Supporting Information

A Dynamic Kinetic C-P Cross-Coupling for the Asymmetric Synthesis of Axially

 Chiral P,N LigandsPedro Ramírez-López,§ Abel Ros, *\& Beatriz Estepa, Rosario Fernández, *, Béla Fiser, ${ }^{*}$ Enrique Gómez-Bengoa, *, José M. Lassaletta*,

[^0]E-mail: abel.ros@iiq.csic.es, jmlassa@iiq.csic.es,ffernan@us.es, enrique.gomez@ehu.es
Table of contents page
General Information: S2
1-(2-methoxynaphthalen-1-yl)phthalazine: S2-S3
1-(phthalazin-1-yl)naphthalen-2-ol: S3
Synthesis of triflates (\pm)-1D and (\pm)-9. General procedure. S4
Characterization of ($\mathbf{\pm}$)-1D and ($\mathbf{\pm}$)-9: S4-S5
Synthesis of Nonaflates (\pm)-8C-D and (\pm)-11. General procedure. S5-S6
Characterization of (\pm)-8C-D and (\pm)-11: S5-S6
Synthesis of Silylphosphines 5a-e. General procedure: S6
Characterization of 5a-e: S7-S8
Screening of Josiphos ligands and solvents using \boldsymbol{t} - $\mathrm{BuMe}_{2} \mathbf{S i P P h}_{2}$: S8-S10
Dynamic Kinetic Asymmetric C-P Cross-Coupling. General procedure: S11
Characterization of products $3 \mathrm{Aa}-\mathrm{Ce}$: S11-S21
Experiments with Triflate 9 and Nonaflate 11: S22
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P},{ }^{19} \mathrm{~F}$ NMR spectra and HPLC traces: S23-S80
References S75

General Information.

${ }^{1} \mathrm{H}$ NMR spectra were recorded at $300 \mathrm{MHz}, 400 \mathrm{MHz}$ or $500 \mathrm{MHz} ;{ }^{13} \mathrm{C}$ NMR spectra were recorded at $75 \mathrm{MHz}, 100 \mathrm{MHz}$ or 125 MHz with the solvent peak used as the internal reference (7.26 and 77.0 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ respectively for $\mathrm{CDCl}_{3} ; 5.32$ and 53.8 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ respectively for $\mathrm{CD}_{2} \mathrm{Cl}_{2} ; 7.16$ and 128.1 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ respectively for $\mathrm{C}_{6} \mathrm{D}_{6}$); Column chromatography was performed on silica gel (Merck Kieselgel 60). Analytical TLC was performed on aluminum backed plates ($1.5 \times 5 \mathrm{~cm}$) pre-coated (0.25 mm) with silica gel (Merck, Silica Gel $60 \mathrm{~F}_{254}$). Compounds were visualized by exposure to UV light or by dipping the plates in a solution of 5% $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in $95 \% \mathrm{EtOH}(\mathrm{w} / \mathrm{v})$ or followed by heating.

The silylphosphines used in this paper are moisture-sensitive compounds, and were stored in a nitrogen-filled glovebox and manipulated in flame-dried glassware using standard Schlenk techniques. Purging refers to an evacuation/argon refilling procedure carried out three times. Anhydrous 1,4-dioxane and THF were obtained by distillation from sodium using benzophenone as indicator. Anhydrous CsF was purchased from Aldrich and stored in a nitrogen-filled glovebox. Pd(dba) $)_{2}$ was purchased from Aldrich, ligands $\mathbf{L 1},{ }^{1} \mathbf{L 2},{ }^{2} \mathbf{L} \mathbf{L}^{3}$ and $\mathbf{L 4}{ }^{4}$ were prepared following described procedures, and ligands L5-L18 were purchased from Aldrich. Triflates ($\mathbf{\pm}$)$\mathbf{1 A}^{\mathbf{5}}, \mathbf{(\pm) - 1 B - \mathbf { C } ^ { 6 }}$ and silylphosphines 2 and $\mathbf{4}^{7}$ were synthesized following literature procedures.

1-(2-methoxynaphthalen-1-yl)phthalazine.

A dried Schlenk tube was charged with $\mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)_{4}}(5 \mathrm{~mol} \%$) and 1chlorophthalazine ($9.11 \mathrm{mmol}, 1.5 \mathrm{~g}$), and after three cycles of vacuum-argon flushing, DME (18 mL) was added and reaction mixture was stirred for 30 min at room temperature. (2-Methoxynaphthalen-1-yl)boronic acid (1.2 eq.) and 11 mL of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2M, aq.) were then sequentially added and the reaction mixture was refluxed overnight, then cooled to room temperature, quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The organic layer was dried over anhydrous MgSO_{4}, filtered, concentrated, and
the residue was purified by column chromatography on silica gel (EtOAc/n-hexane 2:1 $\mathrm{Et}_{3} \mathrm{~N} 1 \%$) to afford 1-(2-methoxynaphthalen-1-yl)phthalazine (1.62 g, 62\%) as a light brown foam. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.65(\mathrm{~d}, 1 \mathrm{H}, J=0.6 \mathrm{~Hz}$), $8.06(\mathrm{~d}, 2 \mathrm{H}, J=8.6$ Hz), 7.91-7.87 (m, 2H), 7.71 (td, $1 \mathrm{H}, J=7.0$ and 1.1 Hz), 7.49 (dd, $1 \mathrm{H}, J=8.3$ and 0.6 $\mathrm{Hz}), 7.45(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 7.35(\mathrm{td}, 1 \mathrm{H}, J=6.8$ and 1.1 Hz$), 7.28(\mathrm{td}, 1 \mathrm{H}, J=6.8$ and 1.1 Hz), $7.10(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.1,155.4$, 151.0, 133.9, 132.6, 132.4, 131.4, 129.2, 128.2, 127.6, 127.3, 126.8, 126.6, 126.4, 124.7, 124.0, 118.7, 113.5, 56.8. HRMS (EI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right)$286.1106. Found 286.1104.

1-(phthalazin-1-yl)naphthalen-2-ol.

$\mathrm{BBr}_{3}(1.2$ eq.) was carefully added to a solution of 1-(2-methoxynaphthalen-1-yl)phthalazine ($2.97 \mathrm{mmol}, 850 \mathrm{mg}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ under argon. The reaction mixture was refluxed for 1 hour and stirred overnight at room temperature. The resulting mixture was cooled to $0{ }^{\circ} \mathrm{C}$, quenched with $\mathrm{H}_{2} \mathrm{O}$, and the formed precipitated was vigorously stirred in a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Na}_{2} \mathrm{CO}_{3}$ (2M, aq.) mixture. The organic phase was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and the residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 50: 2 \mathrm{Et}_{3} \mathrm{~N} 1 \%\right)$ to afford 1-(phthalazin-1-yl)naphthalen-2-ol ($646 \mathrm{mg}, 80 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right.$, 500 MHz): $\delta 9.91$ (br s, 1H), 9.78 (s, 1H), 8.27 (d, 1H, J = 8.1 Hz), 8.02-7.99 (m, 2H), $7.92(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.85(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.42(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.40(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.0 \mathrm{~Hz}), 7.30(\mathrm{td}, 1 \mathrm{H}, J=7.5$ and 1.0 Hz$), 7.25(\mathrm{td}, 1 \mathrm{H}, J=7.7$ and 1.3 Hz$), 6.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 125 \mathrm{MHz}\right): \delta 157.5,153.2,150.7,133.6,133.0,132.6$, 130.6, 128.1, 127.8, 126.8, 126.7, 126.4, 126.2, 125.5, 123.6, 122.9, 118.2, 115.1. HRMS (EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right)$272.0950. Found 272.0947.

Synthesis of triflates (\pm)-1D and (\pm)-9. General procedure.

Following a described procedure, ${ }^{6 \mathrm{~b}}$ triflic anhydride (1.2 eq.) was carefully dropwise added to an under argon solution containing the corresponding alcohol, dry pyridine (1.2 eq.) and DMAP (cat.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($5 \mathrm{~mL} / \mathrm{mmol}$). The reaction mixture was stirred at room temperature overnight, then quenched with NaHCO_{3} (sat. aq.) and the organic phase was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and the residue was purified by column chromatography on silica gel using EtOAc/n-hexane mixtures.

1-(phthalazin-1-yl)naphthalen-2-yl trifluoromethanesulfonate ($\mathbf{\pm}$)-1D.

Following the general procedure starting from 1-(phthalazin-1-yl)naphthalen-2-ol ($2.28 \mathrm{mmol}, 620 \mathrm{mg}$), column chromatography (EtOAc/n-hexane 1:5 $\rightarrow 1.1$) afforded ($\mathbf{\pm}$)-1D ($552 \mathrm{mg}, 60 \%$) as a light brown foam. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.71(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}$, $1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 8.12(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 8.02(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.96(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz})$, $7.78(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.64(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 7.59(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H})$, $7.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.8,151.4,145.2,133.0,133.0$, 132.9, 132.4, 132.0, 128.3, 128.2, 127.4, 126.9, 126.7, 126.4, 126.1, 126.1, 125.6, 119.5, 118.1 ($q, J_{\mathrm{C}, \mathrm{F}}=310 \mathrm{~Hz}$). HRMS (EI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+1\right)$ 405.0519. Found 405.0521.

[1,1'-binaphthalen]-2-yl trifluoromethanesulfonate (\pm)-9.

Following the general procedure starting from [1,1'-binaphthalen]-2ol $\mathbf{(\pm) - 1 0}{ }^{8}$ ($1.0 \mathrm{mmol}, 270 \mathrm{mg}$), column chromatography (EtOAc/nhexane 1:10) afforded ($\mathbf{\pm}$)-9 ($342 \mathrm{mg}, 85 \%$) as a colourless viscous oil. Spectroscopic data matched those reported in the literature for the (R)-enantiomer. ${ }^{9}$

Synthesis of Nonaflates (\pm)-8C-D and (\pm)-11. General procedure.

Following a described procedure, ${ }^{10}$ over a suspension of the corresponding alcohol (1.0 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 equiv) in acetonitrile (0.5 M), perfluorobutanesulfonyl fluoride ($90 \%, 1.2$ equiv) was added in one portion, and the resulting mixture was vigorously stirred for 24 h . After completion (TLC monitoring), the reaction mixture was filtered through a Celite pad, the solvent was removed in vacuum, and the residue was purified by flash column chromatography over silica gel.

