Supporting Information

Rigidity versus flexibility: is this an issue in σ_1 (sigma-1) receptor ligand affinity and activity?

Frauke Weber,^a Stefanie Brune,^a Frederik Börgel,^a Katharina Korpis,^b Carsten Lange,^b Patrick J. Bednarski,^b Erik Laurini,^c Maurizio Fermeglia,^c Sabrina Pricl,^{c,d} Dirk Schepmann,^a Bernhard Wünsch^{a,e}*

^a Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany

Tel.: +49-251-83-33311; Fax: +49-251-83-32144; E-mail: <u>wuensch@uni-muenster.de</u> ^b Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, University of Greifswald, F.-L.-Jahn-Straße 17, 17487 Greifswald, Germany ^c Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 6, 34127 Trieste, Italy ^d National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Via Valerio 6, 32127 Trieste, Italy ^e Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University Münster, Germany

Title page	S1
Purity data of prepared compounds	S2
Experimental data	S4
Chiral HPLC	S27
Receptor binding studies	S27
Cytotoxicity assay	S32
Induction of apoptosis	S33
Sequence alignment of the human and the guinea pig σ_1 receptor	S34
References	S35
NMR spectra	S36

*To whom correspondence should be addressed: Tel: #49-251-8333311; Fax: #49-251-8332144; Email: <u>wuensch@uni-muenster.de</u>

9a 97.9% 402.2393 402.2423 9b 99.8% - - 10a 92.0% 343.2022 343.2068 10b 93.1% - - 11b 97.9% - - 12a 92.1% 445.2523 445.2576 ent-12a 98.8% 445.2523 445.2553 12b 98.6% - - 12c 95.9% - - 12d 94.6% - - 12d 94.6% - - ent-12d 97.1% - - 13a 86.8% 341.1865 341.1885 ent-13a 88.5% - - 13b 75.6% - - 13a 86.8% 391.2022 391.1997 ent-13a 88.5% - - 13b 75.6% - - 13d 82.2% 417.2179 417.2156	compound	purity by HPLC	exact MS calcd.	exact MS found
10a 92.0% 343.2022 343.2068 10b 93.1% - - 11b 97.9% - - 12a 92.1% 445.2523 445.2576 ent-12a 98.8% 445.2523 445.2553 12b 98.6% - - 12c 95.9% - - 12d 94.6% - - 12d 94.6% - - ent-12d 97.1% - - 13a 86.8% 341.1865 341.1885 ent-13a 88.5% - - 13b 75.6% - - 13c 73.6% 391.2022 391.1997 ent-13a 85.3% - - 13b 75.6% - - 13c 73.6% 391.2022 391.2077 13d 82.2% 417.2179 417.2156 ent-14a 96.2% 315.2436 315.2436	9a	97.9%	402.2393	402.2423
10b 93.1% - - 11b 97.9% - - 12a 92.1% 445.2523 445.2576 ent-12a 98.8% 445.2523 445.2553 12b 98.6% - - 12c 95.9% - - ent-12c 95.5% - - ent-12d 97.1% - - ent-12d 97.1% - - ent-12d 97.1% - - ent-13a 86.8% 341.1865 341.1885 ent-13a 85.5% - - 13a 86.8% 391.2022 391.1997 ent-13a 88.5% - - 13b 75.6% - - 13c 73.6% 391.2022 391.2077 13d 82.2% 417.2179 417.2156 ent-13a 96.3% - - 14a 96.2% 315.2436 315.2436	9b	99.8%	-	-
11b 97.9% - - 12a 92.1% 445.2523 445.2576 ent-12a 98.8% 445.2523 445.2553 12b 98.6% - - 12c 95.9% - - 12c 95.5% - - ent-12c 95.5% - - 12d 94.6% - - ent-12d 97.1% - - ent-13a 86.8% 341.1865 341.1885 ent-13a 87.6% - - 13b 75.6% - - 13c 73.6% 391.2022 391.1997 ent-13c 98.3% 391.2022 391.2077 13d 82.2% 417.2179 417.2156 ent-13d 85.3% - - 14a 98.9% 315.2436 315.2436 ent-14a 96.2% 315.2436 315.2431 14b 97.3% 233.1654	10a	92.0%	343.2022	343.2068
12a92.1%445.2523445.2576ent-12a98.8%445.2523445.255312b98.6%12c95.9%ent-12c95.5%12d94.6%ent-12d97.1%13a86.8%341.1865341.1885ent-13a88.5%13b75.6%13c73.6%391.2022391.1997ent-13c98.3%391.2022391.207713d82.2%417.2179417.2156ent-13d85.3%14a98.9%315.2436315.2436ent-14d96.2%315.2436315.243114b97.3%233.1654233.161214d96.5%391.2751391.2742ent-14c97.4%365.2593365.269514d99.5%391.2751391.2742ent-14d99.5%391.2751391.274115a96.7%315.2436315.243115b96.3%233.1654233.162915c95.6%365.2593365.2608	10b	93.1%	-	-
ent-12a 98.8% 445.2523 445.2553 12b 98.6% - - 12c 95.9% - - ent-12c 95.5% - - 12d 94.6% - - 12d 94.6% - - ent-12d 97.1% - - 13a 86.8% 341.1865 341.1885 ent-13a 86.7% - - 13b 75.6% - - 13c 73.6% 391.2022 391.1997 ent-13c 98.3% 391.2022 391.2077 13d 82.2% 417.2179 417.2156 ent-13d 85.3% - - 14a 98.9% 315.2436 315.2436 ent-14a 96.2% 315.2436 315.2431 14b 97.3% 233.1654 233.1612 14c 95.9% 365.2593 365.2595 14d 96.7% 315.243	11b	97.9%	-	-
12b 98.6% - - 12c 95.9% - - ent-12c 95.5% - - 12d 94.6% - - 12d 94.6% - - ent-12d 97.1% - - ent-13a 86.8% 341.1865 341.1885 ent-13a 88.5% - - 13b 75.6% - - 13c 73.6% 391.2022 391.2077 13d 82.2% 417.2179 417.2156 ent-13a 85.3% - - 14a 98.9% 315.2436 315.2486 ent-14a 96.2% 315.2436 315.2431 14b 97.3% 233.1654 233.1612 14c 95.9% 365.2593 365.2693 14d 96.2% 391.2751 391.2742 ent-14c 97.4% 365.2593 365.2693 14d 96.5% 391.2751 391.2744 15a 96.7% 315.2436 315.2431	12a	92.1%	445.2523	445.2576
12c 95.9% - - ent-12c 95.5% - - 12d 94.6% - - ent-12d 97.1% - - ent-12d 97.1% - - 13a 86.8% 341.1865 341.1885 ent-13a 88.5% - - 13b 75.6% - - 13c 73.6% 391.2022 391.1997 ent-13c 98.3% 391.2022 391.2077 13d 82.2% 417.2179 417.2156 ent-13d 85.3% - - 14a 98.9% 315.2436 315.2436 ent-14a 96.2% 315.2436 315.2431 14b 97.3% 233.1654 233.1612 14c 95.9% 365.2593 365.2604 ent-14c 97.4% 365.2593 365.2604 ent-14d 96.5% 391.2751 391.2742 ent-14d 96.5% 391.2751 391.2744 15a 96.7% 315.2436	ent- 12a	98.8%	445.2523	445.2553
ent-12c 95.5% - - 12d 94.6% - - ent-12d 97.1% - - 13a 86.8% 341.1865 341.1885 ent-13a 88.5% - - 13b 75.6% - - 13c 73.6% 391.2022 391.1997 ent-13c 98.3% 391.2022 391.2077 13d 82.2% 417.2179 417.2156 ent-13d 85.3% - - 14a 98.9% 315.2436 315.2436 ent-14a 96.2% 315.2436 315.2431 14b 97.3% 233.1654 233.1612 14c 95.9% 365.2593 365.2604 ent-14c 97.4% 365.2593 365.2595 14d 96.2% 391.2751 391.2742 ent-14d 99.5% 315.2436 315.2431 ent-14d 96.7% 315.2436 315.2431 ent-15a 96.7% 315.2436 315.2431 ent-15a 96.	12b	98.6%	-	-
12d94.6%ent-12d97.1%13a86.8%341.1865341.1885ent-13a88.5%13b75.6%13c73.6%391.2022391.1997ent-13c98.3%391.2022391.207713d82.2%417.2179417.2156ent-13d85.3%14a98.9%315.2436315.2436ent-14a96.2%315.2436315.243114b97.3%233.1654233.161214c95.9%365.2593365.259514d96.2%391.2751391.2742ent-14c97.4%365.2593365.259514d96.7%315.2436315.2431ent-15a96.7%315.2436315.243115b96.3%233.1654233.162915c95.6%365.2593365.2608	12c	95.9%	-	-
ent-12d97.1%13a86.8%341.1865341.1885ent-13a88.5%13b75.6%13c73.6%391.2022391.1997ent-13c98.3%391.2022391.207713d82.2%417.2179417.2156ent-13d85.3%14a98.9%315.2436315.2436ent-14a96.2%315.2436315.243114b97.3%233.1654233.161214c95.9%365.2593365.2604ent-14c97.4%365.2593365.259514d96.2%391.2751391.2742ent-14d99.5%391.2751391.274415a96.7%315.2436315.2431ent-15a96.3%233.1654233.162915c95.6%365.2593365.2608	<i>ent</i> - 12c	95.5%	-	-
13a86.8%341.1865341.1885ent-13a88.5%13b75.6%13c73.6%391.2022391.1997ent-13c98.3%391.2022391.207713d82.2%417.2179417.2156ent-13d85.3%14a98.9%315.2436315.2486ent-14a96.2%315.2436315.243114b97.3%233.1654233.161214c95.9%365.2593365.2604ent-14c97.4%365.2593365.259514d96.2%391.2751391.2742ent-14d99.5%391.2751391.274415a96.7%315.2436315.2431ent-15a96.7%315.2436315.243115b96.3%233.1654233.162915c95.6%365.2593365.2608	12d	94.6%	-	-
ent-13a88.5%13b75.6%13c73.6%391.2022391.1997ent-13c98.3%391.2022391.207713d82.2%417.2179417.2156ent-13d85.3%14a98.9%315.2436315.2486ent-14a96.2%315.2436315.243114b97.3%233.1654233.161214c95.9%365.2593365.2604ent-14c97.4%365.2593365.259514d96.2%391.2751391.2742ent-14d99.5%391.2751391.274415a96.7%315.2436315.2431ent-15a96.3%233.1654233.162915b96.3%233.1654233.162915c95.6%365.2593365.2608	<i>ent</i> - 12d	97.1%	-	-
13b75.6%13c73.6%391.2022391.1997ent-13c98.3%391.2022391.207713d82.2%417.2179417.2156ent-13d85.3%14a98.9%315.2436315.2486ent-14a96.2%315.2436315.243114b97.3%233.1654233.161214c95.9%365.2593365.2604ent-14c97.4%365.2593365.259514d96.2%391.2751391.2742ent-14d99.5%391.2751391.274415a96.7%315.2436315.2431ent-15a96.7%315.2436315.243115b96.3%233.1654233.162915c95.6%365.2593365.2608	13a	86.8%	341.1865	341.1885
13c73.6%391.2022391.1997ent-13c98.3%391.2022391.207713d82.2%417.2179417.2156ent-13d85.3%14a98.9%315.2436315.2486ent-14a96.2%315.2436315.243114b97.3%233.1654233.161214c95.9%365.2593365.2604ent-14c97.4%365.2593365.259514d96.2%391.2751391.2742ent-14c97.4%315.2436315.2431ent-14d99.5%391.2751391.2742ent-15a96.7%315.2436315.243115b96.3%233.1654233.162915c95.6%365.2593365.2608	ent- 13a	88.5%	-	-
ent-13c98.3%391.2022391.207713d82.2%417.2179417.2156ent-13d85.3%14a98.9%315.2436315.2486ent-14a96.2%315.2436315.243114b97.3%233.1654233.161214c95.9%365.2593365.2604ent-14c97.4%365.2593365.259514d96.2%391.2751391.2742ent-14c97.4%305.2593365.259514d96.2%391.2751391.2742ent-14d99.5%315.2436315.2431ent-15a96.7%315.2436315.243115b96.3%233.1654233.162915c95.6%365.2593365.2608	13b	75.6%	-	-
13d82.2%417.2179417.2156ent-13d85.3%14a98.9%315.2436315.2486ent-14a96.2%315.2436315.243114b97.3%233.1654233.161214c95.9%365.2593365.2604ent-14c97.4%365.2593365.259514d96.2%391.2751391.2742ent-14d99.5%391.2751391.274415a96.7%315.2436315.2431ent-15a96.7%315.2436315.243115b96.3%233.1654233.162915c95.6%365.2593365.2608	13c	73.6%	391.2022	391.1997
ent-13d85.3%14a98.9%315.2436315.2486ent-14a96.2%315.2436315.243114b97.3%233.1654233.161214c95.9%365.2593365.2604ent-14c97.4%365.2593365.259514d96.2%391.2751391.2742ent-14d99.5%391.2751391.274415a96.7%315.2436315.2431ent-15a96.3%233.1654233.162915b96.3%233.1654233.162915c95.6%365.2593365.2608	ent-13c	98.3%	391.2022	391.2077
14a98.9%315.2436315.2486ent-14a96.2%315.2436315.243114b97.3%233.1654233.161214c95.9%365.2593365.2604ent-14c97.4%365.2593365.259514d96.2%391.2751391.2742ent-14d99.5%391.2751391.274415a96.7%315.2436315.2431ent-15a96.7%315.2436315.243115b96.3%233.1654233.162915c95.6%365.2593365.2608	13d	82.2%	417.2179	417.2156
ent-14a96.2%315.2436315.243114b97.3%233.1654233.161214c95.9%365.2593365.2604ent-14c97.4%365.2593365.259514d96.2%391.2751391.2742ent-14d99.5%391.2751391.274415a96.7%315.2436315.2431ent-15a96.7%315.2436315.243115b96.3%233.1654233.162915c95.6%365.2593365.2608	<i>ent</i> - 13d	85.3%	-	-
14b97.3%233.1654233.161214c95.9%365.2593365.2604ent-14c97.4%365.2593365.259514d96.2%391.2751391.2742ent-14d99.5%391.2751391.274415a96.7%315.2436315.2431ent-15a96.7%315.2436315.243115b96.3%233.1654233.162915c95.6%365.2593365.2608	14a	98.9%	315.2436	315.2486
14c95.9%365.2593365.2604ent-14c97.4%365.2593365.259514d96.2%391.2751391.2742ent-14d99.5%391.2751391.274415a96.7%315.2436315.2431ent-15a96.7%315.2436315.243115b96.3%233.1654233.162915c95.6%365.2593365.2608	ent- 14a	96.2%	315.2436	315.2431
ent-14c97.4%365.2593365.259514d96.2%391.2751391.2742ent-14d99.5%391.2751391.274415a96.7%315.2436315.2431ent-15a96.7%315.2436315.243115b96.3%233.1654233.162915c95.6%365.2593365.2608	14b	97.3%	233.1654	233.1612
14d96.2%391.2751391.2742ent-14d99.5%391.2751391.274415a96.7%315.2436315.2431ent-15a96.7%315.2436315.243115b96.3%233.1654233.162915c95.6%365.2593365.2608	14c	95.9%	365.2593	365.2604
ent-14d99.5%391.2751391.274415a96.7%315.2436315.2431ent-15a96.7%315.2436315.243115b96.3%233.1654233.162915c95.6%365.2593365.2608	ent- 14c	97.4%	365.2593	365.2595
15a96.7%315.2436315.2431ent-15a96.7%315.2436315.243115b96.3%233.1654233.162915c95.6%365.2593365.2608	14d	96.2%	391.2751	391.2742
ent-15a96.7%315.2436315.243115b96.3%233.1654233.162915c95.6%365.2593365.2608	<i>ent</i> - 14d	99.5%	391.2751	391.2744
15b96.3%233.1654233.162915c95.6%365.2593365.2608	15a	96.7%	315.2436	315.2431
15c 95.6% 365.2593 365.2608	ent- 15a	96.7%	315.2436	315.2431
	15b	96.3%	233.1654	233.1629
ent- 15c 95.5%	15c	95.6%	365.2593	365.2608
	ent- 15c	95.5%	-	-

Purity data of prepared compounds

15d	97.7%	391.2751	391.2751
<i>ent</i> - 15d	98.5%	391.2751	391.2785
17 HCI	-	-	-
18	97.1%	342.1108	342.1097
19	99.4%	387.2284	387.2308
20	95.9%	459.2679	459.2649
21	97.4%	355.2021	355.1982
22	95.1%	329.2592	329.2566
23	96.6%	329.2592	329.2552

Experimental data

Chemistry, general

Moisture sensitive reactions were conducted under dry nitrogen. THF was dried with sodium/benzophenone and was freshly distilled before use. Thin laver chromatography: Silica gel 60 F254 plates (Merck). Flash chromatography (fc): Silica gel 60, 40–43 µm (Merck); parentheses include: diameter of the column, eluent, R_f value. In order to obtain high yields some compounds were adsorbed on silica gel by addition of silica gel to a solution of the compound in an appropriate solvent, removal of the solvent in vacuo and giving the mixture on top of the column. Melting point: Melting point apparatus SMP 3 (Stuart Scientific), uncorrected. ¹H NMR (600 MHz, 400 MHz), ¹³C NMR (151 MHz, 100 MHz): Agilent 600-MR, Agilent 400-MR and Mercury Plus AS 400 NMR spectrometer (Varian); δ in ppm related to tetramethylsilane: coupling constants are given with 0.5 Hz resolution; the assignments of ¹³C and ¹H NMR signals were supported by 2D NMR techniques. MS: MAT GCQ (Thermo-Finnigan): EI, MAT LCQ (Thermo Finnigan): ESI, MicroTOF-QII (Bruker Daltonics): APCI. IR: IR spectrophotometer 480Plus FT-ATR-IR (Jasco) or FT/IR Prestige 21 (Shimadzu). Polarimetry: Polarimeter 341 (Perkin Elmer), sample length 1 dm, λ = 589 nm, +20 °C. The purity of all test compounds was determined by HPLC analysis (purity >95%). HPLC (method ACN): Merck Hitachi Equipment; UV detector: L-7400; autosampler:L-7200; pump: L-7100; degasser: L-7614; column: LiChrospher[®] 60 RP-select B (5 µm); LiCroCART[®] 250-4 mm cartridge; flow rate: 1.0 mL/min; injection volume: 5.0 μ L; detection at λ = 210 nm; solvents: A: demineralized H_2O with 0.05% (v/v) trifluoroacetic acid; B: acetonitrile with 0.05% (v/v) trifluoroacetic acid: gradient elution: 0.0 min: 90.0% of A, 10.0% of B; 4.0 min: 90.0% of A, 10.0% of B; 29.0 min: 0.0% of A, 100.0% of B; 31.0 min: 0.0% of A, 100.0% of B; 31.5 min: 90.0% of A, 10.0% of B; 40.0 min: 90.0% of A, 10.0% of B.

