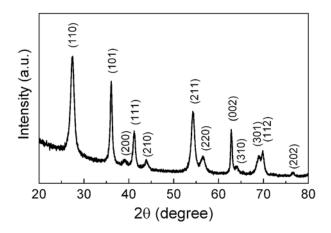
Supporting Information

Ultralong Rutile TiO₂ Nanowire Arrays for Highly Efficient Dye-Sensitized Solar Cells

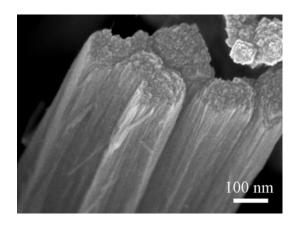
Hailiang Li,[†] Qingjiang Yu,*,[†], ^{||} Yuewu Huang,[†] Cuiling Yu,*,[‡] Renzhi Li,[§] Jinzhong Wang,[†] Fengyun Guo,[†] Shujie Jiao,[†] Shiyong Gao,[†] Yong Zhang,[†] Xitian Zhang, ^{||} Peng Wang,*,[§] and Liancheng Zhao[†]

[†]Department of Optoelectronic Information Science, School of Materials Science and Engineering and

[‡]Department of Physics, Harbin Institute of Technology, Harbin 150001, China


§State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

^{||} Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China


^{*}Corresponding authors: qingjiang.yu@hit.edu.cn; cuiling.yu@hit.edu.cn; peng.wang@ciac.ac.cn

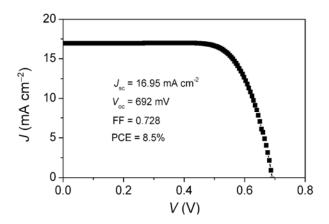

Figure S1. XRD patterns of TiO₂ NWAs prepared in the solution with 3 mL of TiCl₄, 20 mL of ethanol, 10 mL of DI water, and 30 mL of concentrated HCl at 150 °C for 12 h.

Figure S2. XRD patterns of TiO_2 NWs as a powder form that can be prepared by grinding the TiO_2 NWAs grown in the solution with 3 mL of $TiCl_4$, 20 mL of ethanol, 10 mL of DI water, and 30 mL of concentrated HCl at 150 °C for 12 h.

Figure S3. FESEM image of broken TiO₂ NWAs prepared in the solution with 3 mL of TiCl₄, 30 mL of DI water, and 30 mL of concentrated HCl at 150 °C for 12 h.

Figure S4. *J–V* characteristics of the DSC based on the N719-sensitized TiO₂ NWAs prepared in the reaction solution with 20 mL of ethanol.

Table S1. Detailed simulative values of recombination resistance (R_2) and electron lifetime (τ_r) values from EIS spectra.

DSCs	R_2 (ohm)	$\tau_{\rm r}\left({ m s}\right)$
DSC-0	616.2	0.461
DSC-10	247.6	0.331
DSC-20	199.3	0.315
DSC-30	143.5	0.298

Table S2. Detailed photovoltaic and simulative EIS parameters of DSCs based on TiO_2 NWAs prepared in the solution with 3 mL of $TiCl_4$, 20 mL of ethanol, 10 mL of DI water, and 30 mL of concentrated HCl at 150 °C for different reaction times.

(s)	L _n (μm)
0.328	134.7
0.321	122.8
0.317	110.2
0.315	102.3
	0.328 0.321 0.317

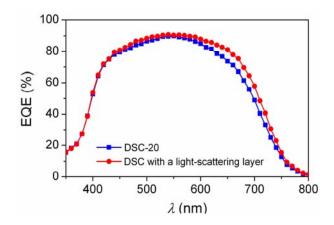
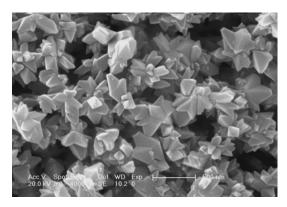



Figure S5. EQE spectra of the DSC-20 and DSC with a light-scattering layer.

Figure S6. FESEM image of the lighit-scattering particles.