1-(quinazolin-4-yl)naphthalen-2-yl nonaflate (\pm)-8C.

Following the general procedure starting from 1-(quinazolin-4-yl)naphthalen-2-oliError! Marcador no definido.b ($1.43 \mathrm{mmol}, 390 \mathrm{mg}$), column chromatography (EtOAc/n-hexane 2:1) afforded ($\mathbf{\pm}$)-8C (708 mg, 90\%) as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.55$ (s, $1 \mathrm{H}), 8.21(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.15(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 8.02(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.96(\mathrm{t}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.3,154.8,150.6,144.6,134.5,132.4,132.3$, 132.1, 129.0, 128.4, 128.3, 128.3, 127.5, 126.9, 126.4, 125.9, 125.0, 119.4, (nanoflate group not observed). ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -80.7 ($\mathrm{t}, J_{F-P}=11 \mathrm{~Hz}$), $-110.0\left(\mathrm{q}, J_{F-P}=\right.$ 15 Hz), -121.1 (m), -126.0 (m). HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~F}_{9} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 555.0419. Found 555.0412.

1-(phthalazin-1-yl)naphthalen-2-yl nonaflate (\pm)-8D.

Following the general procedure starting from 1-(phthalazin-1-yl)naphthalen-2-ol ($3.9 \mathrm{mmol}, 1.07 \mathrm{~g}$), column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50: 1\right)$ afforded (\pm)-8D (1.2 g, 56\%) as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.70(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz})$, $8.11(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 8.02(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.96(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.78(\mathrm{t}, 1 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 7.64(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 7.59(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=8.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.8,151.4,145.2,133.0,133.0,132.9,132.4$, 132.0, 128.3, 128.2, 127.4, 126.9, 126.7, 126.4, 126.2, 126.2, 125.6, 119.5, (nanoflate
group not observed). ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): - $80.7\left(\mathrm{t}, J_{F-P}=11 \mathrm{~Hz}\right),-110.0\left(\mathrm{t}, J_{F-P}=\right.$ 15 Hz), -121.2 (m), -126.0 (m). HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~F}_{9} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 555.0419. Found: 555.0414.

2'-(dimethylamino)-[1,1'-binaphthalen]-2-yl nonaflate (土)-11.

Following the general procedure starting from 2'-(dimethylamino)-[1,1'-binaphthalen]-2-ol ($\mathbf{\pm}$)-12 ${ }^{11}$ ($0.782 \mathrm{mmol}, 245 \mathrm{mg}$), column chromatography (EtOAc/n-hexane 9:1) afforded ($\mathbf{\pm}$)-11 (430 mg, 92\%) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03$ ($\mathrm{d}, J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-$ $7.52(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{ddd}, J=$ $8.3,6.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $150.8,145.6,134.2,133.6,132.5,130.2,129.9,129.7,129.6,128.3,127.9,127.5,127.3$, 126.7, 126.3, 125.2, 123.7, 120.0, 119.8, 119.4, 43.5 (nanoflate group not observed). ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -80.7 ($\mathrm{t}, J_{F-P}=11 \mathrm{~Hz}$), $-110.6\left(\mathrm{q}, J_{F-P}=11 \mathrm{~Hz}\right),-121.2(\mathrm{~m})$, -126.1 (m). HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~F}_{9} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$596.0936. Found 596.0926.

Synthesis of Silylphosphines 5a-e. General procedure.

A flamed-dried Schlenk tube was charged with the corresponding phosphine (1 equiv.). After purging with argon, dry THF was added ($1.5 \mathrm{~mL} / \mathrm{mmol}$ phosphine) and the resulting solution was cooled to $-78{ }^{\circ} \mathrm{C} . n-\mathrm{BuLi}$ (1.5 equiv) was then added dropwise, the resulting mixture was allowed to reach $-60{ }^{\circ} \mathrm{C}$ (for aromatic phosphines) or $-40^{\circ} \mathrm{C}$ (for aliphatic phosphines), stirred for 20 min and cooled again to $-78{ }^{\circ} \mathrm{C}$. Finally, $\mathrm{Me} \mathrm{B}_{3} \mathrm{SiCl}(1.5$ equiv) was added dropwise and the crude mixture was allowed to reach room temperature. and concentrated to dryness. Dry pentane was added to complete precipitation of LiCl and the reaction crude filtered via filtercannula under Ar. This extraction process was repeated twice, the solvents were removed under vacuum and the residue was either distilled or washed with pentane.

Note: The purity of silylphophines 5a-e (HPR2 free) is crucial to get high and reproducible enantioselectivities in the C-P coupling reactions. Different commercially
available $\mathrm{Me}_{3} \mathrm{SiPPh}_{2}$ samples were checked and did not fulfill the purity requirements for this study.

Yields, procedure details and characterization data for silylphosphines 5a-e are as follows:

Diphenyl(trimethylsilyl)phosphine 5a.

Following the general procedure starting from diphenylphosphine ($7.3 \mathrm{~g}, 39.21 \mathrm{mmol}$), further distillation of the oily crude afforded $\mathbf{5 a}$ ($8.95 \mathrm{~g}, 88 \%$) as a colorless liquid. Spectroscopic and physical data matched those of a commercial sample. ${ }^{12}$

Di(4-fluorophenyl)(trimethylsilyl)phosphine 5b.

Following the general procedure starting from di(4fluorophenyl)phosphine ($4.20 \mathrm{~g}, 18.90 \mathrm{mmol}$), further distillation $\left(117^{\circ} \mathrm{C} / 2 \cdot 10^{-4} \mathrm{mbar}\right)$ of the oily crude afforded $\mathbf{5 b}(3.95 \mathrm{~g}, 71 \%)$ as a colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.23\left(\mathrm{q}, 4 \mathrm{H}, J_{H, H}=J_{H, F}\right.$ $\left.=J_{H, P}=6.8 \mathrm{~Hz}\right), 6.74\left(\mathrm{t}, 4 \mathrm{H}, J_{H, H}=J_{H, F}=8.4 \mathrm{~Hz}\right), 0,06\left(\mathrm{~d}, 9 \mathrm{H}, J_{H, P}=6.5 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 163.2\left(\mathrm{~d}, J_{C-F}=246 \mathrm{~Hz}, 2 \mathrm{C}\right.$), 135.8 (dd, $J_{C-P}=18$ and $J_{C-F}=8 \mathrm{~Hz}, 4 \mathrm{C}$), 131.6 (dd, $J_{C-P}=17$ and $J_{C-F}=4 \mathrm{~Hz}, 2 \mathrm{C}$), 115.9 (dd, $J_{C-F}=21$ and $J_{C-P}=7 \mathrm{~Hz}, 4 \mathrm{C}$), -1.3 (d, $J_{C-P}=13$ $\mathrm{Hz}, 3 \mathrm{C}) .{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $-59.3\left(\mathrm{t}, J_{P-F}=4 \mathrm{~Hz}\right.$). ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $-114.0\left(\mathrm{~d}, J_{F-P}=4 \mathrm{~Hz}\right)$.

Di-p-tolyl(trimethylsilyl)phosphine 5c.

Following the general procedure starting from di- p-tolylphosphine ($3.94 \mathrm{~g}, 18.39 \mathrm{mmol}$), further washing with pentane of the solid crude obtained afforded $5 \mathbf{5 c}(4.38 \mathrm{~g}, 83 \%)$ as a colorless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.51\left(\mathrm{t}, 4 \mathrm{H}, J_{H, H}=J_{H, P}=7.7 \mathrm{~Hz}\right.$), $6.95(\mathrm{~d}, 4 \mathrm{H}$, $\left.J_{H, H}=7.7 \mathrm{~Hz}\right), 2.07(\mathrm{~s}, 6 \mathrm{H}), 0.20\left(\mathrm{~d}, 9 \mathrm{H}, J_{H, P}=4.7 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 137.3$ (2C), 134.3 (d, $\left.J_{C-P}=17 \mathrm{~Hz}, 4 \mathrm{C}\right), 133.1$ (d, $\left.J_{C-P}=15 \mathrm{~Hz}, 2 \mathrm{C}\right), 129.6$ (d, $\left.J_{C-P}=7 \mathrm{~Hz}, 4 \mathrm{C}\right), 21.2$ (2C), $-1.0\left(\mathrm{~d}, J_{C-P}=11 \mathrm{~Hz}, 3 \mathrm{C}\right) .{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): -59.6.

Di(4-methoxyphenyl)(trimethylsilyl)phosphine 5d.

Following the general procedure, starting from di(4methoxyphenyl)phosphine ($2.0 \mathrm{~g}, 8.12 \mathrm{mmol}$), further washing with pentane of the solid crude afforfded $\mathbf{5 d}(1.90 \mathrm{~g}, 73 \%)$ as a colorless solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.51\left(\mathrm{t}, 4 \mathrm{H}, J_{H, H}=J_{H, P}\right.$ $=7.8 \mathrm{~Hz}), 6.76\left(\mathrm{~d}, 4 \mathrm{H}, J_{H, H}=8.2 \mathrm{~Hz}\right), 3.27(\mathrm{~s}, 6 \mathrm{H}), 0.21\left(\mathrm{~d}, 9 \mathrm{H}, J_{H, P}=4.7 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 160.0$ (2C), 135.6 (d, $J_{C-P}=18 \mathrm{~Hz}, 4 \mathrm{C}$), 127.2 (d, $J_{C-P}=14 \mathrm{~Hz}, 2 \mathrm{C}$), $114.6\left(\mathrm{~d}, J_{C-P}=7 \mathrm{~Hz}, 4 \mathrm{C}\right), 54.7(2 \mathrm{C}),-1.0\left(\mathrm{~d}, J_{C-P}=13 \mathrm{~Hz}, 3 \mathrm{C}\right) .{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -62.0.

Diisobutyl(trimethylsilyl)phosphine 5e.