General Procedure A: Under N₂, 1 equivalent of the bibyclic piperazinedione was dissolved in THF abs. and the mixture was cooled down to 0 °C. At this temperature, LiAlH₄ (6 equivalents) was added. The reaction mixture was stirred at 0 °C for 10 min and then heated to reflux for 16 h. Finally H₂O was added under ice-cooling until H₂ liberation was finished. The mixture was stirred at 0 °C for 10 min and then heated to

reflux for 30 min. After cooling to room temperature, the mixture was filtered and the solvent was removed in vacuo. The residue was purified by fc.

Synthesis of starting material

The synthesis of Dimethyl (*S*)-2-aminobutanedioate hydrochloride ($\mathbf{6}$ ·HCI) and dimethyl (*R*)-2-aminobutanedioate hydrochloride (*ent*- $\mathbf{6}$ ·HCI) is reported in reference¹.

The synthesis of the following compounds is reported in reference²: Dimethyl (*S*)-2-[*N*-benzyl-*N*-(2-chloroacetyl)amino]butanedioate (**7a**) Dimethyl (*R*)-2-[*N*-benzyl-*N*-(2-chloroacetyl)amino]butanedioate (*ent*-**7a**) Dimethyl (*S*)-2-[*N*-(chloroacetyl)-*N*-(naphthalen-1-ylmethyl)amino]butanedioate (**7c**) Dimethyl (*R*)-2-[*N*-(chloroacetyl)-*N*-(naphthalen-1-ylmethyl)amino]butanedioate (*ent*-**7c**)

Dimethyl (*S*)-2-[*N*-(biphenyl-4-ylmethyl)-*N*-(2-chloroacetyl)amino]butanedioate (**7d**) Dimethyl (*R*)-2-[*N*-(biphenyl-4-ylmethyl)-*N*-(2-chloroacetyl)amino]butanedioate (*ent*-**7d**)

Methyl (S)-2-[1-benzyl-4-(cyclohexylmethyl)-3,6-dioxopiperazin-2-yl]acetate (8a)

Methyl (R)-2-[1-benzyl-4-(cyclohexylmethyl)-3,6-dioxopiperazin-2-yl]acetate (ent-8a)

Methyl (S)-2-(1-benzyl-4-methyl-3,6-dioxopiperazin-2-yl)acetate (8b)

Methyl (S)-2-[4-(cyclohexylmethyl)-1-(naphthalen-1-ylmethyl)-3,6-dioxo-piperazin-2yl]acetate (**8c**)

Methyl (*R*)-2-[4-(cyclohexylmethyl)-1-(naphthalen-1-ylmethyl)-3,6-dioxo-piperazin-2yl]acetate (*ent*-**8c**)

Methyl (*S*)-2-[1-(biphenyl-4-ylmethyl)-4-(cyclohexylmethyl)-3,6-dioxopiperazin-2yl]acetate (**8d**)

Methyl (*R*)-2-[1-(biphenyl-4-ylmethyl)-4-(cyclohexylmethyl)-3,6-dioxopiperazin-2yl]acetate (*ent*-**8d**)

The synthesis of Dimethyl (S)-2-aminopentanedioate hydrochloride (17 HCI) is reported in reference³.

The synthesis of Dimethyl (S)-2-[N-benzyl-N-(2-chloroacetyl)amino]pentanedioate (**18**) is reported in reference⁴.

Synthetic procdures

(S)-2-[1-Benzyl-4-(cyclohexylmethyl)-3,6-dioxopiperazin-2-yl]-*N*-methoxy-*N*methylacetamide (9a)

N,O-Dimethylhydroxylamine hydrochloride (393 mg, 4.03 mmol) was dissolved in CH₂Cl₂ abs (12 mL) and cooled to 0 °C. Trimethylaluminium solution (2 M in toluene, 2 mL, 4.03 mmol) was added and the mixture was stirred at room temperature for 30 min. Then a solution of 8a (500 mg, 1.34 mmol) in CH₂Cl₂ abs (5 mL) was added and the reaction mixture was stirred for 5 h at room temperature. For work-up, the mixture was filled up with aqueous sodium potassium tartrate solution (10%, 7 mL) and stirred for additional 1 h. The resulting suspension was filtered through Celite and washed with CH₂Cl₂ for several times. The filtrate was concentrated under reduced pressure and the residue was purified by fc (\emptyset 3 cm, h = 18 cm, v = 20 mL, C_6H_{12} /EtOAc = 1/1, R_f = 0.12). Colorless solid, mp 92 – 95 °C, yield 340 mg (63%). $C_{22}H_{31}N_{3}O_{4}$, M_r = 401.4. HPLC (method ACN): t_R = 18.9 min, purity 97.9%. Specific rotation: $[\alpha]_{D}^{20}$ = +41.7 (c = 0.94; EtOAc). ¹H NMR (CDCl₃): δ [ppm] = 0.89 – 1.00 (m, 2H, NCH₂C₆H₁₁), 1.12 – 1.29 (m, 3H, NCH₂C₆H₁₁), 1.61 – 1.71 (m, 6H, NCH₂C₆H₁₁), 2.95 (dd, J = 17.7 / 3.8 Hz, 1H, CHCH₂CON(OCH₃)CH₃), 3.06 (dd, J = 17.7 / 3.8 Hz, 1H, CHCH₂CON(OCH₃)CH₃), 3.13 (dd, J = 13.5 / 7.3 Hz, 1H, NCH₂C₆H₁₁), 3.16 (s, 3H, NC H_3), 3.22 (dd, J = 13.5 / 6.9 Hz, 1H, NC $H_2C_6H_{11}$), 3.46 (s, 3H, NOC H_3), 3.92 (d, J = 17.0 Hz, 1H, O=CCH₂N), 4.15 (t, J = 3.9 Hz, 1H, CHCH₂C ON(OCH₃)CH₃, 4.40 (d, J = 15.4 Hz, 1H, NCH₂Ar), 4.42 (d, J = 16.9 Hz, 1H, O=CCH₂N), 4.91 (d, J = 15.1 Hz, 1H, NCH₂Ar), 7.19 – 7.36 (m, 5H, Ar-H). ¹³C NMR (CDCl₃): δ [ppm] = 25.8 $(1C, NCH_2C_6H_{11}), 26.3 (1C, NCH_2C_6H_{11}), 26.4 (1C, NCH_2C_6H_{11}), 30.7 (1C, NCH_2C_6H_{11}$ (1C. $NCH_2C_6H_{11}),$ 30.8 (1C, $NCH_2C_6H_{11}),$ 32.1 (1C, $NCH_3)$, 32.9 CHCH₂CON(OCH₃)CH₃), 35.6 (1C, NCH₂C₆H₁₁), 47.8 (1C, NCH₂Ar), 51.1 (1C, O=CCH₂N), 52.7 (1C, NCH₂C₆H₁₁), 56.6 (1C, CHCH₂CON(OCH₃)CH₃), 61.2 (1C, OCH₃), 127.9 (1C, Ar-C), 128.0 (2C, Ar-C), 128.9 (2C, Ar-C), 136.2 (1C, Ar-C_a), 165.2 (1C, C=O), 166.4 (1C, C=O), 170 (O=CN(OCH₃)CH₃). MS (EM, APCI): m/z = calcd for C₂₂H₃₂N₃O₄ 402.2393 (M+H), found 402.2423. IR (neat): $\tilde{\nu}$ [cm⁻¹] = 2924, 2850 (C-H aliph.), 1647 (C=O amide), 721, 698 (arom. monosubst.).

(S)-2-(1-Benzyl-4-methyl-3,6-dioxopiperazin-2-yl)-*N*-methoxy-*N*methylacetamide (9b)

N,O-Dimethylhydroxylamine hydrochloride (505 mg, 5.17 mmol) was dissolved in CH₂Cl₂ abs (15 mL) and cooled to 0 °C. Trimethylaluminium solution (2 M in toluene, 2.6 mL, 5.17 mmol) was added and the mixture was stirred at room temperature for 30 min. Then a solution of **8b** (500 mg, 1.72 mmol) in CH₂Cl₂ abs (8 mL) was added and the reaction mixture was stirred for 5 h at room temperature. For work-up, the mixture was filled up with aqueous sodium potassium tartrate solution (10%, 5 mL) and stirred for additional 1 h. The resulting suspension was filtered through Celite and washed with CH₂Cl₂ for several times. The filtrate was concentrated under reduced pressure and the residue was purified by fc (\emptyset 3 cm, h = 18 cm, v = 20 mL, acetone/ EtOAc = 4/1, R_f = 0.17). Colorless solid, mp 131 – 134 °C, yield 482 mg (88%). $C_{16}H_{21}N_3O_4$, M_r = 319.4. HPLC (method ACN): t_R = 13.8, purity 99.8%. Specific rotation: $[\alpha]_{D}^{20} = 000$ (c = 000; EtOAc). ¹H NMR (CDCI₃): δ [ppm] = 2.97 (s, 3H, NCH₃), 3.01 – 3.06 (m, 2H, CHCH₂CON(OCH₃)CH₃), 3.08 (s, 3H, NCH₃), 3.48 (s, 3H, NOCH₃), 3.93 (d, J = 16.9 Hz, 1H, O=CCH₂N), 4.10 (t, J = 3.9 Hz, 1H, $CHCH_2CON(OCH_3)CH_3)$, 4.30 (d, J = 15.2 Hz, 1H, NCH_2Ar), 4.42 (d, J = 16.9 Hz, 1H; $O=CCH_2N$), 4.99 (d, J = 15.2 Hz, 1H, NCH₂Ar), 7.23 – 7.34 (m, 5H, Ar-H). MS (EI): m/z [%] = 217 (M – CHCON(OCH₃)CH₃, 54), 91 (M – CH₂Ph, 77). IR (neat): \tilde{v} [cm⁻¹] = 2924, 2360 (C-H _{aliph}.), 1649 (C=O _{amide}), 722, 669 (arom. monosubst.).

(S)-4-Benzyl-3-(2-hydroxyethyl)-1-methylpiperazine-2,5-dione (10b)

Under N₂, **8b** (100 mg, 0.34 mmol) was dissolved in THF abs. (10 mL) and the mixture was cooled down to -30 °C. Then, 4 equivalents of LiBH₄ solution (1 M in THF, 1.36 mL, 1.36 mmol) were added dropwise and the mixture was stirred for 2.5 h at -30 °C. To complete the reaction, additional LiBH₄ solution (1 M in THF, 1.36 mL, 1.36 mmol) was added and the mixture was stirred for another 2.5 h at the same temperature. The reaction mixture was warmed to room temperature, then HCl (1 M, 10 mL) was added carefully. The mixture was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were dried (Na₂SO₄), filtered and the solvent was removed in vacuo. Purification of the residue by fc (\emptyset 2 cm, h = 19 cm, v = 10 mL, EtOAc /acetone = 9/1, *R*_f = 0.14). Colorless oil, yield 36.9 mg (41%). C₁₄H₁₈N₂O₃, M_r = 262.3.

HPLC (method ACN): $t_R = 11.3$ min, purity 97.9%. Specific rotation: $[\alpha]_D^{20} = +25.5$ (c = 0.70; EtOAc). ¹H NMR (CDCl₃): δ [ppm] = 1.85 – 1.89 (m, 1H, CHC*H*₂CH₂OH), 2.02 – 2.16 (m, 1H, CHC*H*₂CH₂OH), 2.90 (s, 3H, NC*H*₃), 3.59 – 3.65 (m, 1H, CHCH₂C*H*₂OH), 3.66 – 3.73 (m, 1H, CHCH₂C*H*₂OH), 3.92 (d, J = 17.2 Hz, 1H, O=CC*H*₂N), 3.95 (d, J = 14.7 Hz, 1H, NC*H*₂Ar), 4.00 (dd, J = 8.6 / 3.8 Hz, 1H, CHCH₂CH₂OH), 4.18 (d, J = 17.2 Hz, 1H, O=CC*H*₂N), 5.28 (d, J = 14.9 Hz, 1H, NC*H*₂Ar), 7.23 – 7.34 (m, 5H, Ar-*H*). MS (ESI): m/z [%] = 263 (M + H, 100). IR (neat): $\tilde{\nu}$ [cm⁻¹] = 3402 (O-H), 2931, 2882 (C-H _{aliph}.), 1736 (C=O _{ester}), 1647 (C=O _{amide}) 725, 698 (arom. monosubst.).

(S)-2-[1-Benzyl-4-(cyclohexylmethyl)-3,6-dioxopiperazin-2-yl]acetaldehyde (11a)

Under N₂, **9a** (200 mg, 0.50 mmol) was dissolved in THF abs. (10 mL) and cooled down to -78° C. At this temperature, 1.5 equivalents of LiAlH₄ solution (1 M in THF, 0.75 ml, 0.75 mmol) were added slowly and the mixture was stirred for 16 h. For work-up, the mixture was treated with HCI (1 M, 6 mL) and warmed to room temperature. The aqueous layer was extracted with Et₂O (5 x 10 mL). The combined organic layers were dried (Na_2SO_4) and the solvent was removed in vacuo (H_2O bath temperature \leq 30 °C). The crude product was purified by fc (\varnothing 3 cm, h = 20 cm, v = 20 mL, C_6H_{12} /EtOAc = 1/1, R_f = 0.23). Colorless solid, mp 99 – 102 °C, yield 109 mg (64%). $C_{20}H_{26}N_2O_3$, M_r = 342.4. HPLC (method ACN): t_R = 17.6 min, purity 92.0%. Specific rotation: $[\alpha]_{D}^{20}$ = +47.9 (c = 1.02; EtOAc). ¹H NMR (CDCl₃): δ [ppm] = 0.90 -0.98 (m, 2H, NCH₂C₆ H_{11}), 1.00 – 1.22 (m, 3H, NCH₂C₆ H_{11}), 1.64 – 1.75 (m, 6H, $NCH_2C_6H_{11}$), 2.92 (ddd, J = 18.7 / 5.1 / 0.9 Hz, 1H, CHC H_2CHO), 3.08 (dd, J = 18.6 / 4.0 Hz, 1H, CHCH₂CHO), 3.16 (dd, J = 13.5 / 6.8 Hz, 1H, NCH₂C₆H₁₁), 3.30 (dd, J = 13.5 / 7.8 Hz, 1H, NCH₂C₆H₁₁), 3.96 (d, J = 17.3 Hz, 1H, O=CCH₂N), 4.12 (t, J = 4.5 Hz, 1H, CHCH₂CHO), 4.35 (d, J = 15.1 Hz, 1H, NCH₂Ar), 4.42 (d, J = 17.2 Hz, 1H $O=CCH_2N$, 4.89 (d, J = 15.2 Hz, 1H, NCH₂Ar), 7.20 - 7-35 (m, 5H, Ar-H), 9.52 (s, 1H, CHO). MS (EM, APCI): m/z = calcd. for $C_{20}H_{27}N_2O_3$ 343.2022 (M+H), found 343.2068. IR (neat): \tilde{v} [cm⁻¹] = 2920 (C-H _{aliph}), 2847 (C-H _{aldebvde}), 1728 (C=O _{ester}), 1651 (C=O aldehyde / C=O amide), 779, 698 (arom. monosubst.).

(S)-2-(1-Benzyl-4-methyl-3,6-dioxopiperazin-2-yl)acetaldehyde (11b)

Under N₂, **9b** (100 mg, 0.31 mmol) was dissolved in THF abs. (10 mL) and cooled down to -78°C. At this temperature, 1.25 equivalents of LiAlH₄ solution (1 M in THF, 0.4 mL, 0.39 mmol) were added slowly and the mixture was stirred for 16 h. For work-up, the mixture was treated with HCI (1 M, 4 mL) and warmed to room temperature. The aqueous layer was extracted with CH₂Cl₂ (7 x 10 ml). The combined organic layers were dried (Na_2SO_4) and the solvent was removed in vacuo (H₂O bath temperature \leq 30 °C). The crude product was purified by fc (\emptyset 2 cm, h = 22 cm, v = 10 mL, $CH_2CI_2/C_6H_{12}/MeOH = 2.5/7/0.5$; $R_f = 0.23$ ($CH_2CI_2/C_6H_{12}/MeOH$ = 5/4.5/0.5)). Pale yellow oil, yield 42.4 mg (53%). C₁₄H₁₆N₂O_{3.} M_r = 260.3. HPLC (method ACN): $t_R = 10.3$, purity 93.1%. Specific rotation: $[\alpha]_D^{20} = +17.6$ (c = 0.21; EtOAc). ¹H NMR (CDCl₃): δ [ppm] = 2.96 (dd, J = 18.8 / 4.6 Hz, 1H, CHCH₂CHO), 2.97 (s, 3H, NCH₃), 3.12 (dd, J = 18.9 / 3.9 Hz, 1H, CHCH₂CHO), 3.99 (d, J = 17.2 Hz, 1H, O=CCH₂N), 4.08 (t, J = 4.2 Hz, 1H, CHCH₂CHO), 4.28 (d, J = 15.1 Hz, 1H, NCH_2Ar), 4.43 (d, J = 17.2 Hz, 1H, O=CCH₂N), 4.96 (d, J = 15.1 Hz, 1H, NCH₂Ar), 7.23 - 7.36 (m, 5H, Ar-H), 9.53 (s, 1H, CHO). MS (EM, APCI): m/z = calcd. for $C_{14}H_{17}N_2O_3$ 261.1239 (M+H), found 261.1205. IR (neat): \tilde{v} [cm⁻¹] = 2932 (C-H aliph), 1728 (C=O ester), 1652 (C=O aldehvde / C=O amide), 728, 698 (arom. monosubst.).

