexakis, A.; Burton, J.; Vastra, J.; Benhaim, C.; Fournioux, X.; van den Heuvel, A.; Levêque, J.-M.; Mazeé, F.; Rosset, S. *Eur. J. Org. Chem.* **2000** , 4011-4027.

5. Lim, C. W.; Tissot, O.; Mattison, A.; Hooper, M. W.; Brown, J. M.; Cowley, A. R.; Hulmes, D. I.; Blacker, A. J. *Org. Process Res. Dev.*, **2003**, *7*, 379-384.

6. a) Connolly, D. J.; Lacey, P. M.; McCarthy, M.;. Saunders, C. P.; Carroll, A-M.; Goddard, R.; Guiry, P. J. *J. Org. Chem.* **2004**, *69*, 6572-6589. b) Ros, A; Estepa, B; Ramírez López, P; Álvarez, E; Fernández, R; Lassaletta, J. M. *J. Am. Chem. Soc.* **2013**, *135*, 15730-15733.

7. a) Hayashi, M.; Matsuura, Y.; Watanabe, Y. *Tetrahedron Lett.*, **2004**, *45*, 1409-1411. b) Trepohl, V. T.; Oestreich, M. *Chem. Commun.*, **2007**, 3300-3302.

8. Lukeman, M.; Simon, H.; Wan, P.; Wan, Y.-H. J. Org. Chem. **2015**, 80, 11281-11293.

9. Zhu, S.; Wang, C.; Chen, L.; Liang, R.; Yu, Y.; Jiang, H. Org. Lett. 2011, 13, 1146-1149.

10. Shekhar, S.; Dunn, T. B.; Kotecki, B. J.; Montavon, D. K.; Cullen , S. C. *J. Org. Chem.* **2011**, *76*, 4552-4563.

11. Ma, G.; Deng, J.; Sibi, M. P. Angew. Chem. Int. Ed. **2014**, 53, 11818-11821.

12. Commercially available phosphine (Aldrich, cat. Number *392073*) showed to have a ~8% of HPPh₂.

13. Bhat, V.; Wang, S.; Stoltz, B. M.; Virgil, S. J. Am. Chem. Soc., 2013, 135, 16829-16832.