Following the general procedure starting from diisobutylphosphine ($5.17 \mathrm{~g}, 35.36 \mathrm{mmol})$, further distillation $\left(55^{\circ} \mathrm{C} / 1.2 \cdot 10^{-1} \mathrm{mbar}\right.$) of the oily crude afforded 3 e (7.12 g , 92\%) as a colorless liquid. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 1.69(\mathrm{~m}, 2 \mathrm{H}) 1.46-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.05\left(\mathrm{t}, 12 \mathrm{H}, J_{H-H}=J_{H-P}=7.6\right.$ Hz), 0.13 (br s, 9H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 33.4$ (d, $J_{C-P}=16 \mathrm{~Hz}, 2 \mathrm{C}$), 28.9 (d, $J_{C-P}=$ $15 \mathrm{~Hz}, 2 \mathrm{C}), 24.5\left(\mathrm{~d}, J_{C-P}=9 \mathrm{~Hz}, 2 \mathrm{C}\right), 23.8\left(\mathrm{~d}, J_{C-P}=10 \mathrm{~Hz}, 2 \mathrm{C}\right),-2.0\left(\mathrm{~d}, J_{C-P}=11 \mathrm{~Hz}, 3 \mathrm{C}\right)$. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): -113.5.

Table 1. Screening of Josiphos ligands and different solvents using $\boldsymbol{t B u M e} \mathbf{S i P P h}_{2}$:

	(10)	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} 5 \%$	6	THF (0.05M)	58	77:23
	(10)	$\operatorname{Pd}(\mathrm{dba})_{2} 10 \%$	6	THF (0.05M)	66	74.5:25.5
	(20)	$\operatorname{Pd}(\mathrm{dba})_{2} 10 \%$	6	THF (0.05M)	57	77:23
	(10)	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} 5 \%$	6	THF (0.05M)	70	67:33
	(10)	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} 5 \%$	6	THF (0.05M)	30	78.5:21.5
	(10)	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} 5 \%$	6	THF (0.05M)	traces	nd
	(10)	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} 5 \%$	6	THF (0.05M)	65	67:33
	(10)	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} 5 \%$	6	THF (0.05M)	traces	nd
	10\%	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} 5 \%$	6	THF (0.05M)	8	nd
	10\%	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} 5 \%$	6	THF (0.0125M)	50	75.5:24.5

 High consumption of the starting triflate was observed but the major product was the hydrolyzed triflate.

Dynamic Kinetic Asymmetric C-P Cross-Coupling. General procedure:

A flame-dried Schlenk tube was charged with triflate ($\mathbf{\pm}$)-1A-D or nonaflate ($\mathbf{\pm}$)-8C-D (0.1 mmol), $\mathrm{Pd}(\mathrm{dba})_{2}$ ($10 \mathrm{~mol} \%$) and the required ligand ($\mathbf{L 1 2}$ or L16) ($10 \mathrm{~mol} \%$). After purging with argon, the tube was introduced in a nitrogen-filled glovebox and anhydrous CsF (0.2 mmol), deoxygenated dry THF (2 mL) and the appropriate silylphosphine (0.2 mmol) were sequentially added. The sealed Schlenk tube was brought out of the glovebox and placed into a preheated oil-bath at $40{ }^{\circ} \mathrm{C}$ until completion of the reaction (TLC monitoring). After reaching room temperature, the reaction crude was filtered through a pad of Celite and the solvents were removed under vacuum. The resulting residue was purified by column chromatography over silica gel under nitrogen. Starting materials, yields, reaction times, solvents used for chromatography, and characterization data for phosphines $\mathbf{3}$ are as follows:

Note: Partial oxidation of phosphine $\mathbf{3}$ was observed inside HPLC chiral columns. Therefore, phosphine samples were oxidized ($\mathrm{H}_{2} \mathrm{O}_{2}$ in acetone) to the corresponding phosphine oxides in order to determine the er's. The racemic phosphine oxides references were directly prepared by heating a mixture of the corresponding starting triflates (0.1 mmol, 1.0 equiv.) and $H P(O) A_{2}\left(0.11 \mathrm{mmol}, 1.1\right.$ equiv.), dppp (5 mol\%), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (5 mol\%), iPr2NEt ($0.4 \mathrm{mmol}, 4.0$ equiv.) in DMSO (0.5 mL) at $100^{\circ} \mathrm{C}$ overnight.

Characterization of products 3Aa-Ce:

(S)-1-(2-(diphenylphosphanyl)naphthalen-1-yl)isoquinoline 3Aa.

Following the general procedure using triflate ($\mathbf{\pm} \mathbf{) - 1 A}$ and $\mathbf{5 a}$ as starting materials and L12 as the ligand, after 15 hours at $40{ }^{\circ} \mathrm{C}$ purification of the reaction crude through a short pad of SiO_{2} (DCM/n-hexane 7:3 to DCM) afforded 3Aa ($41.5 \mathrm{mg}, 95 \%$) as a white solid. Spectroscopic and physical data matched those reported in the literature. ${ }^{\text {Errort }}$ Marcador no definido. $[\alpha]^{20_{\mathrm{D}}}-138.0$ (c 1.0, CHCl_{3}) for er 95.5:4.5. [Lit.: ${ }^{\text {Error! }}$ Marcador no definido. $[\alpha]^{25}{ }_{D}=-165.0\left(c 1.0, \mathrm{CHCl}_{3}\right.$) for (S)-enantiomer (er 99.5:0.5)]. HPLC (IA column, Hex:Isop 85:15, $\mathrm{T}=30^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 23.59 \mathrm{~min}$ (major) and 30.78 min (minor).

Note: A sample of 3Aa with er 95.5:4.5 was crystallized from a hot Toluene $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 10:1 mixture, affording the enantioenriched product 3Aa with er >99.5:0.5.

(S)-2-(2-(diphenylphosphanyl)naphthalen-1-yl)-3-methylpyridine 3Ba.

Following the general procedure using triflate ($\mathbf{\pm} \mathbf{) - 1 B}$ and $\mathbf{5 a}$ as starting materials and L12 as the ligand, after 15 hours at $40{ }^{\circ} \mathrm{C}$ purification of the reaction crude through a short pad of SiO_{2} (DCM/n-hexane 7:3 to DCM) afforded 3Ba ($36.0 \mathrm{mg}, 89 \%$) as a white solid. $[\alpha]^{20}{ }_{D}-27.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for er 95:5. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=4.0 \mathrm{~Hz}), 7.85(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.81(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.61(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.48(\mathrm{t}$, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.36(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.33-7.23(\mathrm{~m}, 12 \mathrm{H}), 7.19(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 1.94$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 157.0\left(\mathrm{~d}, J_{C-P}=6 \mathrm{~Hz}\right), 146.0,145.0\left(\mathrm{~d}, J_{C-P}=34\right.$ Hz), 137.1 ($\mathrm{d}, J_{C-P}=13 \mathrm{~Hz}$), 136.6 (d, $J_{C-P}=12 \mathrm{~Hz}$), 136.6, 133.0, 133.0, 132.8, 132.7, $132.5\left(\mathrm{~d}, J_{C-P}=10 \mathrm{~Hz}\right), 132.5,132.4\left(\mathrm{~d}, J_{C-P}=2 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{C-P}=8 \mathrm{~Hz}\right), 129.3\left(\mathrm{~d}, J_{C-P}=2\right.$ $\mathrm{Hz}), 127.8,127.7,127.6,127.5,127.5,127.4,127.4,126.2,125.9,125.1\left(\mathrm{~d}, J_{C-P}=2 \mathrm{~Hz}\right)$, 122.0, 18.1 ($\mathrm{d}, J_{C-P}=3 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -13.6. HRMS (ESI) calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NP}\left(\mathrm{M}+\mathrm{H}^{+}\right)$404.1563. Found 404.1558. HPLC (IA column, Hex:Isop 75:25, $\mathrm{T}=$ $30^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 10.20 \mathrm{~min}$ (major) and 13.06 min (minor).

(S)-4-(2-(diphenylphosphanyl)naphthalen-1-yl)quinazoline 3Ca.

Following the general procedure using triflate ($\mathbf{\pm} \mathbf{) - 1 C}$ and 5a as starting materials and L12 as the ligand, after 20 hours at $40{ }^{\circ} \mathrm{C}$ purification of the reaction crude through a short pad of SiO_{2} (EtOAc/n-hexane 1:4 to 3:7) afforded 3Ca (39.2 mg , 89\%) as a light yellow solid. [$\alpha]^{20_{\mathrm{D}}}-152\left(c 1.0, \mathrm{CHCl}_{3}\right.$) for er 95:5. After washing with acetone, a white solid is obtained (er >99.5:0.5). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.44(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=8.5 \mathrm{~Hz}), 7.95(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.92(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.86(\mathrm{ddd}, 1 \mathrm{H}, J=8.4,5.2$ and $3.2 \mathrm{~Hz}), 7.52(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.46\left(\mathrm{dd}, 1 \mathrm{H}, J_{H-H}=8.5\right.$ and $\left.J_{H-P}=3.2 \mathrm{~Hz}\right), 7.35-7.16(\mathrm{~m}$, $13 \mathrm{H}), 7.09(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.4\left(\mathrm{~d}, J_{C-P}=7 \mathrm{~Hz}\right), 154.7$, $150.1,141.5\left(\mathrm{~d}, J_{C-P}=33 \mathrm{~Hz}\right), 136.7\left(\mathrm{~d}, J_{C-P}=10 \mathrm{~Hz}\right), 136.5\left(\mathrm{~d}, J_{C-P}=11 \mathrm{~Hz}\right), 134.6\left(\mathrm{~d}, J_{C-P}\right.$
$=15 \mathrm{~Hz}), 133.9,133.8,133.6,133.4,133.3,133.1,131.8\left(\mathrm{~d}, J_{C-P}=8 \mathrm{~Hz}\right), 129.8,129.3$, 128.7, 128.6, 128.4, 128.3, 128.3, 128.3, 128.1, 127.5, 127.1, 127.0, 127.0, 126.0 (d, JC-P $=2 \mathrm{~Hz}$), 125.7 ($\mathrm{d}, J_{C-P}=3 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -14.0. HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{P}\left(\mathrm{M}+\mathrm{H}^{+}\right) 441.1515$. Found 441.1506. HPLC for phosphine oxide (IA column, Hex:Isop $75: 25, \mathrm{~T}=30^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 20.30 \mathrm{~min}$ (major) and 26.28 min (minor).