(1*S*,4*S*,7*R*)-5-Benzyl-2-(cyclohexylmethyl)-7-methoxy-7-(trimethylsilyloxy)-2,5diazabicyclo[2.2.2]octane-3,6-dione (12a)

Under N₂, **8a** (2.68 g, 7.20 mmol) was dissolved in THF abs (50 mL) and the mixture was cooled down to -78 °C. Then a 1 M solution of sodium hexamethyldisilazane in THF (21.6 mL, 21.6 mmol) was added dropwise. After stirring at -78 °C for 40 min, the mixture was treated with chlorotrimethylsilane (2.27 mL, 17.99 mmol) and stirred for additional 1 h at -78 °C and at room temperature for 2 h. Then, an aqueous solution of NaHCO₃ (35 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 25 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was adsorbed on silica gel and given on a silica column (\emptyset 5.5 cm, h = 20 cm, v = 65 mL, C₆H₁₂/EtOAc = 4/1, *R_f* = 0.39). Colorless solid, mp 138 – 141 °C, yield 540 mg (17%). C₂₄H₃₆N₂O₄Si, M_r = 444.5. HPLC (method ACN): t_R = 22.5 min, purity 92.1%. Specific rotation: [α]²⁰_D = -2.12 (c = 0.39;

EtOAc). ¹H NMR (CDCl₃): δ [ppm] = 0.20 (s, 9H, OSi(CH₃)₃), 0.85 – 0.96 (m, 2H, NCH₂C₆H₁₁), 1.08 – 1.27 (m, 3H, NCH₂C₆H₁₁), 1.51 – 1.72 (m, 6H, NCH₂C₆H₁₁), 1.84 (dd, J = 13.6 / 3.9 Hz, 1H, 8-H), 2.07 (dd, J = 13.6 / 2.0 Hz, 1H, 8-H), 2.74 (dd, J = 13.8 / 6.6 Hz, 1H, NCH₂C₆H₁₁), 3.21 (s, 3H, OCH₃), 3.60 (dd, J = 13.8 / 7.7 Hz, 1H, NCH₂C₆H₁₁), 3.82 (dd, J = 3.9 / 2.0 Hz, 1H, 4-H), 3.95 (s, 1H, 1-H), 4.25 (d, J = 14.8 Hz, 1H, NCH₂C₆H₁₁), 2.59 (d, J = 14.8 Hz, 1H, NCH₂C₆H₁₁), 26.4 (1C, NCH₂C₆H₁₁), 30.5 (1C, NCH₂C₆H₁₁), 30.9 (1C, NCH₂C₆H₁₁), 39.3 (1C, C-8), 48.3 (1C, NCH₂C₆H₁₁), 30.9 (1C, NCH₂C₆H₁₁), 37.1 (1C, NCH₂C₆H₁₁), 39.3 (1C, C-8), 48.3 (1C, NCH₂C₄), 50.4 (1C, OCH₃), 51.9 (1C, NCH₂C₆H₁₁), 58.8 (1C, C-4), 67.6 (1C, C-1), 102.8 (1C, C-7), 128.1 (1C, Ar-C), 128.5 (2C, Ar-C), 128.9 (2C, Ar-C), 136.0 (1C, Ar-C_q), 167.7 (1C, C=O), 168.9 (1C, C=O). MS (EM, APCI): m/z = calcd. for C₂₄H₃₇N₂O₄Si 445.2523 (M+H), found 445.2576. IR (neat): $\tilde{\nu}$ [cm⁻¹] = 2924, 2851 (C-H _{aliph}.), 1681 (C=O _{amide}), 1096 (Si-O), 740, 698 (arom. monosubst.).

(1*R*,4*R*,7*S*)-5-Benzyl-2-(cyclohexylmethyl)-7-methoxy-7-(trimethylsilyloxy)-2,5diazabicyclo[2.2.2]octane-3,6-dione (*ent*-12a)

Ent-12a was synthesized according to the same procedure as 12a: Under N₂, *ent*-8a (1.04 g, 2.79 mmol) was reacted with a solution of sodium hexamethyldisilazane (1 M in THF, 8.4 mL, 8.38 mmol) and chlorotrimethylsilane (0.9 mL, 6.98 mmol) in THF abs. (30 mL). The crude product was adsorbed on silica gel and given on a silica column (\emptyset 4.0 cm, h = 20 cm, v = 20 mL, C₆H₁₂/EtOAc = 4/1, *R_f* = 0.39). Colorless solid, mp 141 – 146 °C, yield 225.3 mg (18%). C₂₄H₃₆N₂O₄Si, M_r = 444.5. HPLC (method ACN): t_R = 19.3 min, purity 98.8%. Specific rotation: [α]²⁰_D = +2.27 (c = 0.38; EtOAc). MS (EM, APCI): m/z = calcd. for C₂₄H₃₇N₂O₄Si 445.2523 (M+H), found 445.2553.

(1*S*,4*S*,7*R*)-5-Benzyl-7-methoxy-2-methyl-7-(trimethylsilyloxy)-2,5diazabicyclo[2.2.2]octane-3,6-dione (12b)

Under N₂, **8b** (540 mg, 1.86 mmol) was dissolved in THF abs (25 mL) and the mixture was cooled down to -78 °C. Then a 1 M solution of sodium hexamethyldisilazane in THF (5.6 mL, 5.58 mmol) was added dropwise. After stirring at -78 °C for 40 min, the mixture was treated with chlorotrimethylsilane (0.6 mL, 4.65

mmol) and stirred for additional 1 h at -78 °C and at room temperature for 2 h. Then an aqueous solution of NaHCO₃ (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was adsorbed on silica gel and given on a silica column (\emptyset 3.5 cm, h = 16 cm, v = 20 mL, C₆H₁₂/EtOAc = 2/1, R_f = 0.10). Colorless solid, mp 170 – 175 °C, yield 229 mg (34%). $C_{18}H_{26}N_2O_4Si$ M_r = 362.5. HPLC (method ACN): t_R = 13.7 min, purity 98.6%. Specific rotation: $[\alpha]_D^{20}$ = +24.6 (c = 0.71; EtOAc). ¹H NMR (CDCl₃): δ [ppm] = 0.20 (s, 9H, OSi(CH₃)₃), 1.82 (dd, J = 13.6 / 3.8 Hz, 1H, 8-H), 2.07 (dd, J = 13.6 / 2.0 Hz, 1H, 8-H), 3.01 (s, 3H, NCH₃), 3.27 (s, 3H, OCH₃), 3.82 (dd, J = 3.8 / 2.0Hz, 1H, 4-H), 3.93 (s, 1H, 1-H), 4.14 (d, J = 14.8 Hz, 1H, NCH₂Ar), 4.94 (d, J = 14.8 Hz, 1H, NCH₂Ar), 7.24 – 7.35 (m, 5H, Ar-H). ¹³C NMR (CDCl₃): δ [ppm] = 1.59 (3C, OSi(CH₃)₃), 33.0 (1C, NCH₃), 39.9 (1C, C-8), 48.3 (1C, NCH₂Ar), 50.4 (1C, OCH₃), 58.7 (1C, C-4), 68.8 (1C, C-1), 102.8 (1C, C-7), 128.2 (1C, Ar-C), 128.5 (2C, Ar-C), 129.0 (2C, Ar-C), 135.8 (1C, Ar-C₀), 167.7 (1C, *C*=O), 168.8 (1C, *C*=O). MS (ESI): m/z [%] = 363 (M + H, 100). IR (neat): \tilde{v} [cm⁻¹] = 2924 (C-H aliph.), 1683 (C=O amide), 1099 (Si-O), 732, 695 (arom. monosubst.).

(1*S*,4*S*,7*R*)-2-(Cyclohexylmethyl)-7-methoxy-5-(naphthalen-1-ylmethyl)-7-(trimethylsilyloxy)-2,5-diazabicyclo[2.2.2]octane-3,6-dione (12c)

Under N₂, **8c** (530 mg, 1.25 mmol) was dissolved in THF abs (25 mL) and the mixture was cooled down to -78 °C. Then a 1 M solution of sodium hexamethyldisilazane in THF (3.8 mL, 3.76 mmol) was added dropwise. After stirring at -78 °C for 40 min, the mixture was treated with chlorotrimethylsilane (0.4 mL, 3.14 mmol) and stirred for additional 1 h at -78 °C and at room temperature for 2 h. Then an aqueous solution of NaHCO₃ (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was adsorbed on silica gel and given on a silica column (\emptyset 2.5 cm, h = 20.5 cm, v = 10 mL, C₆H₁₂/EtOAc = 4/1, *R_f* = 0.26). Colorless oil, yield 82.3 mg (13%). C₂₈H₃₈N₂O₄Si₁M_r = 494.7. HPLC (method ACN): t_R = 20.9 min, purity 95.9%. Specific rotation: [α]²⁰_D = -4.18 (c = 0.37; EtOAc). ¹H NMR (CDCl₃): δ [ppm] = 0.15 (s, 9H, OSi(CH₃)₃), 0.84 – 0.97 (m, 2H, NCH₂C₆H₁₁), 1.10 – 1.24 (m, 2H, NCH₂C₆H₁₁), 1.51 – 1.59 (m, 3H, NCH₂C₆H₁₁), 1.66 – 1.75 (m, 5H, NCH₂C₆H₁₁, 8-H), 1.99 (dd, J = 13.6 / 2.1 Hz, 1H, 8-H), 2.72 (dd, J = 13.9 / 6.6 Hz,

1H, NCH₂C₆H₁₁), .20 (s, 3H, OCH₃), 3.59 (dd, J = 13.9 / 7.7 Hz, 1H, NCH₂C₆H₁₁), 3.86 (dd, J = 3.8 / 2.1 Hz, 1H, 4-*H*), 3.97 (s, 1H, 1-*H*), 4.76 (d, J = 14.7 Hz, 1H, NCH₂Ar), 5.23 (d, J = 14.7 Hz, 1H, NCH₂Ar), 7.42 – 7.44 (m, 2H, Ar-*H*), 7.50 – 7.53 (m, 2H, Ar-*H*), 7.83 – 7.87 (m, 2H, Ar-*H*), 8.09 – 8.11 (m, 1H, Ar-*H*). ¹³C NMR (CDCl₃): δ [ppm] = 1.59 (3C, OSi(CH₃)₃), 25.8 (1C, NCH₂C₆H₁₁), 25.9 (1C, NCH₂C₆H₁₁), 26.5 (1C, NCH₂C₆H₁₁), 30.5 (1C, NCH₂C₆H₁₁), 30.9 (1C, NCH₂C₆H₁₁), 37.1 (1C, NCH₂C₆H₁₁), 38.9 (1C, C-8), 46.0 (1C, NCH₂Ar), 50.3 (1C, OCH₃), 52.0 (1C, NCH₂C₆H₁₁), 57.6 (1C, C-4), 67.8 (1C, C-1), 102.7 (1C, C-7), 123.9 (1C, Ar-C), 125.3 (1C, Ar-C), 126.3 (1C, Ar-C), 127.0 (1C, Ar-C), 128.3 (1C, Ar-C), 128.8 (1C, Ar-C), 129.4 (1C, Ar-C), 131.3 (1C, Ar-C_q), 131.6 (1C, Ar-C_q), 134.0 (1C, Ar-C_q), 167.5 (1C, C=0), 168.9 (1C, C=0). MS (ESI): m/z [%] = 495 (M + H, 100). IR (neat): $\tilde{\nu}$ [cm⁻¹] = 2924, 2851 (C-H _{aliph}.), 1686 (C=O _{amide}), 1099 (Si-O), 741, 698 (arom. monosubst.).

(1*R*,4*R*,7*S*)-2-(Cyclohexylmethyl)-7-methoxy-5-(naphthalen-1-ylmethyl)-7-(trimethylsilyloxy)-2,5-diazabicyclo[2.2.2]octane-3,6-dione (*ent*-12c)

As described for **12c**, *ent*-**12c** (1.01 g, 2.39 mmol) was reacted with a solution of sodium hexamethyldisilazane (1 M in THF, 7.1 mL, 7.17 mmol) and chlorotrimethylsilane (0.75 mL, 5.98 mmol) in THF abs. (30 mL). The crude product was adsorbed on silica gel and given on a silica column (\emptyset 5.0 cm, h = 18 cm, v = 30 mL, C₆H₁₂/EtOAc = 4/1, *R_f* = 0.25). C₂₈H₃₈N₂O₄Si, M_r = 494.7. HPLC (method ACN): t_R = 20.9 min, purity 95.9%. Specific rotation: [α]²⁰_D = +4.18 (c = 0.37; EtOAc) MS (ESI): m/z [%] = 495 (M + H, 100).

(1*S*,4*S*,7*R*)-5-(Biphenyl-4-ylmethyl)-2-(cyclohexylmethyl)-7-methoxy-7-(trimethylsilyloxy)-2,5-diazabicyclo[2.2.2]octane-3,6-dione (12d)

Under N₂, **8d** (500 mg, 1.12 mmol) was dissolved in THF abs (25 mL) and the mixture was cooled down to -78 °C. Then a 1 M solution of sodium hexamethyldisilazane in THF (3.3 mL, 3.34 mmol) was added dropwise. After stirring at -78 °C for 40 min, the mixture was treated with chlorotrimethylsilane (0.35 mL, 2.79 mmol) and stirred for additional 1 h at -78 °C and at room temperature for 2 h. Then, an aqueous solution of NaHCO₃ (19 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were dried

(Na₂SO₄), filtered and concentrated in vacuo. The residue was adsorbed on silica gel and given on a silica column (\emptyset 2.5 cm, h = 20 cm, v = 10 mL, C₆H₁₂/EtOAc = 4/1, R_f = 0.35). Colorless solid, mp 150.9 °C, yield 127.5 mg (22%). $C_{30}H_{40}N_2O_4Si$ M_r = 520.7. HPLC (method ACN): $t_R = 25.9$ min, purity 94.6%. ¹H NMR (CDCl₃): δ [ppm] = 0.22 (s, 9H, OSi(CH₃)₃), 0.85 - 0.98 (m, 2H, NCH₂C₆ H_{11}), 1.12 - 1.23 (m, 3H, $NCH_2C_6H_{11}$, 1.54 – 1.74 (m, 6H, $NCH_2C_6H_{11}$), 1.90 (dd, J = 13.6 / 3.9 Hz, 1H, 8-H), 2.10 (dd, J = 13.6 / 2.0 Hz, 1H, 8-H), 2.76 (dd, J = 13.8 / 6.6 Hz, 1H, NCH₂C₆H₁₁), 3.25 (s, 3H, OCH₃), 3.62 (dd, J = 13.8 / 7.6 Hz, 1H, NCH₂C₆H₁₁), 3.87 (dd, J = 3.8 / 2.0 Hz, 1H, 4-H), 3.98 (s, 1H, 1-H), 4.29 (d, J = 14.8 Hz, 1H, NCH₂Ar), 4.89 (d, J = 14.8 Hz, 1H, NCH₂Ar), 7.32 – 7.37 (m, 3H, Ar-H), 7.41 – 7.46 (m, 2H, Ar-H), 7.53 – 7.59 (m, 4H, Ar-H). ¹³C NMR (CDCl₃): δ [ppm] = 1.58 (3C, OSi(CH₃)₃), 25.8 (1C, NCH₂C₆H₁₁), 25.9 (1C, NCH₂C₆H₁₁), 26.5 (1C, NCH₂C₆H₁₁), 30.5 (1C, NCH₂C₆H₁₁), 30.9 (1C, NCH₂C₆H₁₁), 37.1 (1C, NCH₂C₆H₁₁), 39.4 (1C, C-8), 48.3 (1C, NCH₂Ar), 50.4 (1C, OCH₃), 52.0 (1C, NCH₂C₆H₁₁), 58.9 (1C, C-4), 67.6 (1C, C-1), 102.8 (1C, C-7), 127.2 (2C, Ar-C), 127.6 (1C, Ar-C), 127.6 (2C, Ar-C), 128.9 (2C, Ar-C), 129.0 (2C, Ar-C), 135.0 (1C, Ar-C_α), 140.7 (1C, Ar-C_α), 141.1 (1C, Ar-C_α), 167.7 (1C, C=O), 168.9 (1C, C=O). MS (ESI): m/z [%] = 521 (M + H, 100). **IR** (neat): \tilde{v} [cm⁻¹] = 2924, 2851 (C-H alinh), 1682 (C=O amide), 1099 (Si-O), 732, 694 (arom. monosubst.).

(1*R*,4*R*,7*S*)-5-(Biphenyl-4-ylmethyl)-2-(cyclohexylmethyl)-7-methoxy-7-(trimethylsilyloxy)-2,5-diazabicyclo[2.2.2]octane-3,6-dione (*ent*-12d)

As described for **12d**, *ent*-**8d** (1.0 g, 2.23 mmol) was reacted with a solution of sodium hexamethyldisilazane (1 M in THF, 6.7 mL, 6.69 mmol) and chlorotrimethylsilane (0.7 mL, 5.57 mmol) in THF abs. (50 mL). The crude product was adsorbed on silica gel and given on a silica column (\emptyset 4 cm, h = 18 cm, v = 30 mL, C₆H₁₂/ EtOAc = 4/1, *R_f* = 0.35). Colorless solid, mp 151.5 °C, yield 76 mg (7%). C₃₀H₄₀N₂O₄Si, M_r = 520.7. HPLC (method ACN): t_R = 26.1 min, purity 97.1%. MS (ESI): m/z [%] = 521 (M + H, 100).

