Supporting Information An *in-situ* potential-enhanced ion transport system based on FeHCF-PPy/PSS membrane for the removals of Ca²⁺ and Mg²⁺ from dilute aqueous solution Pengle Zhang^a, Junlan Zheng^a, Zhongde Wang^a, Xiao Du^a, Fengfeng Gao^a, Xiaogang Hao^{a*}, Guoqing Guan^b, Chuncheng Li^a, Shibin Liu^a ^b North Japan Research Institute for Sustainable Energy (NJRISE), Hirosaki University, 2-1-3, Matsubara, Aomori 030-0813, Japan **Fig. S1** Current-time curves of FeHCF-PPy/PSS and PPy/PSS membranes (electrodeposited PPy/PSS for 1 h) between -1 V reduced state and 1 V oxidized state in 0.1 M KNO₃ ^a Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China ^{*}Corresponding author. E-mail address: xghao@tyut.edu.cn (X. Hao). **Fig. S2** Removal percentages of Ca^{2+} , Mg^{2+} , Na^+ and K^+ of the binary solutions of $Ca(NO_3)_2/NaNO_3$, $Ca(NO_3)_2/KNO_3$, $Mg(NO_3)_2/NaNO_3$ and $Mg(NO_3)_2/KNO_3$ with pulse potential (-1 V to 1 V, pulse width: 60 s) and 5 V cell voltage for 5 h.