Note: A lack of reproducibility was observed in terms of enantioselectivity most probably due to undetectable impurities accompanying triflate ($\mathbf{\pm} \mathbf{)} \mathbf{- 1 C}$. Replacement of triflate $\mathbf{(\pm) - 1 C}$ by nonaflate $(\pm)-8 C$ gave rise to high levels of enantioselectivity and consistent reproducibility (er 94.5:5.5, 90\% isolated yield).

(S)-1-(2-(diphenylphosphanyl)naphthalen-1-yl)phthalazine 3Da.

Following the general procedure using triflate ($\mathbf{\pm} \mathbf{) - 1 D}$ and $\mathbf{5 a}$ as starting materials and L12 as the ligand, after 20 hours at $40{ }^{\circ} \mathrm{C}$ purification of the reaction crude through a short pad of SiO_{2} (EtOAc/n-hexane 1:4 to 2:3) afforded 3Da ($31.1 \mathrm{mg}, 71 \%$) as a white solid. $[\alpha]^{20}{ }_{D}-77.3\left(c 1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) for er 85.5:14.5. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.65(\mathrm{~s}$, $1 \mathrm{H}), 8.05(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.95(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.92(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.85(\mathrm{t}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 7.57-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.19(\mathrm{~m}, 11 \mathrm{H}), 7.17-7.11(\mathrm{~m} 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 160.6\left(\mathrm{~d}, J_{C-P}=6 \mathrm{~Hz}\right), 151.3,141.3\left(\mathrm{~d}, J_{C-P}=33 \mathrm{~Hz}\right), 137.5\left(\mathrm{~d}, J_{C-P}=13\right.$ Hz), 137.1 ($\mathrm{d}, J_{C-P}=11 \mathrm{~Hz}$), 135.9 (d, $J_{C-P}=14 \mathrm{~Hz}$), 134.0, 134.0, 133.8, 133.7, 133.5, 133.1 (d, $J_{C-P}=8 \mathrm{~Hz}$), 132.9, 132.7, 130.4, 129.7, 129.0, 128.8, 128.8, 128.7, 128.7, 128.5, 127.9 (d, $J_{C-P}=3 \mathrm{~Hz}$), 127.5, 127.3, 126.9, 126.7, 126.5 (d, $J_{C-P}=2 \mathrm{~Hz}$), 126.2. ${ }^{31} \mathrm{P}$ NMR (161 MHz, CDCl_{3}): -14.1. HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{P}\left(\mathrm{M}+\mathrm{H}^{+}\right)$441.1515. Found 441.1509. HPLC (IA column, Hex:Isop 50:50, $\mathrm{T}=30^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 14.56$ \min (minor) and $27.94 \min$ (major).

(S)-1-(2-(bis(4-fluorophenyl)phosphanyl)naphthalen-1-yl)isoquinoline 3Ab.

Following the general procedure using triflate $\mathbf{(} \mathbf{\pm} \mathbf{) - 1 A}$ and $\mathbf{5 b}$ as starting materials and L12 as the ligand, after 18 hours at 40
${ }^{\circ} \mathrm{C}$ purification of the reaction crude through a short pad of SiO_{2} (DCM / n-hexane 7:3 to DCM) afforded $\mathbf{3 A b}(41.9 \mathrm{mg}, 88 \%)$ as a white foam. $[\alpha]^{20} \mathrm{D}-98.2\left(c 0.8, \mathrm{CHCl}_{3}\right)$ for er 90:10. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.62(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 7.94-7.90(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{~d}$, $1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 7.64-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.31-$ $7.18(\mathrm{~m}, 5 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.99\left(\mathrm{t}, 2 \mathrm{H}, J_{H, H}=J_{H, F}=8.4 \mathrm{~Hz}\right), 6.91\left(\mathrm{t}, 2 \mathrm{H}, J_{H, H}=J_{H, F}=\right.$ 8.4 Hz). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.2\left(\mathrm{~d}, J_{C-F}=247 \mathrm{~Hz}\right), 163.0\left(\mathrm{~d}, J_{C-F}=247 \mathrm{~Hz}\right.$), $160.1\left(\mathrm{~d}, J_{C-P}=6 \mathrm{~Hz}\right), 144.0\left(\mathrm{~d}, J_{C-P}=32 \mathrm{~Hz}\right), 142.2,135.9,135.6\left(\mathrm{dd}, J_{C-P}=22\right.$ and $J_{C-F}=8$ $\mathrm{Hz}, 2 \mathrm{C}$), 135.1 (dd, $J_{C-P}=20$ and $J_{C-P}=8 \mathrm{~Hz}$), 134.4 (d, $J_{C-P}=33 \mathrm{~Hz}$), 132.7-132.4 (5C), 130.0, 129.3, 128.9, 127.9, 127.3, 127.0, 127.0, 126.9, 126.8, 126.5 (d, $J_{C-P}=2 \mathrm{~Hz}$), $120.4,115.6\left(\mathrm{dd}, J_{C-F}=21\right.$ and $\left.J_{C-P}=1 \mathrm{~Hz}, 2 \mathrm{C}\right), 115.5\left(\mathrm{dd}, J_{C-F}=21\right.$ and $\left.J_{C-P}=2 \mathrm{~Hz}, 2 \mathrm{C}\right) .{ }^{31} \mathrm{P}$ NMR (161 MHz, CDCl_{3}): -15.9 (t, JP-F $=4 \mathrm{~Hz}$). ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -112.0 (d, J_{F-P} $=4 \mathrm{~Hz}),-113.1\left(\mathrm{~d}, J_{F-P}=5 \mathrm{~Hz}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NP}\left(\mathrm{M}+\mathrm{H}^{+}\right) 476.1374$. Found 476.1366. HPLC for phosphine oxide (IA column, Hex:Isop 85:15, $\mathrm{T}=30^{\circ} \mathrm{C}, \mathrm{F}=$ $1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 22.99 \mathrm{~min}$ (major) and 39.58 min (minor).

(S)-2-(2-(bis(4-fluorophenyl)phosphanyl)naphthalen-1-yl)-3-methylpyridine

3Bb.

Following the general procedure using triflate ($\mathbf{\pm} \mathbf{) - 1 B}$ and $\mathbf{5 b}$ as starting materials and L12 as the ligand, after 18 hours at 40 ${ }^{\circ} \mathrm{C}$ purification of the reaction crude through a short pad of SiO_{2} (DCM/n-hexane 7:3 to DCM) afforded 3Bb ($35.8 \mathrm{mg}, 82 \%$) as a white foam. $[\alpha]^{20} \mathrm{D}-88.9$ (c 1.4, CHCl_{3}) for er 92.5:7.5. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.46(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 7.86(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=8.5 \mathrm{~Hz}), 7.62(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.50(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.37(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.29-$ $7.22(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.03\left(\mathrm{t}, 2 \mathrm{H}, J_{H, H}=J_{H, F}=8.6 \mathrm{~Hz}\right), 6.97\left(\mathrm{t}, 2 \mathrm{H}, J_{H, H}=J_{H, F}=\right.$ 8.6 Hz), $1.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.2\left(\mathrm{~d}, J_{C-F}=248 \mathrm{~Hz}\right), 163.1\left(\mathrm{~d}, J_{C-F}\right.$ $=247 \mathrm{~Hz}$), $157.8\left(\mathrm{~d}, J_{C-P}=6 \mathrm{~Hz}\right), 146.8,144.2\left(\mathrm{~d}, J_{C-P}=33 \mathrm{~Hz}\right), 137.4,135.5\left(\mathrm{dd}, J_{C-P}=22\right.$ and $J_{C-F}=8 \mathrm{~Hz}, 2 \mathrm{C}$), 135.2 (dd, $J_{C-P}=21$ and $J_{C-F}=8 \mathrm{~Hz}, 2 \mathrm{C}$), 133.7, $133.1\left(\mathrm{~d}, J_{C-P}=2 \mathrm{~Hz}\right.$), $132.9\left(\mathrm{~d}, J_{C-P}=12 \mathrm{~Hz}\right), 132.8$ (dd, $J_{C-P}=13$ and $J_{C-F}=4 \mathrm{~Hz}$), 132.3 (dd, $J_{C-P}=11$ and $J_{C-F}=4$ Hz), 131.7 ($\mathrm{d}, J_{C-P}=8 \mathrm{~Hz}$), 129.2, 128.5, 128.1, 127.0, 126.8, 125.7 (d, $J_{C-P}=2 \mathrm{~Hz}$), 122.8,
$115.7\left(\mathrm{dd}, J_{C-F}=21\right.$ and $\left.J_{C-P}=7 \mathrm{~Hz}, 2 \mathrm{C}\right), 115.0\left(\mathrm{dd}, J_{C-F}=21\right.$ and $\left.J_{C-P}=8 \mathrm{~Hz}, 2 \mathrm{C}\right), 19.0(\mathrm{~d}$, $J_{C-P}=3 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-15.4\left(\mathrm{t}, J_{P-F}=5 \mathrm{~Hz}\right.$). ${ }^{19} \mathrm{~F}$ NMR (377 MHz , CDCl_{3}): -112.4 (d, $J_{F-P}=5 \mathrm{~Hz}$), $-113.0\left(\mathrm{~d}, J_{F-P}=5 \mathrm{~Hz}\right.$). HRMS (ESI) calcd. for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NP}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 440.1374$. Found 440.1366. HPLC for phosphine oxide (IA column, Hex:Isop $75: 25, \mathrm{~T}=30^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 9.98 \mathrm{~min}$ (major) and 16.49 min (minor).

(S)-4-(2-(bis(4-fluorophenyl)phosphanyl)naphthalen-1-yl)quinazoline 3Cb.