(1S,4S)-5-Benzyl-2-(cyclohexylmethyl)-2,5-diazabicyclo[2.2.2]octane-3,6,7trione (13a)

12a (450 mg, 1,01 mmol) was dissolved in a mixture of THF/0.5 M HCl (9/1, 150 mL) and the reaction mixture was stirred for 16 h at room temperature. For work-up, H_2O

was added (12 mL) and the mixture was extracted with CH_2Cl_2 (3 x 25 mL). The combined organic layers were dried (Na₂SO₄), filtered and the solvent was removed in vacuo. The residue was adsorbed on silica gel and given on a silica column (\emptyset 3 cm, h = 18 cm, v = 20 mL, C₆H₁₂/EtOAc = 3/2, R_f = 0.23). Colorless solid, mp 151 – 155 °C, yield 339 mg (99.6%). C₂₀H₂₄N₂O₃, M_r = 340.4. HPLC (method ACN): t_R = 16.2 min, purity 86.8%. Specific rotation: [α]²⁰_D = -14.7 (c = 0.22; MeOH). ¹H NMR (CDCl₃): δ [ppm] = 0.84 – 0.95 (m, 2H, NCH₂C₆H₁₁), 1.07 – 1.25 (m, 3H, NCH₂C₆H₁₁), 1.51 – 1.71 (m, 6H, NCH₂C₆H₁₁), 2.20 (dd, J = 18.6 / 3.3 Hz, 1H, 8-H), 2.52 (dd, J = 18.5 / 2.1 Hz, 1H, 8-H), 3.16 (dd, J = 13.9 / 6.9 Hz, 1H, NCH₂C₆H₁₁), 3.36 (dd, J = 13.9 / 6.8 Hz, 1H, NCH₂C₆H₁₁), 4.11 (dd, J = 3.3 / 2.1 Hz, 1H, 4-H), 4.21 (s, 1H, 1-H), 4.37 (d, J = 14.6 Hz, 1H, NCH₂Ar), 4.89 (d, J = 14.6 Hz, 1H, NCH₂Ar), 7.23 – 7.33 (m, 5H, Ar-H). MS (EM, APCI): m/z = calcd. for C₂₀H₂₅N₂O₃ 341.1865 (M+H), found 341.1885. IR (neat): $\tilde{\nu}$ [cm⁻¹] = 2920, 2851 (C-H _{aliph}.), 1748 (C=O _{ketone}), 737, 698 (arom. monosubst.).

(1*R*,4*R*)-5-Benzyl-2-(cyclohexylmethyl)-2,5-diazabicyclo[2.2.2]octane-3,6,7trione (*ent*-13a)

As described for **13a**, *ent*-**12a** (200 mg, 0.45 mmol) was reacted in a mixture of THF/0.5 M HCI (9/1, 100 mL). For purification, the crude product was adsorbed on silica gel and given on a silica column (\emptyset 2 cm, h = 18 cm, v = 10 mL, C₆H₁₂/EtOAc = 3/2, R_f = 0.25). Colorless solid, mp 150 – 154 °C, yield 150 mg (98%). C₂₀H₂₄N₂O₃, M_r = 340.4. HPLC (method ACN): t_R = 16.0min, purity 88.5%. Specific rotation: [α]²⁰_D = +15.6 (c = 0.27; MeOH). MS (ESI): m/z [%] = 341 (M + H, 100).

(1S,4S)-5-Benzyl-2-methyl-2,5-diazabicyclo[2.2.2]octane-3,6,7-trione (13b)

12b (300 mg, 0.83 mmol) was dissolved in a mixture of THF/0.5 M HCl (9/1, 120 mL) and the reaction mixture was stirred for 16 h at room temperature. For work-up, H₂O was added (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried (Na₂SO₄), filtered and the solvent was removed in vacuo. The residue was adsorbed on silica gel and given on a silica column (\emptyset 3 cm, h = 17 cm, v = 20 mL, C₆H₁₂/EtOAc = 3/7, *R*_f = 0.11). Colorless solid, mp 175 – 177 °C, yield 202 mg (94%). C₁₄H₁₄N₂O₃, M_r = 258.3. HPLC (method ACN): t_R =

14.1min, purity 75.6%. Specific rotation: $[\alpha]_D^{20} = +6.92$ (c = 0.38; MeOH). ¹H NMR (CDCl₃): δ [ppm] = 2.18 (dd, J = 18.5 / 3.3 Hz, 1H, 8-H), 2.51 (dd, J = 18.5 / 2.0 Hz, 1H, 8-H), 3.07 (s, 3H, NCH₃), 4.10 (dd, J = 3.2 / 2.2 Hz, 1H, 4-H), 4.20 (s, 1H, 1-H), 4.29 (d, J = 14.6 Hz, 1H, NCH₂Ar), 4.97 (d, J = 14.6 Hz, 1H, NCH₂Ar), 7.22 - 7.35 (m, 5H, Ar-H). MS (EI): m/z [%] = 91 (CH₂Ar, 100). IR (neat): \tilde{v} [cm⁻¹] = 2953 (C-H _{aliph}.), 1745 (C=O _{ketone}), 733, 699 (arom. monosubst.).

(1*S*,4*S*)-2-(Cyclohexylmethyl)-5-(naphthalen-1-ylmethyl)-2,5-diazabicyclo[2.2.2] octane-3,6,7-trione (13c)

12c (250 mg, 0.51 mmol) was dissolved in a mixture of THF/0.5 M HCl (9/1, 100 mL) and the reaction mixture was stirred for 16 h at room temperature. For work-up, H₂O was added (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried (Na₂SO₄), filtered and the solvent was removed in vacuo. The residue was adsorbed on silica gel and given on a silica column (\varnothing 2.5 cm, h = 23 cm, v = 20 mL, $C_6H_{12}/EtOAc = 1/1$, $R_f = 0.50$). Colorless solid, mp 100 -104 °C, yield 186.6 mg (94%). $C_{24}H_{26}N_2O_3$, M_r = 390.5. HPLC (method ACN): t_R = 17.7 min, purity 73.6%. Specific rotation: $[\alpha]_{D}^{20} = +31.1$ (c = 0.18; MeOH). ¹H NMR $(CDCl_3)$: δ [ppm] = 0.87 - 0.95 (m, 2H, NCH₂C₆H₁₁), 1.09 - 1.22 (m, 3H, NCH₂C₆H₁₁), 1.48 – 1.57 (m, 3H, NCH₂C₆H₁₁), 1.62 -. 1.72 (m, 3H, NCH₂C₆H₁₁), 1.70 (dd, J = 18.6 / 3.4 Hz, 1H, 8-H), 2.29 (dd, J = 18.5 / 1.9 Hz, 1H, 8-H), 3.15 (dd, J = 13.9 / 7.0 Hz, 1H, NCH₂C₆H₁₁), 3.33 (dd, J = 13.8 / 6.8 Hz, 1H, NCH₂C₆H₁₁), 4.07 – 4.09 (m, 1H, 4-H), 4.22 (s, 1H, 1-H), 4.63 (d, J = 14.5 Hz, 1H, NCH₂Ar), 5.53 (d, J = 14.5 Hz, 1H, NCH₂Ar), 7.46 – 7.48 (m, 2H, Ar-H), 7.52 – 7.54 (m, 2H, Ar-H), 7.87 – 7.93 (m, 3H, Ar-H). MS (EM, APCI): m/z = calcd. for $C_{24}H_{27}N_2O_3$ 391.2022 (M+H), found 391.1997. IR (neat): \tilde{v} [cm⁻¹] = 2924, 2851 (C-H _{aliph}), 1751 (C=O _{ketone}), 737, 698 (arom. monosubst.).

(1*R*,4*R*)-2-(Cyclohexylmethyl)-5-(naphthalen-1-ylmethyl)-2,5-diazabicyclo[2.2.2] octane-3,6,7-trione (*ent*-13c)

As described for **13c**, *ent*-**12c** (250 mg, 0.51 mmol) was reacted in a mixture of THF/0.5 M HCl (9/1, 100 mL). For purification, the crude product was adsorbed on silica gel and given on a silica column (2 cm, h = 18 cm, v = 10 mL, C_6H_{12} /EtOAc = 1/1, R_f = 0.50). Colorless solid, mp 103 – 104 °C, yield 198.0 mg (99%). $C_{24}H_{26}N_2O_3$,

 M_r = 390.5. HPLC (method ACN): t_R = 17.7 min, purity 98.3%. Specific rotation: $[\alpha]_D^{20}$ = -33.2 (c = 0.18; MeOH). MS (EM, APCI): m/z = calcd. for C₂₄H₂₇N₂O₃ 391.2022 (M+H), found 391.2077.

(1*S*,4*S*)-5-(Biphenyl-4-ylmethyl)-2-(cyclohexylmethyl)-2,5diazabicyclo[2.2.2]octane-3,6,7-trione (13d)

12d (209 mg, 0.40 mmol) was dissolved in a mixture of THF/0.5 M HCI (9/1, 100 mL) and the reaction mixture was stirred for 16 h at room temperature. For work-up, H_2O was added (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried (Na_2SO_4), filtered and the solvent was removed in vacuo. The residue was adsorbed on silica gel and given on a silica column (\emptyset 3 cm, h = 20 cm, v = 20 mL, C_6H_{12} /EtOAc = 1/1, R_f = 0.37). Colorless solid, mp 208.6 °C, yield 73 mg (44%). $C_{26}H_{28}N_2O_3$ M_r = 416.5. HPLC (method ACN): t_R = 19.7 min, purity 82.2%. ¹H NMR (CDCl₃): δ [ppm] = 0.86 – 0.95 (m, 3H, NCH₂C₆H₁₁), 1.13 – 1.22 (m, 3H, NCH₂C₆ H_{11}), 1.51 – 1.71 (m, 5H, NCH₂C₆ H_{11}), 2.27 (dd, J = 18.5 / 3.3 Hz, 1H, 8-H), 2.56 (dd, J = 18.5 / 2.1 Hz, 1H, 8-H), 3.18 (dd, J = 13.9 / 6.9 Hz, 1H, $NCH_2C_6H_{11}$, 3.37 (dd, J = 13.9 / 6.8 Hz, 1H, $NCH_2C_6H_{11}$), 4.16 (dd, J = 3.3 / 2.1 Hz, 1H, 4-H), 4.23 (s, 1H, 1-H), 4.40 (d, J = 14.7 Hz, 1H, NCH₂Ar), 4.94 (d, J = 14.7 Hz, 1H, NCH₂Ar), 7.30 – 7.38 (m, 3H, Ar-H), 7.43 – 7.46 (m, 2H, Ar-H), 7.56 – 7.59 (m, 4H, Ar-H). ¹³C NMR (CDCl₃): δ [ppm] = 25.6 (1C, NCH₂C₆H₁₁), 25.7 (1C, NCH₂C₆H₁₁), 26.3 (1C, NCH₂C₆H₁₁), 30.5 (1C, NCH₂C₆H₁₁), 30.6 (1C, NCH₂C₆H₁₁), 37.0 (1C, NCH₂C₆H₁₁), 37.1 (1C, C-8), 48.3 (1C, NCH₂Ar), 52.1 (1C, NCH₂C₆H₁₁), 58.2 (1C, C-4), 72.3 (1C, C-1), 127.2 (2C, Ar-C), 127.8 (2C, Ar-C), 128.0 (1C, Ar-C), 129.0 (2C, Ar-C), 129.3 (2C, Ar-C), 133.7 (1C, Ar-C_a), 140.3 (1C, Ar-C_a), 141.7 (1C, Ar- C_a), 164.6 (1C, C=O), 167.1 (1C, C=O), 197.1 (1C, C-7). MS (EM, APCI): m/z = calcd. for C₂₆H₂₈N₂O₃ 417.2179 (M+H), found 417.2156. IR (neat): $\tilde{\nu}$ [cm⁻¹] = 2920, 2851 (C-H aliph.), 1744 (C=O ketone), 729, 694 (arom. monosubst.).

(1*R*,4*R*)-5-(Biphenyl-4-ylmethyl)-2-(cyclohexylmethyl)-2,5diazabicyclo[2.2.2]octane-3,6,7-trione (*ent*-13d)

As described for **13d**, *ent*-**12d** (140 mg, 0.27 mmol) was reacted in a mixture of THF/0.5 M HCI (9/1, 100 mL). For purification, the crude product was adsorbed on silica gel and given on a silica column (\emptyset 2.5 cm, h = 20 cm, v = 10 mL, C₆H₁₂/EtOAc

= 1/1, R_f = 0.37). Colorless solid, mp 207.5 °C, yield 45.3 mg (78%). $C_{26}H_{28}N_2O_3$, M_r = 416.5.HPLC (method ACN): t_R = 19.7 min, purity 85.3%. MS (EI): m/z [%] = 417 (M + H).

(1*R*,4*S*,7*S*)-5-Benzyl-2-(cyclohexylmethyl)-2,5-diazabicyclo[2.2.2]octan-7-ol (14a)

(1*R*,4*S*,7*R*)-5-Benzyl-2-(cyclohexylmethyl)-2,5-diazabicyclo[2.2.2]octan-7-ol (15a)

14a and 15a were synthesized according to General Procedure A: 13a (310 mg, 0.91 mmol) was reacted with LiAlH₄ solution (1M in THF, 5.46 mL, 5.46 mmol) in THF abs. (30 mL). The crude product was purified by fc (\emptyset 3 cm, h = 20 cm, v = 10 mL, $C_6H_{12}/EtOAc = 9.5/0.5 + 0.5\% N, N$ -dimethylethylamine). $C_{20}H_{30}N_2O$ M_r = 314.5. **14a**: $(R_f = 0.49)$ Colorless solid, mp 68 – 72 °C, yield 45.8 mg (16%). HPLC (method ACN): $t_R = 13.0$ min, purity 98.9%. Specific rotation: $[\alpha]_{D}^{20} = +15.3$ (c = 0.79; EtOAc). ¹H NMR (CDCl₃): δ [ppm] = 0.84 – 0.94 (m, 2H, NCH₂C₆H₁₁), 1.14 – 1.29 (m, 4H, $NCH_2C_6H_{11}$, 1.38 – 1.43 (m, 2H, $NCH_2C_6H_{11}$, 8-H), 1.68 – 1.74 (m, 4H, $NCH_2C_6H_{11}$), 1.87 (d, J = 13.5 Hz, 1H, O-H), 2.29 (dd, J = 11.8 / 8.8 Hz, 1H, NCH₂C₆H₁₁), 2.37 -2.44 (m, 1H, 8-H), 2.51 – 2.55 (m, 2H, NCH₂C₆H₁₁, 4-H), 2.58 – 2.62 (m, 2H, NCH₂, 1-H), 2.72 (dt, J = 10.2 / 2.2 Hz, 1H, NCH₂), 2.98 - 3.07 (m, 2H, NCH₂), 3.60 (d, J = 13.4 Hz, 1H, NCH₂Ar), 3.64 (d, J = 13.1 Hz, 1H, NCH₂Ar), 3.92 (dt, J = 8.8 / 2.8 Hz, 1H, 7-H), 7.21 – 7.36 (m, 5H, Ar-H). ¹³C NMR (CDCl₃): δ [ppm] = 26.23 / 26.3 / 27.0 / 31.5 / 32.0 / 36.2 (6C, NCH₂C₆H₁₁), 37.0 (1C, C-8), 49.0 (1C, NCH₂), 50.5 (1C, C-1), 53.6 (1C, NCH₂), 58.4 (1C, C-4), 59.5 (1C, NCH₂Ar), 63.0 (1C, NCH₂C₆H₁₁), 67.6 $(1C, C-7), 127.0 (1C, Ar-C), 128.4 (2C, Ar-C), 128.6 (2C, Ar-C), 139.5 (1C, Ar-C_a).$ MS (EM, APCI): m/z = calcd. for $C_{20}H_{31}N_2O$ 315.2436 (M+H), found 315.2486. IR (neat): \tilde{v} [cm⁻¹] = 3264 (O-H), 2920, 2847 (C-H _{aliph}), 732, 698 (arom. monosubst.). **15a:** (R_f = 0.36) Colorless oil, yield 119.7 mg (42%). HPLC (method ACN): t_R = +13.6 min, purity 95.0%. Specific rotation: $[\alpha]_D^{20} = +9.04$ (c = 0.65; EtOAc). ¹H NMR $(CDCl_3)$: δ [ppm] = 0.78 - 0.91 (m, 2H, NCH₂C₆H₁₁), 1.13 - 1.20 (m, 3H, $NCH_2C_6H_{11}$, 1.31 - 1.42 (m, 1H, $NCH_2C_6H_{11}$), 1.65 – 1.80 (m, 6H, $NCH_2C_6H_{11}$, 8-H), 2.10 (ddd, J = 13.7 / 8.8 / 1.7 Hz, 1H, 8-H), 2.34 (dd, J = 11.8 / 6.7 Hz, 1H, $NCH_2C_6H_{11}$), 2.41 (dd, J = 11.8 / 6.7 Hz, 1H, $NCH_2C_6H_{11}$), 2.62 – 2.65 (m, 2H, NCH_2 ,

4-*H*), 2.66 – 2.69 (m, 1H, 1-*H*), 2.74 – 2.78 (m, 2H, NC*H*₂), 3.08 (dd, J = 10.8 / 2.9 Hz, 1H, NC*H*₂), 3.64 (d, J = 14.0 Hz, 1H, NC*H*₂Ar), 3.67 (d, J = 13.7 Hz, 1H, NC*H*₂Ar), 4.03 – 4.07 (m, 1H, 7-*H*), 7.21 – 7.35 (m, 5H, Ar-*H*). The signal for the proton of the OH group is not seen. ¹³C NMR (CDCl₃): δ [ppm] = 26.3 / 26.4 / 27.1 / 31.7 / 32.0 / 36.5 (6C, NCH₂C₆H₁₁), 38.3 (1C, C-8), 47.2 (1C, NCH₂), 50.5 (1C, NCH₂), 51.1 (1C, C-1), 56.4 (1C, C-4), 59.3 (1C, NCH₂Ar), 62.4 (1C, NCH₂C₆H₁₁), 68.0 (1C, C-7), 127.1 (1C, Ar-C), 128.4 (2C, Ar-C), 128.7 (2C, Ar-C), 139.3 (1C, Ar-C), MS (EM, APCI): m/z = calcd. for C₂₀H₃₁N₂O 315.2436 (M+H), found 315.2489. IR (neat): $\tilde{\nu}$ [cm⁻¹] = 3391 (O-H), 2920, 2847 (C-H _{aliph}.), 729, 698 (arom. monosubst.).

