Supporting Information

Urotensin-II⁽⁴⁻¹¹⁾ Azasulfuryl Peptides: Synthesis and Biological Activity

Francesco Merlino, Ali M. Yousif, Étienne Billard, Julien Dufour-Gallant, Stéphane Turcotte, Paolo Grieco, David Chatenet and William D. Lubell

Table of Contents

1. Preparation of cumyl carbazate	S2
2. NMR spectra	S4
3. Characterization of azasulfuryl peptides mimics of UII ⁽⁴⁻¹¹⁾	S40
4. LC-MS Analyses	S47
5. Azide reduction on solid support	\$52

Preparation of cumyl carbazate

Synthesis of 2-phenylisopropyl alcohol (cumyl alcohol)

To a solution of methyl benzoate (630 μ L, 5 mmol) in 5 mL of anhydrous ether, 5 mL of a solution of 3 M methyl magnesium bromide in ether was added drop-wise at 0 °C. The reaction was brought to 45 °C with a warm water bath. After 2 h, TLC (70:30 hexanes/EtOAc) demonstrated complete conversion of the ester to 2-phenyl-propan-2-ol. The reaction mixture was poured slowly into an ice-cooled saturated solution of NH₄Cl, and extracted with EtOAc (3 x 20 mL). The organic phase were washed with brine (2 x 10 mL), dried over MgSO₄, filtered and evaporated to afford 2-phenyl-propan-2-ol (98% yield): ¹H NMR (CDCl₃, 400 MHz) δ 1.60 (6H, s), 1.75 (1H, s), 7.26 (1H, t, *J* = 7.1), 7.36 (2H, t, *J* = 7.5), 7.5 (2H, d, *J* = 7.4); ¹³C NMR (CDCl₃, 100 MHz) δ 150.0, 128.6, 127.1, 124.8, 72.5, 32.2.

Synthesis of cumyl carbonate

To a stirred solution of cumyl alcohol (800 mg, 5.88 mmol) in DCM (5 mL) and pyridine (750 μ L, 1.5 mol-equiv) at -5 °C, a solution of phenyl chloroformate (1 mL, 1.3 mol-equiv) in 4 mL of DCM was added drop-wise over 30 min. A thick paste formed gradually after the addition of the chloroformate, and the reaction mixture was further stirred overnight at 0 °C. The mixture was diluted with DCM (50 mL), washed with 1N HCl, 1N NaOH, H₂O and brine, dried over MgSO₄, filtered and evaporated to afford a quantitative yield of cumyl carbonate as colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ 1.80 (6H, s), 7.26 (2H, t, *J* = 7.1), 7.29 (2H, t, *J* = 7.5), 7.38 (2H, t, *J* = 7.5),

7.42 (2H, d, *J* = 7.4), 7.54 (2H, d, *J* = 7.4); ¹³C NMR (CDCl₃, 100 MHz) δ 151.6, 151.1, 144.7, 133.0, 129.4, 128.6, 125.1, 124.1, 121.8, 84.5, 28.2.

Synthesis of cumyl carbazate

Hydrazine hydrate (2.2 mL of a 50-60% solution in H₂O) was mixed with cumyl carbonate (1 g, 3.9 mmol) with vigorous stirring for 18 h. The mixture was poured into ice water, extracted with ethyl acetate (3 x 20 mL), and the combined organic phase was washed with NaOH 1N, H₂O, and brine, dried with sodium sulfate, filtered, and evaporated to a residue that was purified by trituration with hexane to afford cumyl carbazate as a pale yellow oil (88% yield): $R_f = 0.15$ (60:40 hexanes/EtOAc); ¹H NMR (CDCl₃, 400 MHz) δ 1.60 (6H, s), 1.75 (1H, s), 3.73 (2H, s) 7.26 (1H, t, J = 7.1), 7.36 (2H, t, J = 7.5), 7.5 (2H, d, J = 7.4); ¹³C NMR (CDCl₃, 100 MHz) δ 145.7, 128.4, 127.5, 127.6, 124.3, 81.8, 29.3.