Following the general procedure and using nonaflate ($\mathbf{\pm} \mathbf{) - 8 C}$ and $\mathbf{5 b}$ as starting materials and L12 as the ligand, after 18 hours at $40{ }^{\circ} \mathrm{C}$ purification of the reaction crude through a short pad of SiO_{2} (EtOAc / n-hexane $1: 4$ to $3: 7$) afforded 3Cb ($41.6 \mathrm{mg}, 87 \%$) as a white foam. $[\alpha]^{20_{\mathrm{D}}}-48.0\left(c 0.5, \mathrm{CHCl}_{3}\right.$) for er 93:7. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.91(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.5 \mathrm{~Hz}), 7.87(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.82(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.48(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.31$ (dd, $1 \mathrm{H}, J_{H-H}=8.4$ and $J_{H-P}=3 \mathrm{~Hz}$), 7.30-7.24(m, 2H), 7.24-7.18(m, 1H), $7.13(\mathrm{~m}, 2 \mathrm{H})$, 7.12-7.04 (m, 3H), $6.95\left(\mathrm{t}, 2 \mathrm{H}, J_{H, H}=J_{H, F}=8.6 \mathrm{~Hz}\right), 6.87\left(\mathrm{t}, 2 \mathrm{H}, J_{H, H}=J_{H, F}=8.6 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.1\left(\mathrm{~d}, J_{C-P}=6 \mathrm{~Hz}\right), 163.3\left(\mathrm{~d}, J_{C-F}=248 \mathrm{~Hz}\right), 163.2\left(\mathrm{~d}, J_{C-F}=\right.$ 247 Hz), 154.7, 150.2, $141.3\left(\mathrm{~d}, J_{C-P}=32 \mathrm{~Hz}\right.$), 135.6 ($\mathrm{dd}, J_{C-P}=22$ and $J_{C-F}=8 \mathrm{~Hz}, 2 \mathrm{C}$), 135.1 (dd, $J_{C-P}=21$ and $J_{C-P}=8 \mathrm{~Hz}, 2 \mathrm{C}$), $134.2\left(\mathrm{~d}, J_{C-P}=15 \mathrm{~Hz}\right.$), 134.0, 133.4, 132.0-131.7 (3C), 129.5, 129.2, 128.8, 128.1, 127.6, 127.3, 127.2, 126.8, 125.9 (d, $\left.J_{C-P}=2 \mathrm{~Hz}\right), 125.5$ $\left(\mathrm{d}, J_{C-P}=3 \mathrm{~Hz}\right), 115.8\left(\mathrm{dd}, J_{C-F}=21\right.$ and $\left.J_{C-P}=2 \mathrm{~Hz}, 2 \mathrm{C}\right), 115.7\left(\mathrm{dd}, J_{C-F}=21\right.$ and $J_{C-P}=3 \mathrm{~Hz}$, 2C). ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-16.0\left(\mathrm{t}, J_{P-F}=4 \mathrm{~Hz}\right.$). ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-111.9\left(\mathrm{~d}, J_{F-P}=4 \mathrm{~Hz}\right),-112.5\left(\mathrm{~d}, J_{F-P}=5 \mathrm{~Hz}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{P}(\mathrm{M}+$ H^{+}) 477.1327. Found 477.1324. HPLC (IA column, Hex:Isop 75:25, $\mathrm{T}=30^{\circ} \mathrm{C}, \mathrm{F}=$ $1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 11.18 \mathrm{~min}$ (major) and 19.33 min (minor).

(S)-1-(2-(bis(4-fluorophenyl)phosphanyl)naphthalen-1-yl)phthalazine 3Db.

Following the general procedure and using triflate ($\mathbf{\pm} \mathbf{) - 1 D}$ and $\mathbf{5 b}$ as starting materials and L12 as the ligand, after 20 hours at $40^{\circ} \mathrm{C}$ purification of the reaction crude through a short pad
of SiO_{2} (EtOAc / n-hexane 1:4 to 2:3) afforded 3Db ($34.6 \mathrm{mg}, 73 \%$) as a light yellow solid. $[\alpha]^{20}{ }_{D}-120.0\left(c \quad 0.4, \mathrm{CHCl}_{3}\right.$) for er 91:9. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.63(\mathrm{~s}, 1 \mathrm{H})$, $8.05(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.97(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.92(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.87(\mathrm{t}, 1 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 7.58(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.52(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.38\left(\mathrm{dd}, 1 \mathrm{H}, J_{H, H}=8.4\right.$ and $J_{H, P}=$ $3.3 \mathrm{~Hz}), 7.31(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.98\left(\mathrm{t}, 2 \mathrm{H}, J_{H, H}=\right.$ $\left.J_{H, F}=8.4 \mathrm{~Hz}\right), 6.91\left(\mathrm{t}, 2 \mathrm{H}, J_{H, H}=J_{H, F}=8.4 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.2\left(\mathrm{~d}, J_{C-F}\right.$ $=248 \mathrm{~Hz}), 163.1\left(\mathrm{~d}, J_{C-F}=247 \mathrm{~Hz}\right), 160.0\left(\mathrm{~d}, J_{C-P}=6 \mathrm{~Hz}\right), 150.9,140.4\left(\mathrm{~d}, J_{C-P}=32 \mathrm{~Hz}\right)$, $135.5\left(\mathrm{dd}, J_{C-P}=22\right.$ and $\left.J_{C-F}=8 \mathrm{~Hz}, 2 \mathrm{C}\right), 135.3\left(\mathrm{~d}, J_{C-P}=14 \mathrm{~Hz}\right), 135.1\left(\mathrm{dd}, J_{C-P}=20\right.$ and J_{C-} ${ }_{P}=8 \mathrm{~Hz}, 2 \mathrm{C}$), 133.5, $132.6\left(\mathrm{~d}, J_{C-P}=7 \mathrm{~Hz}\right), 132.4\left(\mathrm{~d}, J_{C-P}=4 \mathrm{~Hz}\right), 132.4,132.3,131.7$ (dd, $J_{C-P}=11$ and $J_{C-F}=4 \mathrm{~Hz}$), 129.6, 129.4, 128.1, $127.5\left(\mathrm{~d}, J_{C-P}=3 \mathrm{~Hz}\right), 127.2,127.1,126.5$, 126.2, 126.1, 125.9, 115.7 (dd, $J_{C-F}=7$ and $J_{C-P}=7 \mathrm{~Hz}, 2 C$), 115.5 (dd, $J_{C-F}=7$ and $J_{C-P}=6$ $\mathrm{Hz}, 2 \mathrm{C}) .{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-15.8\left(\mathrm{t}, J_{P-F}=4 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-112.2\left(\mathrm{~d}, J_{F-P}=5 \mathrm{~Hz}\right),-112.6\left(\mathrm{~d}, J_{F-P}=5 \mathrm{~Hz}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{P}(\mathrm{M}+$ H^{+}) 477.1327. Found 477.1321. HPLC (IA column, Hex:Isop 70:30, $\mathrm{T}=30^{\circ} \mathrm{C}, \mathrm{F}=$ $1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 19.51 \mathrm{~min}$ (minor) and 23.49 min (major).

(S)-1-(2-(Di-p-tolylphosphanyl)naphthalen-1-yl)isoquinoline 3Ac.

Following the general procedure using triflate $\mathbf{(\pm) - 1 A}$ and $\mathbf{5 c}$ as starting materials and $\mathbf{L 1 2}$ as the ligand, after 18 hours at $40^{\circ} \mathrm{C}$ purification of the reaction crude through a short pad of SiO_{2} (DCM/n-hexane 7:3 to DCM) afforded 3Ac ($39.3 \mathrm{mg}, 84 \%$) as a white solid. Spectroscopic and physical data matched those reported in the literature. ${ }^{13}[\alpha]^{20}{ }_{D}-82.5\left(c \quad 0.6, \mathrm{CHCl}_{3}\right)$ for er 92:8. [Lit.:iError! Marcador no definido. $[\alpha]^{25}{ }_{\mathrm{D}}=$ -86.1 (c 2.0, CHCl_{3}) for (S)-enantiomer (er 96:4)]. HPLC for phosphine oxide (ADH column, Hex:Isop $70: 30, \mathrm{~T}=30^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 14.74 \mathrm{~min}$ (major) and 16.53 min (minor).

Note: A sample of 3Ac with er 89:11 was crystallized by slow diffusion of n-hexane in a solution of the product in OEtAc, affording the formation of racemic crystals and the enantioenriched product 3Ac (er 97.5:2.5, 80\% yield) was obtained from the mother liquor.

(S)-2-(2-(Di-p-tolylphosphanyl)naphthalen-1-yl)-3-methylpyridine 3Bc.

Following the general procedure using triflate $(\mathbf{\pm}) \mathbf{- 1 B}$ and $\mathbf{5 c}$ as starting materials and $\mathbf{L 1 2}$ as the ligand, after 18 hours at $40^{\circ} \mathrm{C}$ purification of the reaction crude through a short pad of SiO_{2} (DCM to DCM/MeOH 100:1) afforded 3Bc (35.2 mg, 81\%) as a light white foam. $[\alpha]^{20}{ }_{D}-84.6\left(c 1.3, \mathrm{CHCl}_{3}\right.$) for er $93: 7 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.51(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 7.86(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.63(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.7 \mathrm{~Hz}), 7.49(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.09(\mathrm{~m}, 9 \mathrm{H}), 2.37$ ($\mathrm{s}, 3 \mathrm{H}$), 2.33 ($\mathrm{s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.3\left(\mathrm{~d}, J_{c-P}=6 \mathrm{~Hz}\right.$), $146.7,145.0\left(\mathrm{~d}, J_{C-P}=33 \mathrm{~Hz}\right), 138.3,137.9,137.3,134.1\left(\mathrm{~d}, J_{C-P}=11 \mathrm{~Hz}\right), 133.9\left(\mathrm{~d}, J_{C-P}=\right.$ $14 \mathrm{~Hz}), 133.8\left(\mathrm{~d}, J_{C-P}=20 \mathrm{~Hz}, 2 \mathrm{C}\right), 133.3\left(\mathrm{~d}, J_{C-P}=19 \mathrm{~Hz}, 2 \mathrm{C}\right), 133.1\left(\mathrm{~d}, J_{C-P}=3 \mathrm{~Hz}\right), 131.7$ (d, $J_{C-P}=8 \mathrm{~Hz}$), $129.8\left(\mathrm{~d}, J_{C-P}=2 \mathrm{~Hz}, 2 \mathrm{C}\right), 129.1\left(\mathrm{~d}, J_{C-P}=7 \mathrm{~Hz}, 2 \mathrm{C}\right), 129.0\left(\mathrm{~d}, J_{C-P}=7 \mathrm{~Hz}\right.$, 2C), 128.1, 127.9, 126.6, 126.5, 125.8 (d, $J_{C-P}=2 \mathrm{~Hz}, 2 C$), 122.6, 21.3, 21,2, 19.0 (d, $J_{C-P}=$ 3 Hz). ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -15.2. HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NP}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 432.1876. Found 432.1867. HPLC for phosphine oxide (IA column, Hex:Isop 70:30, T= $30^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 11.13 \mathrm{~min}$ (major) and 17.55 min (minor).