(1*S*,4*R*,7*R*)-5-Benzyl-2-(cyclohexylmethyl)-2,2-diazabicyclo[2.2.2]octan-7-ol (*ent*-14a)

(1*S*,4*R*,7*S*)-5-Benzyl-2-(cyclohexylmethyl)-2,5-diazabicyclo[2.2.2]octan-7-ol (*ent*-15a)

Ent-14a and *ent*-15a were synthesized according to General Procedure A: *ent*-13a (150 mg, 0.44 mmol) was reacted with LiAlH₄ solution (1M in THF, 2.64 mL, 2.64 mmol) in THF abs. (10 mL). The crude product was purified by fc (\emptyset 2 cm, h = 20 cm, v = 10 mL, C₆H₁₂/EtOAc = 9.75/0.25 + 0.5% *N*,*N*-dimethylethylamine). C₂₀H₃₀N₂O, M_r = 314.5. *ent*-14a: (R_f = 0.38) Colorless solid, mp 79 – 83 °C, yield 27.6 mg (20%). HPLC (method ACN): t_R = 12.1 min, purity 96.2%. Specific rotation: [α]²⁰_D = -14.6 (c = 0.79; EtOAc). MS (EM, APCI): m/z = calcd. for C₂₀H₃₁N₂O 315.2436 (M+H), found 315.2431. *ent*-15a: (R_f = 0.23) Colorless oil, yield 46.5 mg (34%). HPLC (method ACN): t_R = 12.7 min, purity 96.7%. Specific rotation: [α]²⁰_D = -8.68 (c = 0.64; EtOAc). MS (EM, APCI): m/z = calcd. for C₂₀H₃₁N₂O 315.2436.

(1R,4S,7S)-5-Benzyl-2-methyl-2,5-diazabicyclo[2.2.2]octan-7-ol (14b)

(1R,4S,7R)-5-Benzyl-2-methyl-2,5-diazabicyclo[2.2.2]octan-7-ol (15b)

14b and **15b** were synthesized according to **General Procedure A: 13b** (210 mg, 0.81 mmol) was reacted with LiAlH₄ solution (1M in THF, 4.9 mL, 4.88 mmol) in THF abs. (20 mL). The crude product was purified by fc (\emptyset 2 cm, h = 18 cm, v = 10 mL, EtOAc / MeOH = 9.5/0.5 + 0.5% *N*,*N*-dimethylethylamine). C₁₄H₂₀N₂O, M_r = 232.3.

14b: (R_f = 0.16). Pale yellow oil, yield 41.4 mg (22%). HPLC (method ACN): t_R = 4.02 min, purity 97.3%. Specific rotation: $[\alpha]_{D}^{20}$ = +22.2 (c = 0.54; EtOAc). ¹H NMR (CDCl₃): δ [ppm] = 1.40, (dt, J = 13.7 / 2.6 Hz, 1H, 8-H), 2.38 – 2.43 (m, 1H, 8-H), 2.45 (s, 3H, NCH₃), 2.48 – 2.51 (m, 1H, 1-H), 2.57 – 2.65 (m, 2H, NCH₂, 4-H), 2.71 – 2.75 (m, 1H, NCH₂), 3.03 - 3.07 (m, 2H, NCH₂), 3.56 (d, J = 15.7 Hz, 1H, NCH₂Ar), 3.60 (d, J = 15.7 Hz, 1H, NCH₂Ar), 3.96 (dt, J = 9.1 / 3.0 Hz, 1H, 7-H), 7.21 - 7.36 (m, 5H, Ar-H). The signal for the proton of the OH group is not seen. ¹³C NMR $(CDCl_3)$: δ [ppm] = 36.5 (1C, C-8), 46.4 (1C, NCH₃), 48.0 (1C, NCH₂), 50.6 (1C, C-4), 54.7 (1C, NCH₂), 59.2 (1C, NCH₂Ar), 59.4 (1C, C-1), 67.7 (1C, C-7), 127.2 (1C, Ar-C), 128.5 (2C, Ar-C), 128.7 (2C, Ar-C), 139.1 (1C, Ar- C_{α}). MS (EM, APCI): m/z = calcd. for C₁₄H₂₁N₂O 233.1654 (M+H), found 233.1612. IR (neat): $\tilde{\nu}$ [cm⁻¹] = 3379 (O-H), 2936, 2874 (C-H _{aliph}), 729, 698 (arom. monosubst.). **15b:** (*R*_f = 0.11) Colorless oil, yield 87.8 mg (47%). HPLC (method ACN): $t_R = 4.72$ min, purity 96.3%. Specific rotation: $[\alpha]_{p}^{20}$ = +19.8 (c = 0.40; EtOAc). ¹H NMR (CDCl₃): δ [ppm] = 1.74 – 1.79 (m, 1H, 8-H), 2.11 (ddd, J = 13.9 / 8.7 / 1.6 Hz, 1H, 8-H), 2.45 (s, 3H, NCH₃), 2.64 – 2.66 (m, 1H, 4-H), 2.71 – 2.74 (m, 2H, NCH₂, 1-H), 2.77 – 2.81 (m, 2H, NCH₂), 3.08 (dd, J = 11.0 / 3.0 Hz, 1H, NCH₂), 3.66 (d, J = 13.9 Hz, 1H, NCH₂Ar), 3.70 (d, J = 13.7 Hz, 1H, NCH₂Ar), 4.12 – 4.15 (m, 1H, 7-H), 7.24 – 7.36 (m, 5H, Ar-H). The signal for the proton of the OH group is not seen. ¹³C NMR (CDCl₃): δ [ppm] = 37.8 (1C, C-8), 42.1 (1C, NCH₃), 45.9 (1C, NCH₂), 51.1 (1C, C-1), 51.7 (1C, NCH₂), 57.8 (1C, C-4), 59.2 (1C, NCH₂Ar), 67.6 (1C, C-7), 127.2 (1C, Ar-C), 128.5 (2C, Ar-C), 128.7 (2C, Ar-C), 139.1 (1C, Ar- C_{α}). MS (EM, APCI): m/z = calcd. for $C_{14}H_{21}N_2O$ 233.1654 (M+H), found 233.1629. IR (neat): \tilde{v} [cm⁻¹] = 3329 (O-H), 2930, 2843 (C-H _{aliph}), 729, 698 (arom, monosubst.).

(1*R*,4*S*,7*S*)-2-(Cyclohexylmethyl)-5-(naphthalen-1-ylmethyl)-2,5-diazabicyclo-[2.2.2]octan-7-ol (14c)

(1*R*,4*S*,7*R*)-2-(Cyclohexylmethyl)-5-(naphthalen-1-ylmethyl)-2,5-diazabicyclo-[2.2.2]octan-7-ol (15c)

14c and **15c** were synthesized according to **General Procedure A: 13c** (180 mg, 0.46 mmol) was reacted with LiAIH₄ solution (1M in THF, 2.7 mL, 2.77 mmol) in THF abs. (10 mL). The crude product was purified by fc (\emptyset 2 cm, h = 19 cm, v = 10 mL,

 $C_6H_{12}/EtOAc = 7/3$). $C_{24}H_{32}N_2O_1M_r = 364.5$. **14c:** ($R_f = 0.14$, $C_6H_{12}/EtOAc 4/1 + 0.5\%$ *N*,*N*-dimethylethylamine) Colorless oil, yield 45.6 mg (28%). HPLC (method ACN): t_R = 17.7 min, purity 95.9%. Specific rotation: $[\alpha]_D^{20}$ = +7.00 (c = 0.22; EtOAc). ¹H NMR $(CDCl_3)$: δ [ppm] = 0.82 - 0.95 (m, 2H, NCH₂C₆H₁₁), 1.12 - 1.24 (m, 3H, NCH₂C₆H₁₁), 1.39 – 1.44 (m, 2H, NCH₂C₆H₁₁,8-H), 1.66 – 1.74 (m, 4H, NCH₂C₆H₁₁), 1.85 - 1.89 (m, 1H, NCH₂C₆H₁₁), 2.30 - 2.35 (m, 1H, NCH₂C₆H₁₁), 2.39 - 2.46 (m, 1H, 8-H), 2.54 – 2.58 (m, 2H, NCH₂C₆H₁₁, 4-H), 2.66 – 2.68 (m, 2H, NCH₂, 1-H), 2.75 - 2.79 (m, 1H, NCH₂), 3.04 (dd, J = 10.3 / 2.7 Hz, 1H, NCH₂), 3.14 (dt, J = 11.1 / 2.0 Hz, 1H, NCH₂), 3.93 (dt, J = 9.0 / 2.9 Hz, 1H, 7-H), 4.02 (d, J = 13.6 Hz, 1H, NCH₂Ar), 4.06 (d, J = 13.2 Hz, 1H, NCH₂Ar), 7.26 – 7.39 (m, 2H, Ar-H), 7.41 – 7.51 (m, 2H, Ar-H), 7.75 – 7.78 (m, 1H, Ar-H), 7.83 – 7.85 (m, 1H, Ar-H), 8.26 – 8.29 (m, 1H, Ar-H). The signal for the proton of the OH group is not seen. ¹³C NMR (CDCl₃): δ [ppm] = 26.2 / 26.3 / 27.0 / 31.5 / 32.0 / 36.2 (6C, NCH₂C₆H₁₁), 36.8 (1C, C-8), 48.9 (1C, NCH₂), 50.5 (1C, C-1), 53.8 (1C, NCH₂), 57.8 (1C, NCH₂Ar), 58.5 (1C, C-4), 63.0 (1C, NCH₂C₆H₁₁), 67.6 (1C, C-7), 124.6 (1C, Ar-C), 125.3 (1C, Ar-C), 125.8 (1C, Ar-C), 125.9 (1C, Ar-C), 126.7 (1C, Ar-C), 128.0 (1C, Ar-C), 128.6 (1C, Ar-C), 132.4 $(1C, Ar-C_{a})$, 134.0 $(1C, Ar-C_{a})$, 134.9 $(1C, Ar-C_{a})$. MS (EM, APCI): m/z = calcd. for $C_{24}H_{33}N_2O$ 365.2593 (M+H), found 365.2604. IR (neat): \tilde{v} [cm⁻¹] = 3425 (O-H), 2920, 2847 (C-H _{aliph}), 733, 698 (arom. monosubst.). **15c:** ($R_f = 0.10$, C_6H_{12} /EtOAc 4/1 + 0.5% N,N-dimethylethylamine) Colorless oil, yield 70 mg (43%). HPLC (method ACN): $t_R = 17.8$ min, purity 95.6%. Specific rotation: $[\alpha]_D^{20} = +5.22$ (c = 1.00; EtOAc). ¹H NMR (CDCl₃): δ [ppm] = 0.82 – 0.92 (m, 2H, NCH₂C₆H₁₁), 1.11 – 1.29 (m, 4H, NCH₂C₆H₁₁), 1.34 – 1.45 (m, 1H, NCH₂C₆H₁₁), 1.76 – 1.81 (m, 6H, NCH₂C₆H₁₁, 8-H, O-H), 2.10 (ddd, J = 13.7 / 8.7 / 1.7 Hz, 1H, 8-H), 2.39 (dd, J = 11.9 / 7.6 Hz, 1H, NCH₂C₆H₁₁), 2.46 (dd, J = 11.9 / 6.7 Hz, 1H, NCH₂C₆H₁₁), 2.67 – 2.73 (m, 2H, NCH₂, 4-H), 2.80 – 2.88 (m, 3H, NCH₂, 1-H), 3.06 (dd, J = 10.8 / 3.0 Hz, 1H, NCH₂), 4.04 (d, J = 13.0 Hz, 1H, NCH₂Ar), 4.05 – 4.07 (m, 1H, 7-H), 4.15 (d, J = 13.1 Hz, 1H, NCH₂Ar), 7.30 – 7.51 (m, 4H, Ar-H), 7.76 – 7.78 (m, 1H, Ar-H), 7.82 – 7.86 (m, 1H, Ar-H), 8.25 – 8.28 (m, 1H, Ar-H). ¹³C NMR (CDCl₃): δ [ppm] = 26.3 / 26.4 / 27.0 / 31.7 / 32.0 / 35.7 (6C, NCH₂C₆H₁₁), 38.2 (1C, C-8), 46.8 (1C, NCH₂), 50.6 (1C, NCH₂), 51.4 (1C, C-1), 56.5 (1C, C-4), 57.4 (1C, NCH₂Ar), 62.4 (1C, NCH₂C₆H₁₁), 68.0 (1C, C-7), 124.3 (1C, Ar-C), 125.3 (1C, Ar-C), 125.8 (1C, Ar-C), 126.0 (1C, Ar-C), 127.1 $(1C, Ar-C), 128.1 (1C, Ar-C), 128.7 (1C, Ar-C), 132.4 (1C, Ar-C_0), 134.0 (1C, Ar-C_$

134.5 (1C, Ar-C_q). MS (EM, APCI): m/z = calcd. for $C_{24}H_{33}N_2O$ 365.2593 (M+H), found 365.2608. IR (neat): $\tilde{\nu}$ [cm⁻¹] = 3379 (O-H), 2920, 2845 (C-H _{aliph.}), 768, 717 (arom. monosubst.).

(1*S*,4*R*,7*R*)-2-(Cyclohexylmethyl)-5-(naphthalen-1-ylmethyl)-2,5-diazabicyclo-[2.2.2]octan-7-ol (*ent*-14c)

(1*S*,4*R*,7*S*)-2-(Cyclohexylmethyl)-5-(naphthalen-1-ylmethyl)-2,5-diazabicyclo-[2.2.2]octan-7-ol (*ent*-15c)

As described for **14c** and **15c**, *ent*-**14c** and *ent*-**15c** were synthesized according to **General Procedure A:** *ent*-**13c** (160 mg, 0.41 mmol) was reacted with LiAlH₄ solution (1M in THF, 2.5 mL, 2.46 mmol) in THF abs. (20 mL). The crude product was purified by fc (\emptyset 2 cm, h = 20 cm, v = 10 mL, C₆H₁₂/EtOAc = 7/3). C₂₄H₃₂N₂O, M_r = 364.5. *ent*-**14c**: (R_f = 0.23, C₆H₁₂/EtOAc 4/1 + 1% *N*,*N*-dimethylethylamine). Colorless oil, yield 36.2 mg (24%). HPLC (method ACN): t_R = 18.7 min, purity 97.4%. Specific rotation: [α]²⁰_D = - 8.23 (c = 0.62; EtOAc). MS (EM, APCI): m/z = calcd. for C₂₄H₃₃N₂O 365.2593 (M+H), found 365.2595. *ent*-**15c**: (R_f = 0.16, C₆H₁₂/EtOAc 4/1 + 1% *N*,*N*-dimethylethylamine). Colorless oil, yield 50.4 mg (34%). HPLC (method ACN): t_R = 17.5 min, purity 95.9%. Specific rotation: [α]²⁰_D = - 6.81 (c = 0.53; EtOAc). MS (ESI): m/z [%] = 365 (M+H, 100).

(1*R*,4*S*,7*S*)- 5-(Biphenyl-4-ylmethyl)-2-(cyclohexylmethyl)-2,5diazabicyclo[2.2.2]octan-7-ol (14d)

(1*R*,4*S*,7*R*)- 5-(biphenyl-4-ylmethyl)-2-(cyclohexylmethyl)-2,5diazabicyclo[2.2.2]octan-7-ol (15d)

14d and **15d** were synthesized according to **General Procedure A: 13d** (60 mg, 0.14 mmol) was reacted with LiAlH₄ solution (1M in THF, 0.86 mL, 0.86 mmol) in THF abs. (10 mL). The crude product was purified by fc (\emptyset 2 cm, h = 21 cm, v = 10 mL, C₆H₁₂/EtOAc = 7/3). C₂₆H₃₄N₂O, M_r = 390.6. **14d:** (R_f = 0.18, C₆H₁₂/EtOAc 4/1 + 0.5% *N*,*N*-dimethylethylamine). Colorless oil, yield 15.2 mg (28%). HPLC (method ACN): t_R = 17.6 min, purity 96.2%. MS (EM, APCI): m/z = calcd. for C₂₆H₃₄N₂O 391.2751 (M+H), found 391.2742. **15d:** (R_f = 0.13, C₆H₁₂/EtOAc 4/1 + 0.5% *N*,*N*-

dimethylethylamine). Colorless oil, yield 17.5 mg (32%). HPLC (method ACN): $t_R = 17.9$ min, purity 97.7%. MS (EM, APCI): m/z = calcd. for $C_{26}H_{34}N_2O$ 391.2751 (M+H), found 391.2751.