NMR spectra

Characterization of azasulfuryl peptides mimics of UII⁽⁴⁻¹¹⁾

Peptide	% crude purity ^a	% isolated purity ^a (yield ^b)	HRMS <i>m</i> / <i>z</i> calcd (<i>m</i> / <i>z</i> observed)
[AsF ⁷]UII ⁽⁴⁻¹¹⁾ (6)	43	>99 (1%)	1059.3733 (1059.3706)
[AsBip ⁷]UII ⁽⁴⁻¹¹⁾ (7)	78	>99 (2%)	1135.4046 (1135.4064)
[AsNal(1') ⁷]UII ⁽⁴⁻¹¹⁾ (8)	58	>99 (4%)	1109.3889 (1109.3879)
[AsNal(2') ⁷]UII ⁽⁴⁻¹¹⁾ (9)	80	>99 (9%)	1109.3889 (1109.3887)
[AsK ⁸]UII ⁽⁴⁻¹¹⁾ (10)	51	>99 (1%)	550.6172° (550.6153)
$[AsK(N,N^{\varepsilon}-Me_2)^8]UII^{(4-11)}$ (11)	44	>99 (2%)	564.7192° (564.7173)

Table S1. Characterization of synthesized peptides 6-11.

^{*a*}Crude and isolated purity were assessed by LC-MS analysis at 214 nm and 254 nm using H₂O (0.1% formic acic)/MeOH (0.1% formic acid) and H₂O (0.1% formic acid)/MeCN (0.1% formic acid) as eluents. ^{*b*}Isolated yields calculated from resin loading. ^cHRMS indicate $[M+2H]^{2+}$.

Purity check/Gradient #1 - purity: >99%, t_R : 14.18 min [analytical HPLC, 20 to 80% methanol in water (0.1% formic acid) over 15 min + 90% methanol in water (0.1% formic acid) over 5 min, flow rate of 0.5 mL/min] on a Sunfire C18 analytical column (100Å, 3.5 µm, 4.6 mm X 100 mm).

Purity check/Gradient #2 - purity: >99%, t_R : 7.68 min [analytical HPLC, 20 to 80% acetonitrile in water (0.1% formic acid) over 15 min + 90% acetonitrile in water (0.1% formic acid) over 5 min, flow rate of 0.5 mL/min] on a Sunfire C18 analytical column (100Å, 3.5 µm, 4.6 mm X 100 mm).

Purity check: Gradient #1 - purity: >99%, t_R : 16.19 min [analytical HPLC, 20 to 80% methanol in water (0.1% formic acid) over 15 min + 90% methanol in water (0.1% formic acid) over 5 min, flow rate of 0.5 mL/min] on a Sunfire C18 analytical column (100Å, 3.5 µm, 4.6 mm X 100 mm).

Purity check/Gradient #2 - purity: >99%, t_R : 12.44 min [analytical HPLC, 20 to 80% acetonitrile in water (0.1% formic acid) over 15 min + 90% acetonitrile in water (0.1% formic acid) over 5 min, flow rate of 0.5 mL/min] on a Sunfire C18 analytical column (100Å, 3.5 µm, 4.6 mm X 100 mm).

Purity check: Gradient #1 - purity: >99%; t_R : 7.37 min [analytical HPLC, 20 to 60% methanol in water (0.1% formic acid) over 6 min + 90% methanol in water (0.1% formic acid) over 2 min, flow rate of 0.5 mL/min] on a Sunfire C18 analytical column (100Å, 3.5 µm, 4.6 mm X 100 mm).

Purity check: Gradient #2 - purity: >99%, t_R : 4.61 min [analytical HPLC, 20 to 60% acetonitrile in water (0.1% formic acid) over 6 min + 90% acetonitrile in water (0.1% formic acid) over 2 min, flow rate of 0.5 mL/min] on a Sunfire C18 analytical column (100Å, 3.5 µm, 4.6 mm X 100 mm).