(S)-4-(2-(di-p-tolylphosphanyl)naphthalen-1-yl)quinazoline 3Cc.

Following the general procedure and using nonaflate ($\mathbf{\pm} \mathbf{)} \mathbf{- 8 C}$ and 5c as starting materials and $\mathbf{L 1 2}$ as the ligand, after 18 hours at $40{ }^{\circ} \mathrm{C}$ purification of the reaction crude through a short pad of SiO_{2} (EtOAc / n-hexane $1: 4$ to $3: 7$) afforded 3Cc ($41.6 \mathrm{mg}, 89 \%$) as a light white foam. $[\alpha]^{20}{ }_{\mathrm{D}}-102.1\left(c \quad 0.9, \mathrm{CHCl}_{3}\right.$) for er 93:7. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}$), $7.92(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.90$ $(\mathrm{d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.84(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.44\left(\mathrm{dd}, 1 \mathrm{H}, J_{H, H}=8.5\right.$ and $J_{H, P}=$ 3.3 Hz), 7.32-7.28 (m, 3H), 7.14-7.09 (m, 4H), 7.06-7.00 (m, 5H), 2.32 (s, 3H), 2.29 (s, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.4\left(\mathrm{~d}, J_{C-P}=7 \mathrm{~Hz}\right), 154.7,150.1,141.0\left(\mathrm{~d}, J_{C-P}=32\right.$ $\mathrm{Hz}), 138.6,138.2,135.3\left(\mathrm{~d}, J_{C-P}=16 \mathrm{~Hz}\right), 133.8,133.7,133.6,133.3,133.3,133.2,133.1$, 133.0 (d, $J_{C-P}=5 \mathrm{~Hz}$), 131.8 (d, $J_{C-P}=7 \mathrm{~Hz}$), 129.7, 129.2, 129.1, 129.1, 129.0, 128.6, 128.0, 127.4, 127.1, 126.9, 125.9 (d, $J_{C-P}=2 \mathrm{~Hz}$), 125.6 ($\mathrm{d}, J_{C-P}=3 \mathrm{~Hz}$), 21.2, 21.2. ${ }^{31 \mathrm{P}}$

NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -15.2. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{P}\left(\mathrm{M}+\mathrm{H}^{+}\right)$469.1828. Found 469.1818. HPLC for phosphine oxide (IA column, Hex:Isop 75:25, T=30 ${ }^{\circ} \mathrm{C}, \mathrm{F}=$ $1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 18.19 \mathrm{~min}$ (major) and 25.41 min (minor).

(S)-1-(2-(bis(4-methoxyphenyl)phosphanyl)naphthalen-1-yl)isoquinoline 3Ad.

Following the general procedure using triflate ($\mathbf{\pm} \mathbf{) - 1 A}$ and 5d as starting materials and L12 as the ligand, after 18 hours at $40^{\circ} \mathrm{C}$ purification of the reaction crude through a short pad of SiO_{2} (EtOAc/n-hexane 1:4 to 3:7) afforded 3Ad ($37.2 \mathrm{mg}, 74 \%$) as a white foam. $[\alpha]^{20}{ }_{\mathrm{D}}-40.0\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$ for er 78:22. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.64(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}$), 7.92-7.89 (m, 3H), $7.74(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 7.61(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.17(\mathrm{~m}, 5 \mathrm{H})$, $7.11-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.74(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.4\left(\mathrm{~d}, J_{C-P}=6 \mathrm{~Hz}\right.$), 159.9, 159.7, 143.3 (d, $J_{C-P}=32$ $\mathrm{Hz}), 142.2,135.9\left(\mathrm{~d}, J_{C-P}=14 \mathrm{~Hz}\right), 135.8,135.2\left(\mathrm{~d}, J_{C-P}=22 \mathrm{~Hz}, 2 \mathrm{C}\right), 134.7\left(\mathrm{~d}, J_{C-P}=20 \mathrm{~Hz}\right.$, 2C), 133.4, $132.6\left(\mathrm{~d}, J_{C-P}=7 \mathrm{~Hz}\right), 129.9,129.6,128.9\left(\mathrm{~d}, J_{C-P}=3 \mathrm{~Hz}\right), 128.5,128.3,128.2$ (d, $J_{C-P}=1 \mathrm{~Hz}$), 127.8, 127.5, 126.8, 126.7, 126.6, 126.5, 126.4 (d, $J_{C-P}=2 \mathrm{~Hz}$), 120.2, $113.9\left(\mathrm{~d}, J_{C-P}=7 \mathrm{~Hz}, 2 \mathrm{C}\right), 113.8\left(\mathrm{~d}, J_{C-P}=7 \mathrm{~Hz}, 2 \mathrm{C}\right), 55.1$ (2C). ${ }^{31} \mathrm{P}$ NMR (161 MHz , CDCl_{3}): -16.6. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{P}\left(\mathrm{M}+\mathrm{H}^{+}\right)$500.1774. Found 500.1763. HPLC (IA column, Hex:Isop $70: 30, \mathrm{~T}=30^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 17.78 \mathrm{~min}$ (major) and 22.36 min (minor).
(S)-2-(2-(bis(4-methoxyphenyl)phosphanyl)naphthalen-1-yl)-3-methylpyridine 3Bd.

Following the general procedure using triflate ($\mathbf{\pm} \mathbf{) - 1 B}$ and 5d as starting materials and L12 as the ligand, after 18 hours at $40^{\circ} \mathrm{C}$ purification of the reaction crude through a very short pad of SiO_{2} (EtOAc / n-hexane $1: 4$ to $3: 7$) afforded 3Bd ($35.8 \mathrm{mg}, 77 \%$) as a light yellow foam. $[\alpha]^{20}{ }_{D}-10.4(c$ 1.3, CHCl_{3}) for er 85:15. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.51(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 7.87(\mathrm{~d}$,
$1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.84(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.63(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.50(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz})$, 7.39-7.32 (m, 2H), 7.30-7.24 (m, 3H), 7.21-7.17 (m, 3H), $6.90(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 6.85(\mathrm{~d}$, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}$), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $160.0,159.7,158.1\left(\mathrm{~d}, J_{C-P}=6 \mathrm{~Hz}\right), 146.7,144.5\left(\mathrm{~d}, J_{C-P}=32 \mathrm{~Hz}\right), 137.3,135.2\left(\mathrm{~d}, J_{C-P}=\right.$ $21 \mathrm{~Hz}, 2 \mathrm{C}$), 134.8 ($\mathrm{d}, J_{C-P}=20 \mathrm{~Hz}, 2 \mathrm{C}$), 134.3 ($\mathrm{d}, J_{C-P}=13 \mathrm{~Hz}$), 133.6, 133.1 (d, $J_{C-P}=3$ Hz), 131.7 ($\mathrm{d}, J_{C-P}=7 \mathrm{~Hz}$), 129.5, $128.4\left(\mathrm{~d}, J_{C-P}=9 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{C-P}=8 \mathrm{~Hz}\right), 128.0,128.0$, $126.5\left(\mathrm{~d}, J_{C-P}=2 \mathrm{~Hz}\right), 125.7\left(\mathrm{~d}, J_{C-P}=3 \mathrm{~Hz}\right), 122.6,114.0\left(\mathrm{~d}, J_{C-P}=7 \mathrm{~Hz}, 2 \mathrm{C}\right), 113.8\left(\mathrm{~d}, J_{C-P}\right.$ $=7 \mathrm{~Hz}, 2 \mathrm{C}), 55.1,55.1,19.0\left(\mathrm{~d}, J_{C-P}=3 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -16.3. HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{P}\left(\mathrm{M}+\mathrm{H}^{+}\right)$464.1774. Found 464.1763. HPLC for phosphine oxide (IA column, Hex:Isop 50:50, $\mathrm{T}=30^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 8.40 \mathrm{~min}$ (major) and 16.43 min (minor).

(S)-4-(2-(bis(4-methoxyphenyl)phosphanyl)naphthalen-1-yl)quinazoline 3Cd.

Following the general procedure and using nonaflate ($\mathbf{\pm} \mathbf{) - 8 C}$ as starting material and L12 as the ligand, after 18 hours at $40^{\circ} \mathrm{C}$ purification of the reaction crude through a very short pad of SiO_{2} (EtOAc/n-hexane $1: 4$ to 35:65) afforded 3Cd ($37.0 \mathrm{mg}, 74 \%$) as a light yellow foam. $[\alpha]^{20} \mathrm{D}-39.4$ (c 0.5, CHCl_{3}) for er 89.5:10.5. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5$ $\mathrm{Hz}), 7.93(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 7.90(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 7.84(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$, 7.42 (dd, $1 \mathrm{H}, J_{H-H}=8.5$ and $J_{H-P}=3.4 \mathrm{~Hz}$), $7.32-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz})$, $7.14(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.09-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 6.73(\mathrm{~d}, 2 \mathrm{H}, J=8.6$ $\mathrm{Hz}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.4$ ($\mathrm{d}, \mathrm{J}_{\mathrm{C}-P}=6 \mathrm{~Hz}$), 160.1, $159.9,154.8,150.1,140.5\left(\mathrm{~d}, J_{C-P}=31 \mathrm{~Hz}\right), 135.9\left(\mathrm{~d}, J_{C-P}=16 \mathrm{~Hz}\right), 135.3\left(\mathrm{~d}, J_{C-P}=22 \mathrm{~Hz}\right.$, 2C), 134.8 ($\mathrm{d}, J_{C-P}=22 \mathrm{~Hz}, 2 \mathrm{C}$), 133.7, 133.3, 131.8 ($\mathrm{d}, J_{C-P}=7 \mathrm{~Hz}$), 129.5, 129.1, 128.6, 128.1, 127.6 ($\mathrm{d}, J_{C-P}=2 \mathrm{~Hz}$), 127.5, 127.4, 127.1, 126.9, 126.8, 125.8 (d, $J_{C-P}=2 \mathrm{~Hz}$), $125.6\left(\mathrm{~d}, J_{C-P}=3 \mathrm{~Hz}\right), 114.1\left(\mathrm{~d}, J_{C-P}=8 \mathrm{~Hz}, 2 \mathrm{C}\right), 114.0\left(\mathrm{~d}, J_{C-P}=8 \mathrm{~Hz}, 2 \mathrm{C}\right), 55.1,55.1 .{ }^{31} \mathrm{P}$ NMR (161 MHz, CDCl_{3}): -16.3. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}\left(\mathrm{M}+\mathrm{H}^{+}\right)$501.1726. Found 501.1700. HPLC for phosphine oxide (IA column, Hex:Isop 70:30, T=30 ${ }^{\circ} \mathrm{C}, \mathrm{F}=$ $1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 17.29 \mathrm{~min}$ (major) and 27.00 min (minor).