(1*S*,4*R*,7*R*)- 5-(Biphenyl-4-ylmethyl)-2-(cyclohexylmethyl)-2,5diazabicyclo[2.2.2]octan-7-ol (*ent*-14d)

(1*S*,4*R*,7*S*)- 5-(biphenyl-4-ylmethyl)-2-(cyclohexylmethyl)-2,5diazabicyclo[2.2.2]octan-7-ol (*ent*-15d)

As described for **14d** and **15d**, ent-**14d** and ent-**15d** were synthesized according to General Procedure A: ent-13d (120 mg, 0.29 mmol) was reacted with LiAlH₄ solution (1M in THF, 1.7 mL, 1.73 mmol) in THF abs. (20 mL). The crude product was purified by fc (\emptyset 2.5 cm, h = 22 cm, v = 10 mL, C₆H₁₂/EtOAc = 7/3). C₂₆H₃₄N₂O, M_r = 390.6. *ent*-**14d**: ($R_f = 0.18 C_6 H_{12}$ /EtOAc = 4/1 + 0.5% N,N-dimethylethylamine). Colorless oil, yield 25.2 mg (22%). HPLC (method ACN): $t_R = 17.7$ min, purity 99.5%. ¹H NMR (CDCl₃): δ [ppm] = 0.81 – 1.01 (m, 3H, NCH₂C₆H₁₁), 1.15 – 1.46 (m, 5H, NCH₂C₆H₁₁), 1.59 – 1.78 (m, 4H, NCH₂C₆H₁₁, 8-H), 1.77 – 1.82 (m, 1H, 8-H), 2.38 $(dd, J = 12.0, 7.4 Hz, 1H, NCH_2C_6H_{11}), 2.51 (dd, J = 12.2, 7.0 Hz, 1H, NCH_2C_6H_{11}),$ 2.58 - 2.63 (m, 2H, NCH₂), 2.80 - 2.92 (m, 3H, NCH₂, 4-H), 3.18 - 3.36 (m, 1H, 1-H), 3.77 – 3.82 (m, 2H, NCH₂Ar), 4.12 (d, J = 10.5 Hz, 1H, 7-H), 7.35 – 7.39 (m, 1H, Ar-H), 7.40 – 7.48 (m, 4H, Ar-H), 7.61 – 7.72 (m, 4H, Ar-H). The signal for the proton of the OH group is not seen. ¹³C NMR (CDCl₃): δ [ppm] = 26.2 / 26.3 / 27.2 / 31.8 / 31.9 / 36.4 (6C, NCH₂C₆H₁₁), 37.4 (1C, C-8), 47.4 (1C, C-1), 50.6 (1C, NCH₂), 51.0 (1C, C-4), 56.2 (1C, NCH₂), 58.9 (1C, NCH₂Ar), 62.5 (1C, NCH₂C₆H₁₁), 67.1 (1C, C-7), 127.1 (1C, Ar-C), 127.2 (1C, Ar-C), 127.3 (2C, Ar-C), 127.4 (1C, Ar-C), 128.8 (3C, Ar-C), 129.5 (1C, Ar-C), 131.0 (1C, Ar-C_a), 140.8 (1C, Ar-C_a), 140.9 (1C, Ar-C_a). MS (EM, APCI): m/z = calcd. for $C_{26}H_{34}N_2O$ 391.2751 (M+H), found 391.2744. IR (neat): \tilde{v} [cm⁻¹] = 3325 (O-H), 2924, 2851 (C-H _{aliph}), 756, 698 (arom. monosubst.). *ent*-**15d**: $(R_f = 0.11 \text{ C}_6\text{H}_{12}/\text{EtOAc} = 4/1 + 0.5\% \text{ N,N-dimethylethylamine})$. Colorless oil, yield 18.5 mg (16%). HPLC (method ACN): t_{R} = 18.0 min, purity 98.5%. ¹H NMR (CDCl₃): δ [ppm] = 0.84 - 0.92 (m, 3H, NCH₂C₆H₁₁), 1.15 - 1.40 (m, 6H, NCH₂C₆H₁₁), 1.65 -1.73 (m, 3H, NCH₂C₆H₁₁, 8-H), 1.75 – 1.80 (m, 1H, 8-H), 2.39 (dd, J = 12.0, 7.6 Hz, 1H, NCH₂C₆H₁₁), 2.46 (dd, J = 11.6, 7.2 Hz, 1H, NCH₂C₆H₁₁), 2.71 (d, J = 11.5 Hz, 2H, NCH₂), 2.80 – 2.92 (m, 3H, NCH₂, 4-H), 3.18 – 3.35 (m, 1H, 1-H), 3.77 – 3.82 (m,

2H, NCH₂Ar), 4.12 (d, J = 10.5 Hz, 1H, 7-*H*), 7.33 – 7.36 (m, 1H, Ar-*H*), 7.42 – 7.49 (m, 4H, Ar-*H*), 7.53 – 7.59 (m, 4H, Ar-*H*). The signal for the proton of the OH group is not seen. ¹³C NMR (CDCl₃): δ [ppm] = 26.2 / 26.3 / 27.0 / 31.7 / 31.9 / 36.4 (6C, NCH₂C₆H₁₁), 37.3 (1C, *C*-8), 47.4 (1C, *C*-1), 50.4 (1C, NCH₂), 51.1 (1C, *C*-4), 56.2 (1C, NCH₂), 58.8 (1C, NCH₂Ar), 62.5 (1C, NCH₂C₆H₁₁), 67.1 (1C, *C*-7), 127.1 (1C, Ar-C), 127.2 (1C, Ar-C), 127.3 (2C, Ar-C), 127.4 (1C, Ar-C), 128.9 (3C, Ar-C), 129.5 (1C, Ar-C), 131.0 (1C, Ar-C_q), 140.8 (1C, Ar-C_q), 140.9 (1C, Ar-C_q). MS (EM, APCI): m/z = calcd. for C₂₆H₃₄N₂O 391.2751 (M+H), found 391.2785. IR (neat): $\tilde{\nu}$ [cm⁻¹] = 3321 (O-H), 2920, 2850 (C-H _{aliph}.), 733, 698 (arom. monosubst.).

Methyl (S)-3-[1-benzyl-4-(cyclohexylmethyl)-3,6-dioxopiperazin-2-yl]propanoate (19)

18 (2.5 g, 7.31 mmol) was dissolved in dry acetonitrile (molecular sieves 3 Å, 25 mL) and triethylamine (1.2 mL, 8.78 mmol) and cyclohexylmethylamine (1.2 mL, 9.51 mmol) were added slowly. The reaction mixture was stirred at room temperature for 16 h. For workup, the solvent was evaporated in vacuo and the residue was dissolved in EtOAc (30 mL). The organic layer was washed with 0.5 M HCl (2 x 10 mL), 0.5 M NaOH (1 x 10 mL) and brine (1 x 10 mL), dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was purified by fc (\emptyset 8 cm, h = 16 cm, v = 65 mL, $C_6H_{12}/EtOAc = 7/3$, $R_f = 0.16$). Colorless oil, yield 1.8 g (64%). $C_{22}H_{30}N_2O_4$, $M_r =$ 386.5. HPLC (method ACN): t_R = 19.7 min, purity 99.4%. Specific rotation: $[\alpha]_D^{20}$ = +19.6 (c = 1.06; EtOAc). ¹H NMR (CDCl₃): δ [ppm] = 0.91 - 1.00 (m, 2H, NCH₂C₆H₁₁), 1.13 – 1.22 (m, 2H, NCH₂C₆H₁₁), 1.57 – 1.74 (m, 7H, NCH₂C₆H₁₁), 1.97 - 2.09 (m, 1H, CHCH₂CH₂CO₂CH₃), 2.16 - 2.22 (m, 1H, CHCH₂CH₂CO₂CH₃), 2.35 -2.50 (m, 2H, CHCH₂CH₂CO₂CH₃), 3.12 (dd, J = 13.5 / 6.9 Hz, 1H, NCH₂C₆H₁₁), 3.30 $(dd, J = 13.5 / 7.7 Hz, 1H, NCH_2C_6H_{11}), 3.67 (s, 3H, OCH_3), 3.86 - 3.89 (m, 1H, 1H)$ CHCH₂CH₂CO₂CH₃), 3.89 (d, J = 17.5 Hz, 1H, O=CCH₂N), 4.01 (d, J = 14.8 Hz, 1H, $NCH_{2}Ar$), 4.15 (d, J = 17.2 Hz, 1H, O=CCH₂N), 5.26 (d, J = 14.8 Hz, 1H, NCH₂Ar), 7.25 – 7.35 (m, 5H, Ar-H). ¹³C NMR (CDCl₃): δ [ppm] = 25.7 (1C, NCH₂C₆H₁₁), 25.8(1C, NCH₂C₆H₁₁), 26.3 (1C, NCH₂C₆H₁₁), 26.6 (1C, CHCH₂CH₂CO₂CH₃), 29.4 (1C, CHCH₂CH₂CO₂CH₃), 30.6 (1C, NCH₂C₆H₁₁), 30.8 (1C, NCH₂C₆H₁₁), 35.6 (1C, NCH₂C₆H₁₁), 47.2 (1C, NCH₂Ar), 50.5 (1C, O=CCH₂N), 52.1 (1C, OCH₃), 52.5 (1C, NCH₂C₆H₁₁), 58.7 (1C, CHCH₂CH₂CO₂CH₃), 128.2 (1C, Ar-C), 128.4 (2C, Ar-C), 129.0 (2C, Ar-C), 135 7 (1C, Ar- C_q), 164.3 (1C, C=O), 165.9 (1C, C=O), 172.8 (CO₂CH₃). MS (EM, APCI): m/z = calcd. for C₂₂H₃₁N₂O₄ 387.2284 (M+H), found 387.2308. IR (neat): $\tilde{\nu}$ [cm⁻¹] = 2920, 2850 (C-H _{aliph}), 1721 (C=O _{ester}), 1647 (C=O _{amide}), 771, 694 (arom. monosubst.).

(1*S*,2*R*,5*S*)-6-Benzyl-8-(cyclohexylmethyl)-2-methoxy-2-(trimethylsilyloxy)-6,8diazabicyclo[3.2.2]nonane-7,9-dione (20)

Under N₂, **19** (980 mg, 2.54 mmol) was dissolved in THF abs (50 mL) and the mixture was cooled down to -78 °C. Then a 1 M solution of sodium hexamethyldisilazane in THF (7.6 mL, 7.61 mmol) was added dropwise. After stirring at -78 °C for 40 min, the mixture was treated with chlorotrimethylsilane (0.8 mL, 6.34 mmol) and stirred for additional 1 h at -78 °C and at room temperature for 2 h. Then an aqueous solution of NaHCO₃ (20 mL) was added and the mixture was extracted with CH_2Cl_2 (3 x 15 mL). The combined organic layers were dried (Na_2SO_4), filtered and concentrated in vacuo. The residue was adsorbed on silica gel and given on a silica column (\emptyset 5 cm, h = 22 cm, v = 65 mL, C₆H₁₂/EtOAc = 8.5/1.5, R_f = 0.22). Colorless solid, mp 112 - 113 °C, yield 698 mg (61%). $C_{25}H_{38}N_2O_4Si$. M_r = 458.7. HPLC (method ACN): t_R = 22.9 min, purity 95.9%. Specific rotation: $[\alpha]_D^{20}$ = +39.3 (c = 0.90; EtOAc). ¹H NMR (CDCl₃): δ [ppm] = 0.21 (s, 9H, OSi(CH₃)₃), 0.86 – 0.99 (m, 2H, NCH₂C₆H₁₁, 3-H, 4-H), 1.13 – 1.26 (m, 3H, NCH₂C₆H₁₁, 3-H, 4-H), 1.45 – 1.51 (m, 1H, NCH₂C₆H₁₁, 3-H, 4-H), 1.55 – 1.75 (m, 6H, NCH₂C₆H₁₁, 3-H, 4-H), 1.80 – 1.89 (m, 3H, NCH₂C₆ H_{11} , 3-H, 4-H), 2.69 (dd, J = 13.6 / 6.3 Hz, 1H, NCH₂C₆ H_{11}), 3.24 (s, 3H, OCH₃), 3.77 (dd, J = 13.7 / 7.7 Hz, 1H, NCH₂C₆H₁₁), 3.81 – 3.83 (m, 1H, 5-*H*), 3.95 (s, 1H, 1-*H*), 4.41 (d, J = 14.6 Hz, 1H, NC*H*₂Ar), 4.66 (d, J = 14.7 Hz, 1H, NCH₂Ar), 7.23 – 7.32 (m, 5H, Ar-H). ¹³C NMR (CDCl₃): δ [ppm] = 1.75 (3C, OSi(CH₃)₃), 24.5 / 25.8 / 25.9 / 26.4 / 30.3 / 31.1 / 33.1 / 36.7 (8C, NCH₂C₆H₁₁, C-3, C-4), 49.0 (1C, NCH₂Ar), 49.3 (1C, OCH₃), 51.9 (1C, NCH₂C₆H₁₁), 59.6 (1C, C-5), 68.3 (1C, C-1), 98.9 (1C, C-2), 128.1 (1C, Ar-C), 128.6 (2C, Ar-C), 128.9 (2C, Ar-C), 136.3 (1C, Ar-C_a), 166.4 (1C, C=O), 168.8 (1C, C=O). MS (EM, APCI): m/z = calcd. for C₂₅H₃₉N₂O₄Si 459.2679 (M+H), found 459.2649. IR (neat): ῦ [cm⁻¹] = 2920, 2851 (C-H _{aliph.}), 1682 (C=O _{amide}), 1072 (Si-O), 759, 694 (arom. monosubst.).

(1*S*,5*S*)-6-benzyl-8-(cyclohexylmethyl)-6,8-diazabicyclo[3.2.2]nonane-2,7,9trione (21)

20 (500 mg, 1.09 mmol) was dissolved in a mixture of THF/0.5 M HCI (9/1, 70 mL) and the reaction mixture was stirred for 16 h at room temperature. For work-up, H₂O was added (12 mL) and the mixture was extracted with CH₂Cl₂ (3 x 25 mL). The combined organic layers were dried (Na₂SO₄), filtered and the solvent was removed in vacuo. The residue was adsorbed on silica gel and given on a silica column (\emptyset 3 cm, h = 16 cm, v = 20 mL, $C_6H_{12}/EtOAc = 7/3$, $R_f = 0.16$). Colorless solid, mp 135 -140 °C, yield 354.7 mg (91%). $C_{21}H_{26}N_2O_3$, M_r = 354.4. HPLC (method ACN): t_R = 18.0 min, purity 97.4%. Specific rotation: $[\alpha]_D^{20}$ = +88.5 (c = 0.19; MeOH). ¹H NMR $(CDCl_3)$: δ [ppm] = 0.87 - 1.02 (m, 2H, NCH₂C₆H₁₁), 1.12 - 1.26 (m, 3H, NCH₂C₆ H_{11}), 1.54 – 1.73 (m, 6H, NCH₂C₆ H_{11}), 2.82 – 2.34 (m, 1H, 4-H), 2.46 – 2.51 (m, 1H, 4-H), 2.48 (ddd, J = 15.6 / 7.2 / 4.3 Hz, 1H, 3-H), 2.74 (dt, J = 15.6 / 8.4 Hz, 1H, 3-*H*), 2.92 (dd, J = 13.8 / 6.5 Hz, 1H, NCH₂C₆H₁₁), 3.61 (dd, J = 13.8 / 7.4 Hz, 1H, NC $H_2C_6H_{11}$), 4.05 (dd, J = 4.2 / 3.2 Hz, 1H, 5-H), 4.22 (s, 1H, 1-H), 4.55 (d, J = 14.6 Hz, 1H, NCH₂Ar), 4.70 (d, J = 14.6 Hz, 1H, NCH₂Ar), 7.24 – 7.37 (m, 5H, Ar-H). MS (EM, APCI): m/z = calcd. for C₂₁H₂₇N₂O₃ 355.2021 (M+H), found 355.1982. IR (neat): \tilde{v} [cm⁻¹] = 2974, 2920, 2851 (C-H _{aliph}), 1728 (C=O _{ketone}), 733, 698 (arom. monosubst.).

