Supporting Information

Side-to-side Cold Welding for Controllable Nanogap Formation from "Dumbbell" Ultrathin Gold Nanorods

Gaole Dai, Binjun Wang, Shang Xu, Yang Lu*, and Yajing Shen*

Department of Mechanical and Biomedical Engineering, City

University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong,

China

Corresponding authors' E-mail: <u>yanglu@cityu.edu.hk (Y.L)</u>,

yajishen@cityu.edu.hk (Y.S.)

SUPPORTING FIGURES

Figure s1 Sequential real time TEM images of the nanogap formation by cold welding of two "dumbbell" AuNRs versus time and the electronic beam intensity is $1.71 \text{ e}^{6}\text{A/m}^{2}$. a) The initial gap length is 22 nm, b-g) Dynamic shape evolution of the gap. h) Final geometry of the coalesced AuNRs. The scale bar is 10nm.

Figure s2 Sequential real time TEM images of the nanogap formation by cold welding of two "dumbbell" AuNRs versus time and the electronic beam intensity is $6.77 \text{ e}^5 \text{A/m}^2$. a) The initial gap length is 22 nm, b-j) Dynamic shape evolution of the gap. k) Final geometry of the coalesced AuNRs. The scale bar is 10nm.

Figure s3 Sequential real time TEM images of the nanogap formation by cold welding of two "dumbbell" AuNRs versus time and the electronic beam intensity is $5.42 \text{ e}^4 \text{A/m}^2$. a) The initial gap length is 6.5 nm, b-g) Dynamic shape evolution of the gap. h) Final geometry of the coalesced AuNRs. The scale bar is 10nm.