(S)-2-(2-(diisobutylphosphanyl)naphthalen-1-yl)-3-methylpyridine 3Be.

Following the general procedure using triflate ($\mathbf{\pm} \mathbf{) - 1 B}$ and $\mathbf{5 e}$ as starting materials and L16 as the ligand, after 40 hours at $40^{\circ} \mathrm{C}$ purification of the reaction crude through a short pad of SiO_{2} (EtOAc/n-hexane 5:95 to 1:9) afforded 3Be (33.8 mg , 93\%) as a white foam. $[\alpha]^{20_{\mathrm{D}}}-73.7\left(c 1.1, \mathrm{CHCl}_{3}\right)$ for er $85: 15 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.58$ $(\mathrm{d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 7.91(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.86(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $7.64(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.46(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, 1 \mathrm{H}, J=8.3$ $\mathrm{Hz}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}$, $3 \mathrm{H}, J=6.4 \mathrm{~Hz}), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}), 0.82(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}), 0.78(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.0\left(\mathrm{~d}, J_{C-P}=6 \mathrm{~Hz}\right), 146.7,145.2\left(\mathrm{~d}, J_{C-P}=32 \mathrm{~Hz}\right), 137.4$, $135.9\left(\mathrm{~d}, J_{C-P}=17 \mathrm{~Hz}\right), 133.8,133.0\left(\mathrm{~d}, J_{C-P}=3 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{C-P}=7 \mathrm{~Hz}\right), 128.3,128.1$, $126.6,126.5,126.4\left(\mathrm{~d}, J_{C-P}=3 \mathrm{~Hz}\right), 126.0\left(\mathrm{~d}, J_{C-P}=2 \mathrm{~Hz}\right), 122.7,41.5\left(\mathrm{~d}, J_{C-P}=13 \mathrm{~Hz}\right)$, $38.7\left(\mathrm{~d}, J_{C-P}=14 \mathrm{~Hz}\right), 26.7\left(\mathrm{~d}, J_{C-P}=14 \mathrm{~Hz}\right), 26.1\left(\mathrm{~d}, J_{C-P}=13 \mathrm{~Hz}\right), 25.0\left(\mathrm{~d}, J_{C-P}=8 \mathrm{~Hz}\right)$, $24.6\left(\mathrm{~d}, J_{C-P}=9 \mathrm{~Hz}\right), 24.2\left(\mathrm{~d}, J_{C-P}=10 \mathrm{~Hz}\right), 24.0\left(\mathrm{~d}, J_{C-P}=9 \mathrm{~Hz}\right), 19.1\left(\mathrm{~d}, J_{C-P}=3 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -43.9. HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NP}\left(\mathrm{M}+\mathrm{H}^{+}\right) 364.2189$. Found 364.2177. HPLC (ADH column, Hex:Isop 95:5, $T=30^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 17.49$ min (major) and 18.32 min (minor).

(S)-4-(2-(diisobutylphosphanyl)naphthalen-1-yl)quinazoline 3Ce.

Following the general procedure and using nonaflate ($\mathbf{\pm}$)-8C and 5e as starting materials and L16 as the ligand, after 40 hours at 40 ${ }^{\circ} \mathrm{C}$ purification of the reaction crude through a short pad of SiO_{2} (DCM to DCM/MeOH 50:1) afforded 3Ce ($28.8 \mathrm{mg}, 72 \%$) as a white solid. $[\alpha]^{20}{ }_{\mathrm{D}}-29.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for er $72.5: 27.5 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $9.49(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 8.05(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.94(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz})$, $7.89(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.80(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.50(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.44-7.38(\mathrm{~m}, 2 \mathrm{H})$, $7.31(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 1.79-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.43-$ $1.37(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.83(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.74(\mathrm{~d}, 3 \mathrm{H}, J=5.8 \mathrm{~Hz})$, $0.62(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.3\left(\mathrm{~d}, J_{c-P}=7 \mathrm{~Hz}\right), 154.6,150.0$,
141.7 (d, $\left.J_{C-P}=33 \mathrm{~Hz}\right), 137.0\left(\mathrm{~d}, J_{C-P}=19 \mathrm{~Hz}\right), 133.8,133.4,131.6\left(\mathrm{~d}, J_{C-P}=8 \mathrm{~Hz}\right), 129.3$, 128.7, 128.0, 127.6, 127.0, 126.9, 126.7, 126.2 (d, $J_{C-P}=3 \mathrm{~Hz}$), 126.0, 126.0, 40.8 (d, J J_{C-P} $=13 \mathrm{~Hz}), 38.9\left(\mathrm{~d}, J_{C-P}=13 \mathrm{~Hz}\right), 26.2\left(\mathrm{~d}, J_{C-P}=14 \mathrm{~Hz}\right), 26.0\left(\mathrm{~d}, J_{C-P}=13 \mathrm{~Hz}\right), 24.7\left(\mathrm{~d}, J_{C-P}=\right.$ 8 Hz), $24.5\left(\mathrm{~d}, J_{C-P}=9 \mathrm{~Hz}\right), 23.8\left(\mathrm{~d}, J_{C-P}=9 \mathrm{~Hz}\right), 23.7\left(\mathrm{~d}, J_{C-P}=10 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR (161 MHz , CDCl_{3}): -44.3. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{P}\left(\mathrm{M}+\mathrm{H}^{+}\right)$401.2141. Found 401.2132. HPLC (ADH column, Hex:Isop 85:15, $\mathrm{T}=30^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 5.79 \mathrm{~min}$ (minor) and 6.33 min (major).

$(\pm)-9$

Figure S1. Experiments with Triflate 9 and Nonaflate 11.

Following the general procedure for the Dynamic Kinetic Asymmetric C-P CrossCoupling using L12 as the ligand and triflate 9 or nonaflate 11 as the starting materials, after 18 hours at $40{ }^{\circ} \mathrm{C}$ and $60{ }^{\circ} \mathrm{C}$ respectively, the formation of the hydrolisis products $\mathbf{1 0}, \mathbf{1 2}$ together with the starting materials was observed.

NMR spectra and HPLC traces:

Figure S2. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of ($\mathbf{\pm} \mathbf{) - 1 D}$

Figure S3. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of $(\mathbf{~} \mathbf{)} \mathbf{- 1 D}$

Figure S4. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $(\mathbf{\pm})-\mathbf{8 C}$

Figure S5. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of $(\pm)-\mathbf{8 C}$

Figure S6. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of (\pm)-8D

Figure S7. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of (\pm)-8D

Figure S8. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{(\pm) - 1 1}$

Figure S9. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of $(\mathbf{\pm} \mathbf{)} \mathbf{- 1 1}$
Niñinin

Figure S10. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{5 b}$

Figure S11. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{5 b}$

Figure S12. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{5 b}$

Figure S13. ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{5 b}$

Figure S14. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{5 c}$

Figure S15. ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{5 c}$

Figure S16. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{5 c}$

Figure S17. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{5 d}$

Figure S18. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of 5 d

Figure S19. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{5 d}$

Figure S20. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{5 e}$

Figure S21. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{5 e}$

Figure S22. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{5 e}$

Figure S23. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Aa

Figure S24. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Aa

Figure S25. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Aa

Figure S26. Phosphine oxide racemic sample: IA column, Hex:Isop 85:15, $\mathrm{T}=30^{\circ} \mathrm{C}$, $\mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$.

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 228.5 nm	23.592	17977575	95.53	242809
2	PDA 228.5 nm	30.797	840444	4.47	10000

Figure S27. Phosphine oxide enantioriched sample: er 95.5:4.5.

Figure S28. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Ba

Figure S29. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of (S)-3Ba

Figure S30. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Ba

Figure S31. Phosphine oxide racemic sample: IA column, Hex:Isop 75:25, $\mathrm{T}=30^{\circ} \mathrm{C}$, $\mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$.

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 235.6 nm	10.200	6844888	95.00	245129
2	PDA 235.6 nm	13.056	360609	5.00	11078

Figure S32. Phosphine oxide enantioriched sample: er 95:5.

Figure S33. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Ca

${ }_{180}$	170	$\stackrel{1}{160}$	${ }_{150}$	140	${ }_{130}$	${ }_{120}$	110	${ }^{100}{ }_{\text {f1 (ppm) }}{ }^{90}$	${ }_{80}$	${ }_{70}$	${ }_{60}$	${ }_{50}$	${ }_{40}$	30	${ }_{20}^{10}$	${ }_{10}$

Figure S34. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Ca

Figure S35. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Ca

Figure S36. Phosphine oxide racemic sample: IA column, Hex:Isop $75: 25, T=30^{\circ} \mathrm{C}$, $\mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$.

Figure S37. Phosphine oxide enantioriched sample: er 95:5.

Figure S38. After washing with acetone, er >99:1.

Figure S39. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Da

Figure S40. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of (\boldsymbol{S})-3Da

Figure S41. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Da

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 229.7 nm	13.916	15512012	49.95	237559
2	PDA 229.7 nm	27.201	15542469	50.05	174951

Figure S42. Phosphine oxide racemic sample: IA column, Hex:Isop 50:50, $\mathrm{T}=30^{\circ} \mathrm{C}$, $\mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$.

