Supporting Information

Confined Porous Graphene/SnO_x Frameworks within Polyaniline-Derived Carbon as Highly Stable Lithium-Ion Battery Anodes

Dan Zhou, Wei-Li Song, Xiaogang Li, Li-Zhen Fan*

Key Laboratory of New Energy Materials and Technologies, Institute of Advanced Materials and

Technology, University of Science and Technology Beijing, Beijing, 100083, China

*Tel./fax: +86 10 62334311. E-mail: fanlizhen@ustb.edu.cn (L.-Z. Fan).

Figure S1 TGA analysis for the pG/SnO_x/C (a) and pG/SnO₂ (b) composites (the composites were annealed from room temperature to 900 °C with a ramping rate of 10 °C min⁻¹ in air).

Figure S2 Pore size distribution curve of the pG/SnO_x/C composite measured

by BJH adsorption method.

Figure S3 FE-SEM image of pG/SnO₂.

Figure S4 High-Resolution TEM image of pG/SnO_x/C.

Table S1. Comparison of the electrochemical properties of the porous $pG/SnO_x/C$ composite with the similar anodes including the carbon coating without silicon-induced pores for LIBs.

Sample	Current density	Cycles	Capacity	Ref./Year
carbon-coated SnO ₂ /graphene	200 mA g ⁻¹	120	460 mAh g ⁻¹	[1]/2014
C@SnO ₂ -Graphene	100 mA g ⁻¹	50	879 mAh g ⁻¹	[2]/2014
SnO ₂ /C/GN-1.5	100 mA g ⁻¹	70	720 mAh g ⁻¹	<mark>[3]</mark> /2014
SnO ₂ -C/GNS	100 mA g ⁻¹	80	703 mAh g ⁻¹	<mark>[4]</mark> /2013
pG/SnO _x /C	100 mA g ⁻¹	100	907 mAh g ⁻¹	
	1000 mA g ⁻¹	400	555 mAh g ⁻¹	Our work

References

(1) Wu, G. L.; Li, Z. T.; Wu, W. T.; Wu, M. B. Effects of Calcination on the Preparation of Carbon-Coated SnO₂/Graphene as Anode Material for Lithium-Ion Batteries. *J. Alloys Compd.* **2014**,

615, 582–587.

(2) Lu, X. X.; Yang, F.; Geng, X.; Xiao, P. Enhanced Cyclability of Amorphous Carbon-Coated SnO2-Graphene Composite as Anode for Li-Ion Batteries. *Electrochim. Acta* **2014**, *147*, 596–602.

(3) Li, Z. T.; Wu, G. L.; Liu, D.; Wu, W. T.; Jiang, B.; Zheng, J. T.; Li, Y. P.; Li, J. H.; Wu, M. B.
Graphene Enhanced Carbon-Coated Tin Dioxide Nanoparticles for Lithium-Ion Secondary Batteries. *J. Mater. Chem. A* 2014, *2*, 7471–7477.

(4) Cheng, J. L.; Xin, H. L.; Zheng, H. M.; Wang, B. One-Pot Synthesis of Carbon Coated-SnO₂/Graphene-Sheet Nanocomposite with Highly Reversible Lithium Storage Capability. *J. Power Sources* **2013**, *232*, 152–158.