IRMPD Spectroscopy: Evidence of Hydrogen Bonding in the Gas Phase Conformations of Lasso Peptides and their Branched-Cyclic Topoisomers

Kevin Jeanne Dit Fouque,[†] Hélène Lavanant,^{†,}* Séverine Zirah,[‡] Vincent Steinmetz,[§] Sylvie Rebuffat,[‡] Philippe Maître,^{§,}* Carlos Afonso [†]

[†] Normandie Univ, COBRA, UMR 6014, FR 3038; Univ Rouen; INSA Rouen; CNRS, 1 Rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France

[‡] Muséum national d'Histoire naturelle, Sorbonne Universités, Centre national de la Recherche scientifique, Laboratoire Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, CP 54, 57 rue Cuvier, 75005 Paris, France.

[§] Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000 CNRS, Faculté des Sciences, Bât. 349, 91405 Orsay Cedex, France.

EXPERIMENTAL METHODS

Purification of lasso peptides. MccJ25 and capistruin were extracted from the culture supernatants by solid phase extraction using SepPak C₈ 35 cc cartridges (Waters). Upon loading of the supernatant, the resin was washed with water/0.1% formic acid and eluted with 20%, 30% and 40% acetonitrile/0.1% formic acid in water. The eluted fractions containing the peptide of interest were then evaporated and purified by semi-preparative reversed-phase

Ultimate 3000 HPLC system (Dionex) on a Luna C_{18} column (250 mm × 4.6 mm × 5 µm). Elution was performed using the following gradient of water/0.1% formic acid (solvent A) and acetonitrile (solvent B) at 40°C and 1 mL/min: linear increase from 10% B to 40% B within 30 min followed by a linear increase to 100% B in 5 min.

ESI source parameters. Multiprotonated charged ions of peptides were generated with an electrospray source ionization (ESI) operated in the positive ion mode. Solutions were introduced in the source using direct infusion with a syringe pump with a flow rate of 120 μ L/h. The instrument was operated at a capillary voltage of 4000 V using N₂ as nebulizer gas at 1.5 bar and as dry gas at 4.5 L/min and a dry temperature of 150 °C. All mass spectra were acquired in the broadband mode from *m/z* 97.2 to *m/z* 1200. The image signal was amplified and digitized using 256 K data point resulting in the recording of a 0.12 s time domain signal, which was transformed into the corresponding frequency domain by Fourier transform. No apodization was used here.

Figure S1. CCS range of different charge states of the lasso peptides (blue traces) and their corresponding branched-cyclic (red traces) topoisomers.

Figure S2. Mass spectra of mass-selected a) $[M+3H]^{3+}$ and b) $[M+4H]^{4+}$ ions and IRMPD spectra of c) $[M+3H]^{3+}$ and d) $[M+4H]^{4+}$ ions of MccJ25. IRMPD spectra were obtained at 3475 cm⁻¹ with an irradiation time of 1 ms and a CO₂ pulse of 500 µs.

Figure S3. Mass spectra of mass-selected a) $[M+3H]^{3+}$ and b) $[M+4H]^{4+}$ ions and IRMPD spectra of c) $[M+3H]^{3+}$ and d) $[M+4H]^{4+}$ ions of capistruin. IRMPD spectra were obtained at 3360 cm⁻¹ with an irradiation time of 1 ms and a CO₂ pulse of 1 ms.

	Lasso		Br. cycl.		
	[M+3H] ³⁺	$[M+4H]^{4+}$	[M+3H] ³⁺	$[M+4H]^{4+}$	Tentative assignment
CCS	383 Ų	404 Ų	437 Ų	514 Ų	
IRMPD (cm ⁻¹)	1505	1505	n.d.	1495	Amide NH bend
	n.d.	n.d.	1540	n.d.	H-bonded amide NH bend
	1610-1640	1610-1640	1610-1640	n.d.	H-bonded C=O stretch
	1650-1710	1650-1710	1650-1710	1650-1710	Carbonyl C=O stretch
	2930-3000	2930-3000	2930-3000	2930-3000	Aliphatic/aromatic CH stretch
	3200-3450	3200-3450	3200-3450	n.d.	H-bonded amide NH stretch
	3475	3475	3480	3475	Amide NH stretch
	3570	3570	3570	3570	Acid carboxylic OH stretch
	3640	3640	3640	3640	Alcohol OH stretch

Table S1. Experimental vibrational frequencies (cm^{-1}) of MccJ25 and its branched-cyclic topoisomer in the 1400-1800 and 2800-3700 cm⁻¹ spectral regions.

n.d.: no signal detected; Br. cycl.: branched-cyclic peptide

	Lasso		Br. cycl.		
	[M+3H] ³⁺	$[M+4H]^{4+}$	[M+3H] ³⁺	$[M+4H]^{4+}$	Tentative assignment
CCS	373 Ų	403 Ų	388 Ų	471 Ų	
	1505	1505	n.d.	1500	Amide NH bend
IRMPD (cm ⁻¹)	n.d.	n.d.	1525	n.d.	H-bonded amide NH bend
	1610-1640	1610-1640	1610-1640	n.d.	H-bonded C=O stretch
	1655-1710	1655-1710	1655-1710	1655-1710	Carbonyl C=O stretch
	2930-3000	2930-3000	2930-3000	2930-3000	Aliphatic/aromatic CH stretch
	3200-3410	3200-3410	3200-3410	n.d.	H-bonded amide NH stretch
	3440	3440	3440	3440	Amide NH ₂ sym. stretch
	3470	3470	3470	3470	Amide NH stretch
	3520 (sh.)	3520 (sh.)	3520 (sh.)	3520 (sh.)	H-bonded OH stretch
	3550	3550	3550	3555	Amide NH ₂ asym. stretch
	n.d.	n.d.	n.d.	3650	Alcohol OH stretch

Table S2. Experimental vibrational frequencies (cm^{-1}) of capistruin and its branched-cyclic topoisomer in the 1400-1800 and 2800-3700 cm⁻¹ spectral regions.

n.d.: no peak detected; Br. cycl.: branched-cyclic peptide; sh.: shoulder