(1R,2S,5S)-6-Benzyl-8-(cyclohexylmethyl)-6,8-diazabicyclo[3.2.2]nonan-2-ol (22)

(1R,2R,5S)-6-Benzyl-8-(cyclohexylmethyl)-6,8-diazabicyclo[3.2.2]nonan-2-ol (23)

22 and **23** were synthesized according to **General Procedure A: 21** (340 mg, 0.96 mmol) was reacted with LiAlH₄ solution (1M in THF, 5.8 mL, 5.76 mmol) in THF abs. (30 mL). The crude product was purified by fc (\emptyset 2 cm, h = 25 cm, v = 10 mL, C₆H₁₂/EtOAc = 9.5/0.5). C₂₁H₃₂N₂O, M_r = 328.5. **22:** (R_f = 0.30) Colorless oil, yield 69.4 mg (22%). HPLC (method ACN): t_R = 14.7 min, purity 95.1%. Specific rotation: [α]²⁰_D = +18.6 (c = 0.47; EtOAc). ¹H NMR (CDCl₃): δ [ppm] = 0.87 – 0.96 (m, 2H, NCH₂C₆H₁₁), 1.14 – 1.27 (m, 4H, NCH₂C₆H₁₁), 1.46 - 1.53 (m, 1H, NCH₂C₆H₁₁), 1.57 – 1.79 (m, 7H, NCH₂C₆H₁₁ (4H), 3-*H*, 4-*H*, O-*H*), 1.88 – 1.93 (m, 1H, 3-*H* or 4-*H*), 2.10 – 2.17 m, 1H, 3-*H* or 4-*H*), 2.25 (t, J = 10.4 Hz, 1H, NCH₂C₆H₁₁), 2.62 – 2.69 (m, 3H, NCH₂C₆H₁₁, NCH₂, 1-*H*), 2.72 – 2.92 (m, 4H, 5-*H*, NCH₂), 3.70 (s, broad, 2H,

NCH₂Ar), 3.79 – 3.82 (m, 1H, 2-H), 7.21 – 7.34 (m, 5H, Ar-H). ¹³C NMR (CDCl₃): δ [ppm] = 26.1 / 26.2 / 26.9 / 28.0 / 30.2 / 30.9 / 32.1 / 35.8 (8C, NCH₂C₆H₁₁, C-3, C-4),49.1 (1C, NCH₂), 51.3 (1C, NCH₂), 53.8 (1C, C-5), 60.7 (1C, NCH₂Ar), 62.0 (1C, C-1), 65.4 (1C, NCH₂C₆H₁₁), 70.7 (1C, C-2), 127.0 (1C, Ar-C), 128.4 (2C, Ar-C), 128.5 (2C, Ar-C), 140.0 (1C, Ar-C_q). MS (EM, APCI): m/z = calcd. for C₂₁H₃₃N₂O 329.2592 (M+H), found 329.2566. IR (neat): \tilde{v} [cm⁻¹] = 3364 (O-H), 2920, 2845 (C-H _{aliph}), 729, 698 (arom. monosubst.). 23: (R_f = 0.14) Colorless oil, yield 131.6 mg (42%). HPLC (method ACN): t_R = 16.1 min, purity 96.6%. Specific rotation: $[\alpha]_{R}^{20}$ = +18.5 (c = 0.65; EtOAc). ¹H NMR (CDCl₃): δ [ppm] = 0.81 – 0.92 (m, 2H, NCH₂C₆H₁₁), 1.17 – 1.26 (m, 3H, NCH₂C₆H₁₁), 1.33 - 1.43 (m, 1H, NCH₂C₆H₁₁), 1.64 - 1.85 (m, 9H, NCH₂C₆H₁₁) (5H), 3-*H*, 4-*H* (2H), O-*H*), 2.14 – 2.21 (m, 1H, 3-*H*), 2.31 – 2.40 (m, 2H, NCH₂C₆H₁₁), 2.72 – 2.80 (m, 4H, NCH₂, 1-H), 2.86 – 2.89 (m, 1H, 5-H), 3.11 – 3.14 (m, 1H, NCH₂), 3.72 (d, J = 13.3 Hz, 1H, NCH₂Ar), 3.77 (d, J = 13.4 Hz, 1H, NCH₂Ar), 4.02 - 4.06(m, 1H, 2-*H*), 7.26 – 7.40 (m, 5H, Ar-*H*). ¹³C NMR (CDCl₃): δ [ppm] = 26.3 / 26.4 / 27.1 / 29.6 / 30.8 / 31.5 / 32.0 / 36.4 (8C, NCH₂C₆H₁₁, C-3, C-4), 47.2 (1C, NCH₂), 51.3 (1C, NCH₂), 54.7 (1C, C-5), 61.1 (1C, NCH₂Ar), 62.1 (1C, C-1), 64.7 (1C, NCH₂C₆H₁₁), 75.2 (1C, C-2), 127.1 (1C, Ar-C), 128.4 (2C, Ar-C), 128.7 (2C, Ar-C), 139.6 (1C, Ar- C_{α}). MS (EM, APCI): m/z = calcd. for $C_{21}H_{33}N_2O$ 329.2592 (M+H), found 329.2552. IR (neat): \tilde{v} [cm⁻¹] = 3345 (O-H), 2916, 2847 (C-H _{aliph}), 729, 698 (arom. monosubst.).

Chiral HPLC

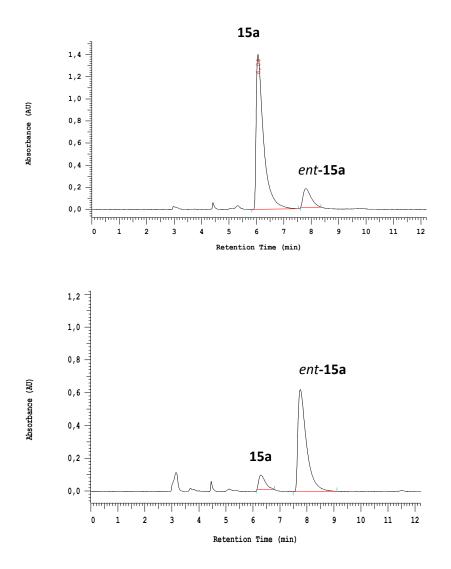


Figure S1; Chromatograms of HPLC analyses of **15a** (top) and *ent*-**15a** (bottom): Chiralpak[®] IA, isohexane : ethanol = 90 : 10, flow rate 1.0 mL/min, UV detection λ = 210 nm. Both compounds contain approximately 10 % the enantiomer.

Receptor binding studies

Fragments of guinea pig brain served as receptor source for the investigation of binding to the animal σ_1 receptor. Membrane preparation of human RPMI 8226 cells was used in case of the cellbased σ_1 assay. Both assays were performed with [³H]-(+)-pentazocine as radioligand. The non-specific binding in the guinea pig assay was determined with unlabeled (+)-pentazocine, the cell-based assay was performed with haloperidol. The σ_2 assay was carried out with rat liver homogenates. The assay was performed with [³H]DTG as radioligand in presence of non-labeled (+)-pentazocine for selective mask of the σ_1 receptors, because DTG is not selective for σ_2 receptors. Non-tritiated DTG was employed for investigation of non-specific binding. Usually, all experiments were carried out in triplicates using standard 96-well-multiplates (Diagonal). Six serially diluted stock solutions were used to determine the competition curves. The *IC*₅₀ values were calculated with the program GraphPad Prism[®] 3.0 (GraphPad Software) by non-linear regression analysis. The *K*_i values were calculated according to Cheng and Prusoff.⁵ The *K*_i values of highly affine compounds are given as mean values ± SEM from three independent experiments.

Materials

Guinea pig brains and rat livers were commercially available (Harlan-Winkelmann, Germany). The cell line RPMI 8226 used for the human σ_1 assay was acquired from the DSMZ (Heidelberg, Germany). Homogenizers: Elvehjem Potter (B. Braun Biotech International, Melsungen, Germany) and Soniprep 150, MSE, London, UK). Centrifuges: Cooling centrifuge model Rotina 35R (Hettich, Tuttlingen, Germany) and High-speed cooling centrifuge model Sorvall RC-5C plus (Thermo Fisher Scientific, Langenselbold, Germany). Multiplates: standard 96-well multiplates (Diagonal, Muenster, Germany). Shaker: self-made device with adjustable temperature and tumbling speed (scientific workshop of the institute). Harvester: MicroBeta FilterMate-96 Harvester. Filter: Printed Filtermat Typ A and B. Scintillator: Meltilex (Typ A or B) solid state scintillator. Scintillation analyzer: MicroBeta Trilux (all Perkin Elmer LAS, Rodgau-Jügesheim, Germany).

Protein determination

The protein concentration was determined by the method of Bradford, modified by Stoscheck.^{6,7} The Bradford solution was prepared by dissolving 5 mg of Coomassie Brilliant Blue G 250 in 2.5 mL of EtOH (95%, v/v). 10 mL deionized H₂O and 5 mL phosphoric acid (85%, m/v) were added to this solution, the mixture was stirred and filled to a total volume of 50.0 mL with deionized H₂O. The calibration was carried out using bovine serum albumin as a standard in 9 concentrations (0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0 and 4.0 mg /mL). In a 96-well standard multiplate, 10 µL of the calibration solution or 10 µL of the membrane receptor preparation were mixed with 190 µL of the Bradford solution, respectively. After 5 min, the UV absorption of the protein-dye complex at λ = 595 nm was measured with a platereader (Tecan Genios, Tecan, Crailsheim, Germany).

General procedures for the binding assays

The test compound solutions were prepared by dissolving approximately 10 µmol (usually 2-4 mg) of test compound in DMSO so that a 10 mM stock solution was obtained. To obtain the required test solutions for the assay, the DMSO stock solution was diluted with the respective assay buffer. The filtermats were presoaked in 0.5% aqueous polyethylenimine solution for 2 h at room temperature before use. All binding experiments were carried out in duplicates in the 96-well multiplates. The concentrations given are the final concentration in the assay. Generally, the assays were performed by addition of 50 µL of the respective assay buffer, 50 µL test compound solution in various concentrations $(10^{-5}, 10^{-6}, 10^{-7}, 10^{-8}, 10^{-9})$ and 10^{-10} mol/L), 50 µL of corresponding radioligand solution and 50 µL of the respective receptor preparation into each well of the multiplate (total volume 200 µL). The receptor preparation was always added last. During the incubation, the multiplates were shaken at a speed of 500-600 rpm at the specified temperature. Unless otherwise noted, the assays were terminated after 120 min by rapid filtration using the harvester. During the filtration each well was washed five times with 300 µL of H₂O. Subsequently, the filtermats were dried at 95 °C. The solid scintillator was melted on the dried filtermats at a temperature of 95 °C for 5 minutes. After solidifying of the scintillator at room temperature, the trapped radioactivity in the filtermats was measured with the scintillation analyzer. Each position on the filtermat corresponding to one well of the multiplate was measured for 5 min with the [3 H]counting protocol. The overall counting efficiency was 20%. The *IC*₅₀ values were calculated with the program GraphPad Prism[®] 3.0 (GraphPad Software, San Diego, CA, USA) by non-linear regression analysis. Subsequently, the *IC*₅₀ values were transformed into *K*_i values using the equation of Cheng and Prusoff.⁵

Determination of the σ_1 receptor affinity

Preparation of membrane homogenates from guinea pig brain

5 guinea pig brains were homogenized with the potter (500-800 rpm, 10 up-anddown strokes) in 6 volumes of cold 0.32 M sucrose. The suspension was centrifuged at 1200 x g for 10 min at 4 °C. The supernatant was separated and centrifuged at 23500 x g for 20 min at 4 °C. The pellet was resuspended in 5-6 volumes of buffer (50 mM TRIS, pH 7.4) and centrifuged again at 23500 x g (20 min, 4 °C). This procedure was repeated twice. The final pellet was resuspended in 5-6 volumes of buffer and frozen (-80 °C) in 1.5 mL portions containing about 1.5 mg protein/mL.

Performance of the assay

The assay was performed with the radioligand [3 H]-(+)-Pentazocine (22.0 Ci/mmol; Perkin Elmer). The thawed membrane preparation of guinea pig brain cortex (about 100 µg of the protein) was incubated with various concentrations of test compounds, 2 nM [3 H]-(+)-Pentazocine, and TRIS buffer (50 mM, pH 7.4) at 37 °C. The nonspecific binding was determined with 10 µM unlabeled (+)-Pentazocine. The K_d-value of (+)-Pentazocine is 2.9 nM.⁸

Cell culture and membrane preparation of RPMI 8226 cells

The cell line RPMI 8226 used for this assay, was obtained from *Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures (DSMZ)*, Braunschweig, Germany. The cells were grown in RPMI 1640 medium. After detaching adherent cells with the cell scraper, the harvesting of the cells was performed by centrifugation (1000 rpm, 5 min, 4 °C). The resulting pellet was washed with 10 mL PBS and resuspended in a defined volume of Tris buffer (pH 7.4, 50 mM) to gain a suspension containing 6,000,000 cells / mL. The cells were lysed and

homogenized by sonication at volumes between 25 mL and 30 mL (3 x 10 s cycles with interceptions of 10 s).⁹

Performance of the assay

The radioligand [3 H]-(+)-pentazocine in TRIS buffer (pH 7.4, 50 mM) was used at a concentration of 2 nM for the association and also for the competition experiment. Cell membrane preparations (50 µL, approximately 300,000 cells per well) were incubated in 96-well-plates (total volume: 200 µL per well). A single well contained 50 µL of [3 H]-(+)-pentazocine and 50 µL of the cell membrane preparation. 50 µL of buffer and 50 µL of haloperidol (final concentration 10 µM per well) were added for the determination of non-specific binding. Total binding was determined by addition of 100 µL buffer. Filtration follows the incubation step, using filter mats (Filtermat B), which were pre-soaked in 0.2% aqueous polyethylenimine for 2 h at room temperature. Each well was washed with 300 µL of H₂O at RT for 8 times. After drying of the filter mats, solid scintillator (MeltiLex[®] B) was melted on the mats at 95 °C. The bound radioactivity was counted in the scintillation analyzer after solidification. The overall counting efficiency was 20%.⁹

Determination of the σ_2 receptor affinity

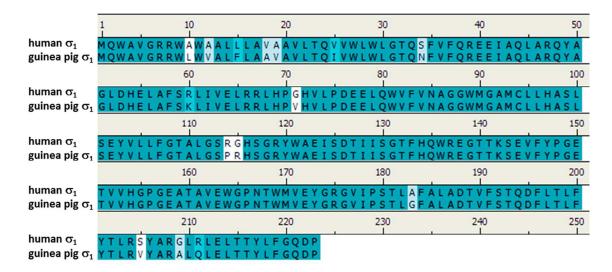
Preparation of membrane homogenates from rat liver

Two rat livers were cut into small pieces and homogenized with the potter (500-800 rpm, 10 up-and-down strokes) in 6 volumes of cold 0.32 M sucrose. The suspension was centrifuged at 1,200 x g for 10 min at 4 °C. The supernatant was separated and centrifuged at 31,000 x g for 20 min at 4 °C. The pellet was resuspended in 5-6 volumes of buffer (50 mM TRIS, pH 8.0) and incubated at room temperature for 30 min. After the incubation, the suspension was centrifuged again at 31,000 x g for 20 min at 4 °C. The final pellet was resuspended in 5-6 volumes of buffer (50 mM TRIS, pH 8.0) and incubated at 31,000 x g for 20 min at 4 °C. The final pellet was resuspended in 5-6 volumes of buffer and stored at - 80,°C in 1.5 mL portions containing about 2 mg protein/mL.

Performance of the assay

The assay was performed with the radioligand [3 H]DTG (specific activity 50 Ci/mmol; ARC, St. Louis, MO, USA). The thawed membrane preparation (about 100 µg protein) was incubated with various concentrations of the test compound, 3 nM

 $[^{3}$ H]DTG and buffer containing (+)-pentazocine (500 nM (+)-pentazocine in 50 mM TRIS, pH 8.0) at room temperature. The non-specific binding was determined with 10 μ M non-labeled DTG. The K_d value is 17.9 nM.¹⁰

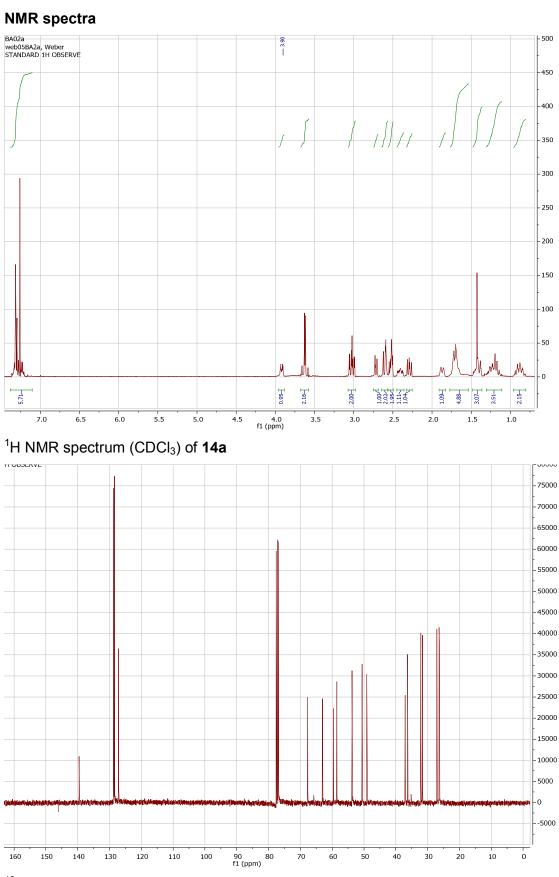

Cytotoxicity assay

The cytotoxic effects of the test compounds were investigated in seven cell lines. In case of the suspension-cell line HL 60, the test compounds were tested in a MTT-Assay. 5000 cells/well were seeded out in 50 μ L medium and the test compounds were added in five serially diluted concentrations. After an incubation time of 48 h, 20 μ L of a freshly prepared solution of MTT in PBS (2.5 mg/mL) was added to each well and the plates were incubated again under protection from light. After 6 h, 100 μ L 0.04 N HCl in isopropanol was added to each well to dissolve the MTT-formazan product and the optical density was measured at λ = 570 nm with the Anthos plate reader and the SpectraMax Plus 384 microplate reader (Molecular Devices).