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 229.7 nm	14.563	1060759	14.52	14936
2	PDA 229.7 nm	27.937	6244818	85.48	64318

Figure S43. Phosphine oxide enantioriched sample: er 14.5:85.5.

Figure S44. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $(\boldsymbol{S}) \mathbf{- 3 A b}$

Figure S45. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Ab

Figure S46. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(\boldsymbol{S}) \mathbf{- 3 A b}$

Figure S47. ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(\boldsymbol{S}) \mathbf{- 3} \mathbf{A b}$

Figure S48. Phosphine oxide racemic sample: IA column, Hex:Isop 85:15, $\mathrm{T}=30^{\circ} \mathrm{C}$, $\mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$.

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 221.5 nm	22.990	70857057	90.07	1313590
2	PDA 221.5 nm	39.579	7811885	9.93	99783

Figure S49. Phosphine oxide enantioriched sample: er 90:10.

$\int\left|\iint /\left.\right|^{\mid}\right|$

Figure S50. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{(S)} \mathbf{- 3 B b}$

Figure S51. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of ($\left.\boldsymbol{S}\right) \mathbf{- 3 B b}$

Figure S52. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(\boldsymbol{S}) \mathbf{- 3 B b}$

Figure S53. ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(\boldsymbol{S}) \mathbf{- 3 B b}$

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 236.0 nm	10.303	20435412	50.06	1013596
2	PDA 236.0 nm	16.861	20383602	49.94	550335

Figure S54. Phosphine oxide racemic sample: IA column, Hex:Isop $75: 25, \mathrm{~T}=30^{\circ} \mathrm{C}$, $F=1 \mathrm{~mL} / \mathrm{min}$.

Figure S55. Phosphine oxide enantioriched sample: er 92.5:7.5.

Figure S56. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{(S) - 3 C b}$

Figure S57. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Cb

Figure S58. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(\boldsymbol{S}) \mathbf{- 3 C b}$

Figure S59. ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(\boldsymbol{S}) \mathbf{- 3 C b}$

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 229.7 nm	10.467	14737393	50.11	633265
2	PDA 229.7 nm	17.932	14673815	49.89	368205

Figure S60. Phosphine oxide racemic sample: IA column, Hex:Isop 75:25, $T=30^{\circ} \mathrm{C}$, $F=1 \mathrm{~mL} / \mathrm{min}$.

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 229.7 nm	11.178	17727710	92.99	705953
2	PDA 229.7 nm	19.330	1336010	7.01	32517

Figure S61. Phosphine oxide enantioriched sample: er 93:7.

Figure S62. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\mathbf{S})-3Db

Figure S63. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Db

Figure S64. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Db

Figure S65. ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Db

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 229.0 nm	19.856	2913477	49.71	45184
2	PDA 229.0 nm	24.114	2947758	50.29	42191

Figure S66. Phosphine oxide racemic sample: IA column, Hex:Isop $70: 30, T=30^{\circ} \mathrm{C}$, $\mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$.

Figure S67. Phosphine oxide enantioriched sample: er 9:91.

Figure S68. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\boldsymbol{(S)}$-3Ac

Figure S69. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Ac

Figure S70. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Ac

Figure S71. Phosphine oxide racemic sample: AD-H column, Hex:Isop 70:30, T= $30^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$.

Figure S72. Phosphine oxide enantioriched sample: er 92:8.

Figure S73. Enantioenriched product (er 97:5:2.5) from the mother liquor after crystallization from a EtOAc/n-hexane mixture.

Figure S74. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\boldsymbol{(S)} \mathbf{~ - 3 B c}$

Figure S75. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Bc

Figure S76. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Bc

Figure S77. Phosphine oxide racemic sample: IA column, Hex:Isop 70:30, $\mathrm{T}=30^{\circ} \mathrm{C}$, $\mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$.

Figure S78. Phosphine oxide enantioriched sample: er 93:7.

Figure S79. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{(S) - 3 C c}$

Figure S80. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Cc

Figure S81. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Cc

Figure S82. Phosphine oxide racemic sample: IA column, Hex:Isop 75:25, T=30 ${ }^{\circ} \mathrm{C}$, $\mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$.

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 229.7 nm	18.189	23495973	92.95	511713
2	PDA 229.7 nm	25.409	1781334	7.05	30251

Figure S83. Phosphine oxide enantioriched sample: er 93:7.

Figure S84. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\boldsymbol{(S)} \mathbf{- 3 A d}$

Figure S85. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (\boldsymbol{S})-3Ad

Figure S86. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Ad

Figure S87. Phosphine oxide racemic sample: IA column, Hex:Isop 70:30, T=30 ${ }^{\circ} \mathrm{C}$, $\mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$.

Figure S88. Phosphine oxide enantioriched sample: er 78:22.

Figure S89. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\boldsymbol{(S)}$-3Bd

Figure S90. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Bd

Figure S91. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Bd

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 238.0 nm	8.328	19028007	50.66	856237
2	PDA 238.0 nm	15.837	18529928	49.34	332887

Figure S92. Phosphine oxide racemic sample: IA column, Hex:Isop 50:50, $\mathrm{T}=30^{\circ} \mathrm{C}$, $\mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$.

Figure S93. Phosphine oxide enantioriched sample: er 85:15.

Figure S94. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\boldsymbol{(S)} \mathbf{- 3 C d}$

Figure S95. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Cd

Figure S96. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Cd

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 229.0 nm	17.241	23808678	49.98	465123
2	PDA 229.0 nm	26.680	23832362	50.02	319410

Figure S97. Phosphine oxide racemic sample: IA column, Hex:Isop $70: 30, \mathrm{~T}=30^{\circ} \mathrm{C}$, $\mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$.

Figure S98. Phosphine oxide enantioriched sample: er 89.5:10.5.

Figure S99. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Be

Figure S100. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Be

Figure S101. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Be

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 271.9 nm	17.321	132813	49.83	5314
2	PDA 271.9 nm	18.290	133736	50.17	5058

Figure S102. Phosphine oxide racemic sample: ADH column, Hex:Isop 95:5, T= $30^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{~mL} / \mathrm{min}$.

Figure S103. Phosphine oxide enantioriched sample: er 15:85.

Figure S104. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{(S) - 3 C e}$

Figure S105. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (S)-3Ce

Figure S106. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (\boldsymbol{S})-3Ce

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 225.0 nm	5.862	6595494	49.51	841443
2	PDA 225.0 nm	6.381	6726011	50.49	783165

Figure S107. Phosphine racemic sample: ADH column, Hex:Isop 85:15, T=30 ${ }^{\circ} \mathrm{C}, \mathrm{F}=$ $1 \mathrm{~mL} / \mathrm{min}$.

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 225.0 nm	5.793	1132601	27.31	152813
2	PDA 225.0 nm	6.326	3015055	72.69	367993

Figure S108. Phosphine enantioriched sample: er 27.5:72.5.

References

1. Ros, A.; Estepa, B.; Bermejo, A.; Álvarez, E.; Fernández, R.; Lassaletta, J. M. J. Org. Chem. 2012, 77, 4740-4750.
2. Lassaletta, J. M.; Alcarazo, M.; Fernández, R. Chem. Commun. 2004, 298-299.
3. Peer, M.; de Jong, J. C.; Kiefer, M.; Langer, T.; Rieck, H.; Schell, H.; Sennhenn, P.; Sprintz, J.; Steinhagen, H.; Wiese, B.; Helmchen, G. Tetrahedron 1996, 52, 7547-7583.
4. Alexakis, A.; Burton, J.; Vastra, J.; Benhaim, C.; Fournioux, X.; van den Heuvel, A.; Levêque, J.-M.; Mazeé, F.; Rosset, S. Eur. J. Org. Chem. 2000, 4011-4027.
5. Lim, C. W.; Tissot, O.; Mattison, A.; Hooper, M. W.; Brown, J. M.; Cowley, A. R.; Hulmes, D. I.; Blacker, A. J. Org. Process Res. Dev., 2003, 7, 379-384.
6. a) Connolly, D. J.; Lacey, P. M.; McCarthy, M.;. Saunders, C. P.; Carroll, A-M.; Goddard, R.; Guiry, P. J. J. Org. Chem. 2004, 69, 6572-6589. b) Ros, A; Estepa, B; Ramírez López, P; Álvarez, E; Fernández, R; Lassaletta, J. M. J. Am. Chem. Soc. 2013, 135, 15730-15733.
7. a) Hayashi, M.; Matsuura, Y.; Watanabe, Y. Tetrahedron Lett., 2004, 45, 1409-1411. b) Trepohl, V. T.; Oestreich, M. Chem. Commun., 2007, 3300-3302.
8. Lukeman, M.; Simon, H.; Wan, P.; Wan, Y.-H. J. Org. Chem. 2015, 80, 11281-11293.
9. Zhu, S.; Wang, C.; Chen, L.; Liang, R.; Yu, Y.; Jiang, H. Org. Lett. 2011, 13, 1146-1149.
10. Shekhar, S.; Dunn, T. B.; Kotecki, B. J.; Montavon, D. K.; Cullen , S. C. J. Org. Chem. 2011, 76, 45524563.
11. Ma, G.; Deng, J.; Sibi, M. P. Angew. Chem. Int. Ed. 2014, 53, 11818-11821.
12. Commercially available phosphine (Aldrich, cat. Number 392073) showed to have a $\sim 8 \%$ of HPPh_{2}.
13. Bhat, V.;Wang, S.; Stoltz, B. M.; Virgil, S. J. Am. Chem. Soc., 2013, 135, 16829-16832.

[^0]: ${ }^{\text {§ }}$ Instituto Investigaciones Químicas (CSIC-US), C/ Américo Vespucio, 49, 41092 Sevilla, Spain.
 ${ }^{\text {§ }}$ Departamento de Química Orgánica, C/ Prof. García González, 1, 41012 Sevilla, Spain

 * Departamento de Química Orgánica I, Universidad del País Vasco, UPV/EHU, Apdo. 1072, 20080 San Sebastián, Spain

