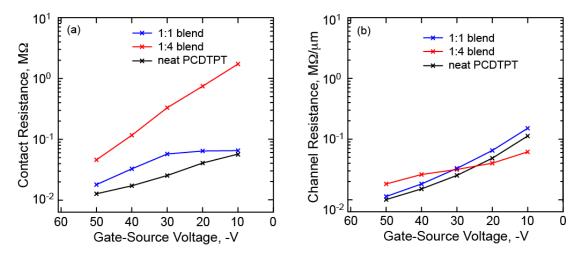

Supporting Information

Significantly Increasing the Ductility of High Performance Polymer Semiconductors Though Polymer Blending


Joshua I. Scott,¹ Xiao Xue,¹ Ming Wang,² R. Joseph Kline,³ Benjamin C. Hoffman,⁴ Daniel Dougherty,⁴ Chuanzhen Zhou,⁵ Guillermo Bazan,² and Brendan T. O'Connor¹*

¹ Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
² Center for Polymers and Organic Solids, University of California-Santa Barbara, Santa Barbara, CA 93106, USA
³ National Institute of Standards and Technology, Material Measurement Laboratory, Gaithersburg, MD 20899, USA
⁴ Organic and Carbon Electronics Laboratory, Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
⁵ Analytical Instrumentation Facility, North Carolina State University, Raleigh, NC 27695, USA * btoconno@ncsu.edu

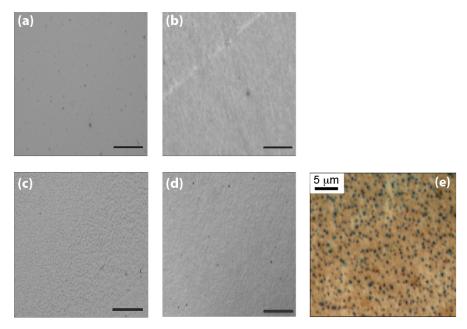
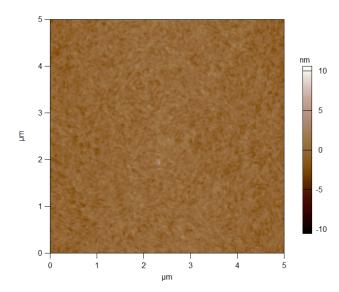
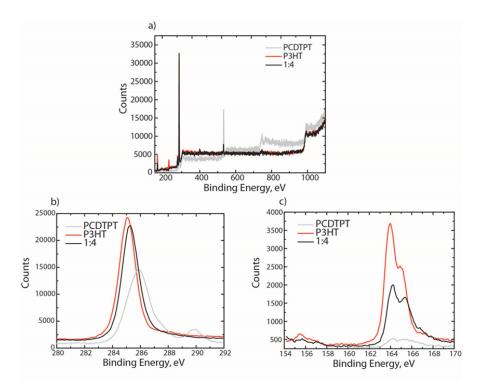
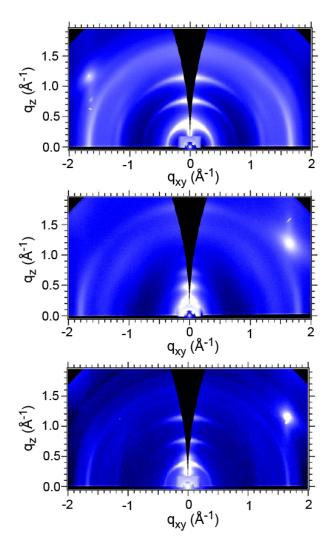


Figure S1. Output characteristics of 5 μ m channel length devices for the 1:1 and 1:4 blend films that were (a) unstrained and (b) strained by 75 % for transport parallel to the strain direction.

In **Figure S2**, the resistance is estimated following a previously described method.¹ Here, we only briefly describe the method. The resistance is estimated by taking the slope of the inverse of the current with channel length at a source-drain voltage of -60 V and at various gate-source voltages. The slope is then extrapolated to a zero channel length and multiplied by the source-drain voltage as an estimate of the contact resistance. The channel resistance per μ m of channel length is estimated by taking the slope of the inverse of the drain current vs. channel length multiplied by the source-drain voltage.¹

Figure S2. The total contact resistance (a) and channel resistance per μ m of channel length (b) given for a source-drain voltage of -60V, for a channel width of 1000 μ m.

Figure S3. Optical microscope image of unstrained (0%) and 75% strained blend films. a) 1:1 PCDTPT:P3HT unstrained film. b) 1:4 PCDTPT:P3HT unstrained film. c) 1:1 PCDTPT:P3HT 75% strained film. d) 1:4 PCDTPT:P3HT 75% strained film. The scale bar in the image is 40 μ m. (e) Higher magnification microscope image of laterally segregation in 1:1 PCDTPT:P3HT blend film. The greenish blue spots are attributed to be PCDTPT.

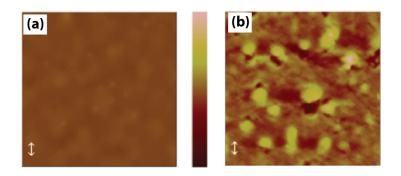

Figure S4. AFM image of neat PCDTPT film, showing no signed of nodule formation as observed in the 1:4 film.

Figure S5. XPS data of PCDTPT, P3HT, and 1:4 PCDTPT:P3HT films. a) is a survey, b) is C 1s and c) is S 2p.

Figure S6. 2D GIXD images of (top) neat P3HT film, (middle) neat PCDTPT film, (bottom) 1:4 P3HT:PCDTPT blend film. Bright spots in the upper corners of images are due to the silicon substrate.

Figure S7. AFM images of strained PCDTPT:P3HT films. a) 1:1 PCDTPT:P3HT film under 25% strain. b) 1:1 PCDTPT:P3HT film under 50% strain. The scan area is 5 µm x 5 µm.

REFERENCES

1. Klauk, H.,; Schmid, G.; Radik, W.; Weber, W.; Zhou, L.; Sheraw, C.D.; Nichols, J.A.;

Jackson, T.N.; Contact Resistance in Organic Thin Film Transistors, *Solid-State Electron*. **2003**, 47, 297-301.