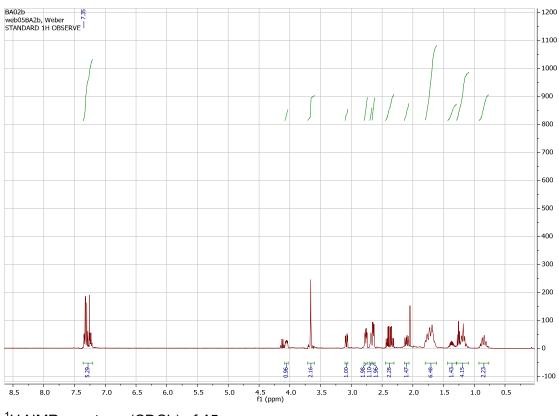
The adherent cell lines were tested in a panel included the cell lines 5637 (bladder cancer), RT-4 (bladder cancer), A427 (small cell lung cancer), LCLC 103H (large cell lung cancer), MCF-7 (breast cancer), DAN-G (pancreas cancer). All cell lines were obtained from the German Collection of Microbiology and Cell Culture (DSMZ, Braunschweig, FRG). Except for LCLC 103H, which was seeded out at 500 cells/well in 100 μ L medium, every other cell lines were plated out at 1000 cells/well in 100 μ L medium. In the primary screening the tumor cells were incubated with a 20 μ M solution of the test compound at 37 °C and 5% CO₂. After 96 h the medium was removed and the density of adherent cells was measured by staining with crystal violet as reported earlier.¹⁰ To determine the *IC*₅₀ values, five serially diluted stock solutions of the test compound in DMSO were used in the studies; concentrations giving T/C_{corr} values between 10-90% were used to estimate the *IC*₅₀ values, which were calculated by least squares of the dose-response curves.¹¹

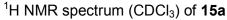
Induction of apoptosis

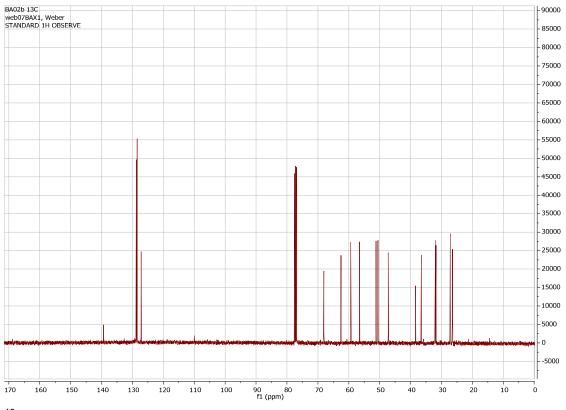
The induction of apoptosis was determined by staining the cells with annexin V and propidium iodide by using the Annexin V-FITC kit (Miltenyi Biotech, Teterow, Germany). The staining procedure was carried out according to the kit instructions as described previously.¹² Adaptations were made for the use of the adherent A427 cell line. Briefly, 5.0×10^5 cells were seeded in T25 flasks and incubated for 24 h to allow for attachment and growth. Afterwards, the cells were treated for 24 h and 48 h with substances using concentrations 2-fold higher the IC_{50} values determined in the crystal violet proliferation assay, more precisely 5.6 µM (ent-14a), 3.4 µM (ent-14c), 8.7 µM (ent-15c), and 7.4 µM (ent-14d), respectively. Following the treatment, the cells were harvested by trypsinization, washed with binding buffer and stained with annexin V for 15 min in the dark. After washing with binding buffer, the cells were stained with propidium iodide (PI) and subsequently analyzed by flow cytometry using the Macs Quant flow cytometer (Miltenyi Biotech, Bergisch Gladbach, Germany). The FITC channel ($\lambda_{Ex/Em}$ = 488/530 nm) was used for detection of Annexin V-positive cells, whereas late apoptotic/necrotic and dead cells were detected with the PI channel ($\lambda_{Ex/Em}$ = 488/690 nm). Data analysis was performed with the Macs Quantify Software (Miltenyi Biotech, Bergisch Gladbach, Germany).

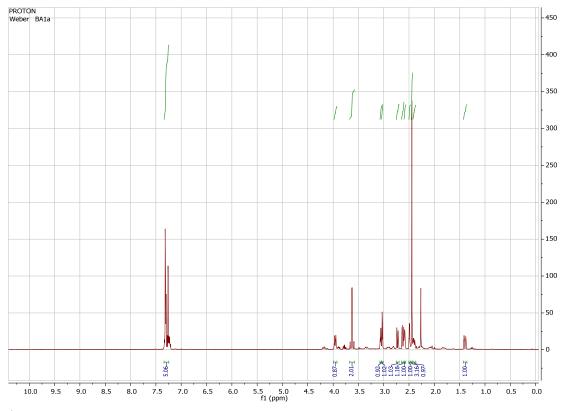


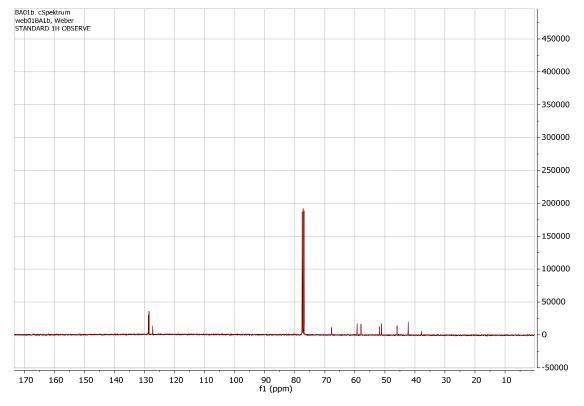
Sequence alignment of the human and the guinea pig σ_1 receptor


Figure S2. Sequence alignment of the human σ_1 receptor with the guinea pig σ_1 receptor.

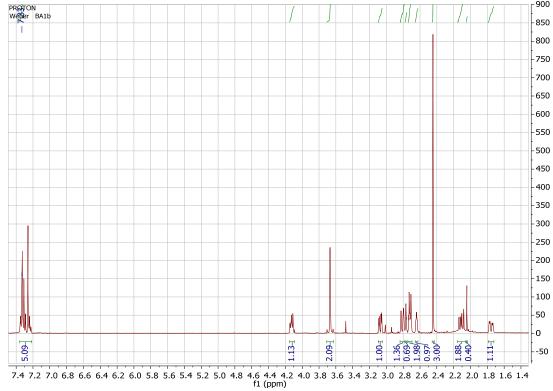

References

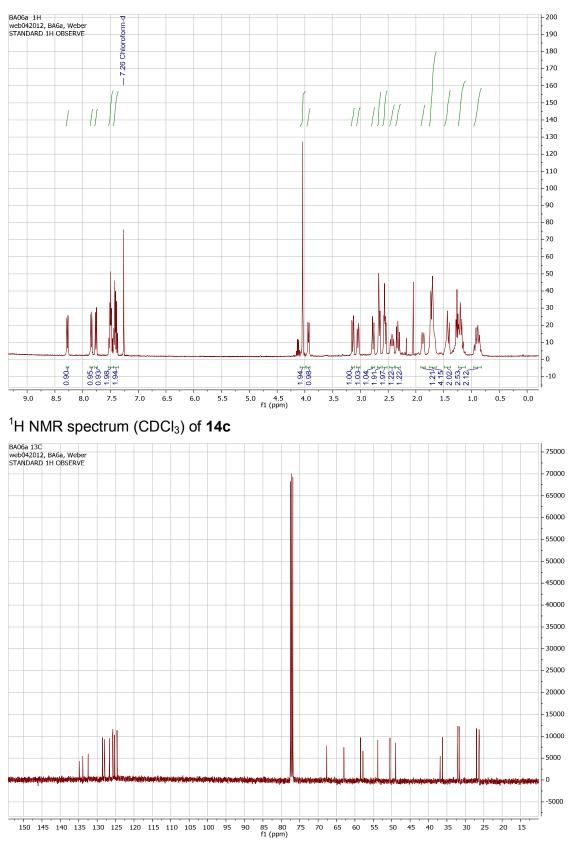

- Holl, R.; Schepmann, D.; Wünsch, B. Homologous piperazine-alcanols: chiral pool synthesis and pharmacological evaluation. *Med. Chem. Commun.* 2012, 3, 673-679.
- Weber, F.; Brune, S.; Korpis, K.; Bednarski, P. J.; Laurini, E.; Dal Col, V.; Pricl, S.; Schepmann, D.; Wünsch, B. Synthesis, pharmacological evaluation, and σ₁ receptor interaction analysis of hydroxyethyl substituted piperazines. *J. Med. Chem.* 2014, *57*(7), 2884–2894.
- Holl, R.; Schepmann, D.; Grünert, R.; Bednarski, P.J.; Wünsch, B. Relationships between the structure of 6-allyl-6,8-diazabicyclo[3.2.2]nonane derivatives and their receptor affinity and cytotoxic activity. *Bioorg. Med. Chem.* **2009**, 17, 777-793.
- (4) Geiger, C.; Zelenka, C.; Weigl, M.; Fröhlich, R.; Wibbeling, B.; Lehmkuhl, K.; Schepmann, D.; Grünert, R.; Bednarski, P. J.; Wünsch, B. Synthesis of bicyclic σ receptor ligands with cytotoxic activity. *J. Med. Chem.* **2007**, *50*, 6144–6153.
- (5) Cheng, Y.; Prusoff, H.W. Relationship between the inhibition constant (*K_i*) and the concentration of inhibitor which causes 50 per cent inhibition (*IC*₅₀) of an enzymatic reaction. *Biochem. Pharmacol.* **1973**, 22, 3099-3108.
- (6) Bradford, M.M. A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* **1976**, 72, 248-254.
- (7) Stoscheck, C. Quantification of protein. *Methods Enzymol.* 1990, 182, 50-68.
- (8) De Haven Hudkins, D.L.; Fleissner, L.C.; Ford-Rice, F.Y. Characterization of the binding of [³H]-(+)-pentazocine to σ recognition sites in guinea pig brain. *Eur. J. Pharmacol : Mol. Pharmacol. Sect.* **1992**, 227, 371-378.
- (9) Brune, S.; Schepmann, D.; Lehmkuhl, K., Frehland, B.; Wünsch, B. Characterization of ligand binding to the σ(1) receptor in a human tumor cell line (RPMI 8226) and establishment of a competitive receptor binding assay. *Assay Drug Dev. Technol.* **2012**, 10, 365-374.
- (10) Mach, R.H.; Smith, C.R.; Childers, S.R. Ibogaine possesses a selective affinity for σ_2 receptors. *Life Sci.* **1995**, 57, 57-62.
- (11) Bracht, K.; Boubakari; Grünert, R.; Bednarski, P. J. Correlations between the activities of 19 antitumor agents and the intracellular GSH concentrations in a panel of 14 human cancer cell lines: comparisons with the National Cancer Institute data. *Anti-Cancer drugs* **2006**, *17*, 41-51.
- (12) Korpis, K., Weber, F., Brune, S., Wünsch, B., Bednarski, P. J. Involvement of apoptosis and autophagy in the death of RPMI 8226 multiple myeloma cells by two enantiomeric sigma receptor ligands. *Bioorg. Med. Chem.* 2014, 22, 221– 233.


 $^{\rm 13}C$ NMR spectrum (CDCl_3) of ${\bf 14a}$

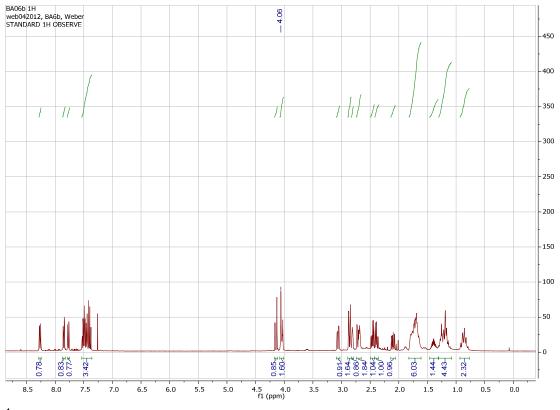


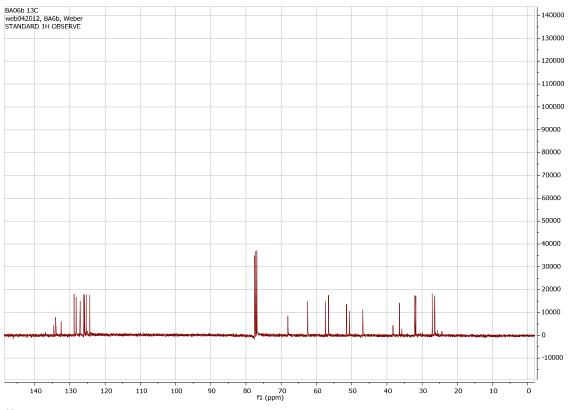
¹³C NMR spectrum (CDCl₃) of **15a**

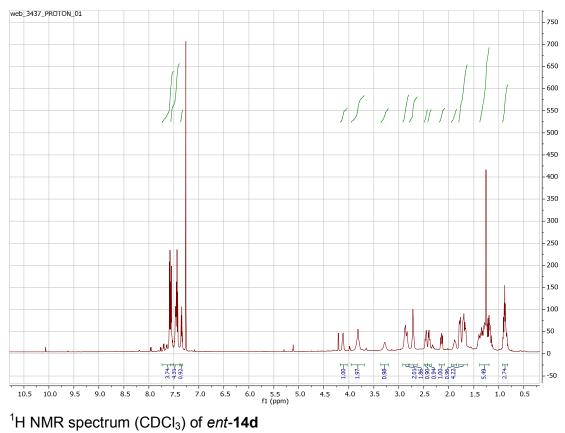


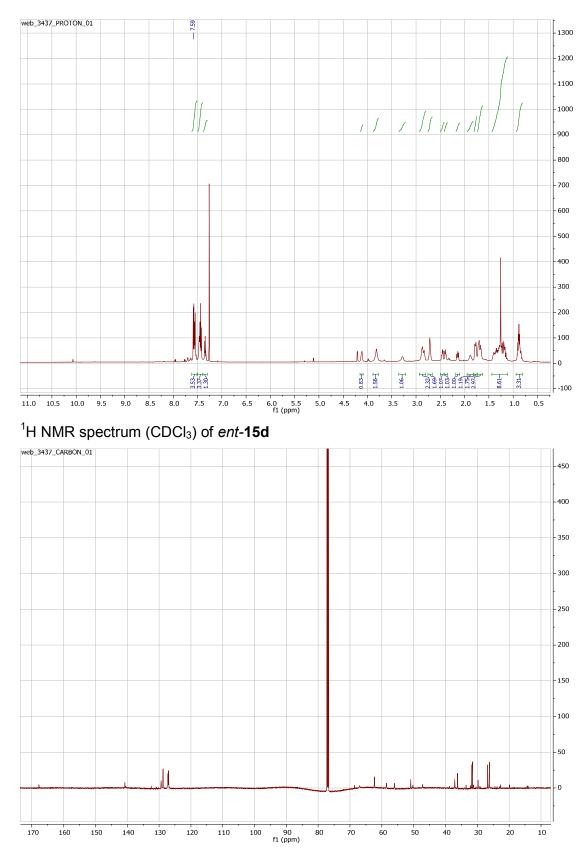

¹³C NMR spectrum (CDCl₃) of **14b**

BA01b. cSpektrum web01BA1b, Weber STANDARD 1H OBSERVE - 80000 -10000 -20000 85 80 f1 (ppm) 125 120 115 110 105 100

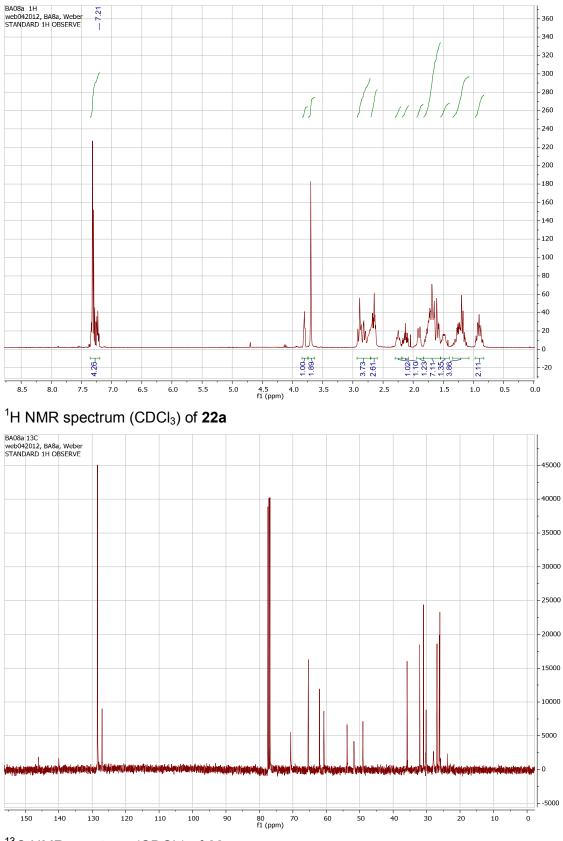

 $^{\rm 13}C$ NMR spectrum (CDCl_3) of ${\rm 15b}$



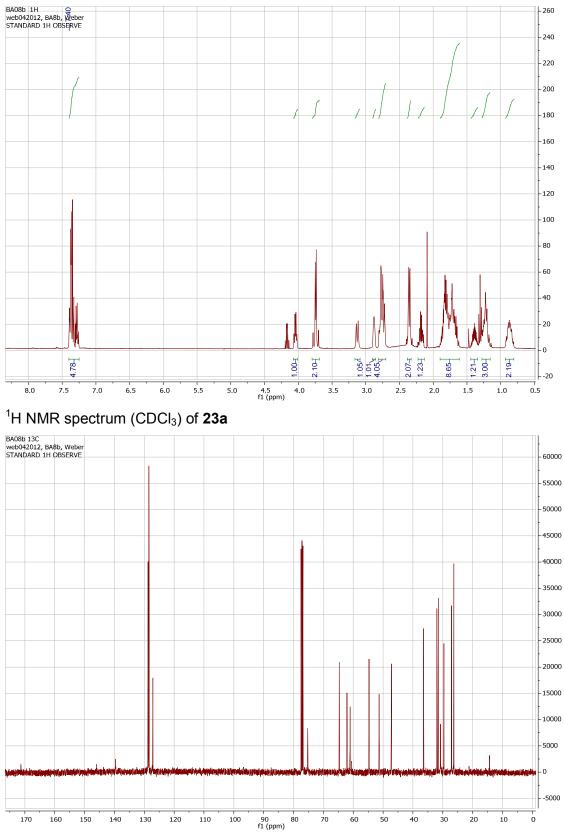

 $^{\rm 13}C$ NMR spectrum (CDCl_3) of ${\rm 14c}$



 ^{13}C NMR spectrum (CDCl₃) of **15c**



web_3437_CARBON_01 - 500 450 400 - 350 - 300 - 250 - 200 -150 -100 - 50 11 0 - -50 150 140 130 0 120 110 100 90 80 70 f1 (ppm) 60 50 40 30 20 10


 ^{13}C NMR spectrum (CDCl_3) of <code>ent-14d</code>

 ^{13}C NMR spectrum (CDCl_3) of ent-15d

¹³C NMR spectrum (CDCl₃) of **22a**

 $^{\rm 13}{\rm C}$ NMR spectrum (CDCl_3) of ${\bf 23a}$