Purity check/Gradient #1 - purity: >99%, t_R : 15.60 min [analytical HPLC, 20 to 80% methanol in water (0.1% formic acid) over 15 min + 90% methanol in water (0.1% formic acid) over 5 min, flow rate of 0.5 mL/min] on a Sunfire C18 analytical column (100Å, 3.5 µm, 4.6 mm X 100 mm).

Purity check/Gradient #2 - purity: >99%, t_R : 10.44 min [analytical HPLC, 20 to 80% acetonitrile in water (0.1% formic acid) over 15 min + 90% acetonitrile in water (0.1% formic acid) over 5 min, flow rate of 0.5 mL/min] on a Sunfire C18 analytical column (100Å, 3.5 µm, 4.6 mm X 100 mm).

Purity check/Gradient #1 - purity: >99%, t_R : 7.51 min [analytical HPLC, 10-90% acetonitrile in water (0.1% formic acid) over 8 min + 90% acetonitrile in water (0.1% formic acid) over 2 min, flow rate of 0.5 mL/min] on a Sunfire C18 analytical column (100Å, 3.5 µm, 4.6 mm X 100 mm).

Purity check/Gradient #2 - purity: >99%, t_R : 8.71 min [analytical HPLC, 10 to 90% methanol in water (0.1% formic acid) over 8 min + 90% methanol in water (0.1% formic acid) over 2 min, flow rate of 0.5 mL/min] on a Sunfire C18 analytical column (100Å, 3.5 µm, 4.6 mm X 100 mm).

Peptide $[As(N,N-Me_2)K^8]UII^{(4-11)}$ (11)

Purity check/Gradient #1 - purity: >99%, t_R : 8.04 min [analytical HPLC, 10 to 90% acetonitrile in water (0.1% formic acid) over 8 min + 90% acetonitrile in water (0.1% formic acid) over 2 min, flow rate of 0.5 mL/min] on a Sunfire C18 analytical column (100 Å, 3.5 µm, 4.6 mm X 100 mm).

Purity check/Gradient #2 - Purity: >99%, t_R : 8.61 min [analytical HPLC, 10 to 90% methanol in water (0.1% formic acid) over 8 min + 90% methanol in water (0.1% formic acid) over 2 min, flow rate of 0.5 mL/min] on a Sunfire C18 analytical column (100 Å, 3.5 µm, 4.6 mm X 100 mm).

LC-MS Analyses

LC-MS chromatogram (10 to 80% MeOH over 15 min, t_R : 17.40 min) of small amount of resin **31a** conveniently cleaved and analyzed on Sunfire C18 analytical column (100Å, 3.5 µm, 4.6 mm x 100 mm).

LC-MS chromatogram (10 to 80% MeOH over 15 min, t_R : 18.69 min) of resin **31b** aliquot cleaved and analyzed on Sunfire C18 analytical column (100Å, 3.5 µm, 4.6 mm x 100 mm).

LC-MS chromatogram (15 to 80% MeOH over 8 min, t_R : 5.17 min) of resin **31c** aliquot cleaved and analyzed on Sunfire C18 analytical column (100Å, 3.5 µm, 4.6 mm x 100 mm).

LC-MS chromatogram (20 to 80% MeOH over 15 min, t_R : 16.99 min) of resin **31d** aliquot cleaved and analyzed on Sunfire C18 analytical column (100Å, 3.5 µm, 4.6 mm x 100 mm).

LC-MS chromatogram of **35** (20-90% MeOH, 14 min, $t_R = 6.8$ min), on a Sunfire C18 analytical column (100Å, 3.5 μ m, 4.6 mm x 100 mm).

column (100Å, 3.5 µm, 4.6 mm x 100 mm).

LC-MS chromatogram of **37** (20-90% MeOH, 14 min, $t_R = 8.3$ min), on a Sunfire C18 analytical column (100Å, 3.5 µm, 4.6 mm x 100 mm).

Azide reduction on solid support

LC-MS chromatogram of **42** (10-90% MeOH, 15 min, $t_R = 7.6$ min), on a Sunfire C18 analytical column (100Å, 3.5 μ m, 4.6 mm X 100 mm).