Supporting Information

$\mathrm{Cs}_{3} \mathbf{W}_{3} \mathrm{PO}_{13}$: A Tungsten Phosphate with One-dimensional Zigzag Tunnels Exhibiting Strongly Anisotropic Thermal

Expansion

[^0]
CONTENTS

S1. Experimental Section
Figure S1. X-ray powder diffraction patterns of $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$
Figure S2. The local atomic environment of Cs atoms in $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$
Figure S3. The electric band structure of $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$ crystals
Figure S4. The XPS spectra of $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$
Table S1. Crystal data and structure refinements for $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$
Table S2. Atomic coordinates and isotropic displacement coefficients $\left(\AA^{2}\right)$ in $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$

Table S3. Atomic displacement parameters $\left(\AA^{2}\right)$ in $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$
Table S4. Bond distances (\AA) in $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$
Table S5. The angles for $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$

S1. Experimental Section

Single Crystal Growth

$\mathrm{CsCO}_{3}\left(\mathrm{AR}, \mathrm{SCRC}\right.$, China), $\mathrm{WO}_{3}\left(\mathrm{AR}, \mathrm{SCRC}\right.$, China), $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}(\mathrm{AR}$, XL, China) and $\mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{AR}, \mathrm{SCRC}$, China) from commercial sources were used as raw materials. The single crystal of $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$ was obtained by a flux method through spontaneous crystallization using $\mathrm{B}_{2} \mathrm{O}_{3}$ and WO_{3} as the flux. The raw materials of $\mathrm{CsCO}_{3}, \mathrm{WO}_{3}$, $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ and $\mathrm{B}_{2} \mathrm{O}_{3}$ were mixed in an agate mortar in the molar ratios 4: 3:3:3 and packed into a platinum crucible. The mixture was gradually heated to 973 K in a self-made furnace for 24 h and additional $\mathrm{B}_{2} \mathrm{O}_{3}$ and WO_{3} were added to adjust the viscosity and the volatility of the melt. After then the temperature was cooled down at a rate of 30 K per day until 800 K and finally quenched to room temperature. The products were place in water for 24 h and many transparent, acicular crystals were obtained. The polycrystalline product can also be obtained by traditional high temperature solid-state reaction with a stoichiometric ratio of $\mathrm{CsCO}_{3}, \mathrm{WO}_{3}$ and $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$. The mixture were packed into a platinum crucible and heated to $\sim 1000 \mathrm{~K}$ over 5 days with several grindings. The powder samples were characterized by powder X-ray diffraction.

Single-Crystal Structure Determination

The single crystal X-ray diffraction measurements were performed on a Rigaku AFC10 diffractometer equipped with a graphite-monochromated $\mathrm{K} \alpha(\lambda=0.71073 \AA$) radiation. The Crystalclear software was used for data extraction and integration and the program XPREP was used for face-indexed absorption corrections. The structures were solved by direct methods using SHELXS-97 and then refined by full-matrix least-squares refinement on F^{2} with SHELXL- 97^{1} found in the software suite WinGX ${ }^{2}$. The structures were verified using the ADDSYM algorithm from the program PLATON, ${ }^{3}$ and no higher symmetries were found.

X-ray Powder Diffraction

X-ray powder diffraction of the polycrystalline materials were performed at room temperature using an automated Bruker D8 Focus X-ray diffractometer equipped with
a diffracted monochromator set for $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.5418 \AA)$ radiation. The scanning step width of 0.02° and the scanning rate of $0.2^{\circ} \mathrm{s}^{-1}$ were applied to record the patterns in the 2 theta range of $10-75^{\circ}$.

Thermal Stability Measurement

About 10 mg of $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$ were used for the DSC (LABSYS DSC thermal analyzer) measurement. The sample were placed in platinum crucibles and heated from room temperature to $850^{\circ} \mathrm{C}$ at the rate of $20^{\circ} \mathrm{C} / \mathrm{min}$ with surrounding N_{2} gas. The melted residues were examined and analyzed by X-ray powder diffraction after the experiments.

Variable-temperature X-ray powder diffraction (VT-PXRD)

The variable-temperature X-ray powder diffraction was recorded on a Bruker D8-discover X-ray diffractometer equipped with a diffracted monochromator set for $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.5418 \AA$) radiation. Patterns at low temperature (13-270 K) were separately recorded with a scanning step width of 0.01°. The low-temperature conditions were obtained using anG-M refrigerator, in which helium acts as the refrigerating fluid.

UV-Visible-Near-Infrared (NIR) Diffuse reflectance Spectroscopy

UV-visible-NIR diffuse reflectance data for the title compound were collected with a SolidSpec-3700 DUV spectrophotometer in the wavelength range from 300 to 1200 nm . Fluororesin was applied as the standard.

XPS Spectra measurement

The XPS spectra was collected with a PHI Quantera SXM X-ray photoelectron spectroscopy equipped with a hemispherical energy analyzer. The radii of the X-ray beam spot is 100 um and step length of 0.1 eV and the angle of incidence of 45 deg are chosen.

Computational Method

The first-principles calculations were performed using the plane-wave pseudopotential method implemented in the CASTEP package ${ }^{4}$. The local density approximation (LDA) with CA-PZ functionals and optimized norm-conserving pseudopotentials are adopted in these calculations. O $2 s^{2} 2 p^{4}$, P $3 s^{2} 3 p^{5}$, Cs $5 s^{2} 5 p^{6} 6 s^{1}$
and W $5 \mathrm{~d}^{4} 6 \mathrm{~s}^{2}$ are treated as valence electrons. The kinetic energy cutoff of 900 eV and Monkhorst-Pack $1 \times 3 \times 1$ k-point meshes ${ }^{5}$ are used. The choice of these computational parameters is good enough to ensure the accuracy of present purpose.

Figure S1. X-ray powder diffraction patterns of $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$. The bottom and middle panels show the simulated and measured XRD derived from the $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$ crystal, respectively, while the top panel shows the XRD for the compound after melting.

Figure S2. The local atomic environment of Cs atoms in $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$.

Figure S3. The electric band structure of $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$ crystals, which show that $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$ is a direct gap crystal with calculated band gap of 1.83 eV , which is smaller than its experimental value of 3.27 eV . The discrepancy between experimental and calculated band gap is due to the notorious issue of exchange-correlation functionals. ${ }^{6}$

Figure S4. The XPS spectra of $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$, whose binding energy is calibrated with C $1 \mathrm{~s}=284.8 \mathrm{eV}$. The main peaks of Cs 3d5(located at 724.08 eV), O $1 \mathrm{~s}($ located at 529.08 eV), $\mathrm{P} 2 \mathrm{p}($ located at 131.94 eV) and W 4 f (located at 35.5 eV) can match with that of $\mathrm{CsOH}, \mathrm{Y} 2 \mathrm{O} 3, \mathrm{~K} 2 \mathrm{HPO} 4$ and WO3, respectively, indicating the valence of +1 , $-2,+5$ and +6 for cesium, oxygen, phosphorus and tungsten. ${ }^{7}$

Table S1. Crystal data and structure refinements for $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$

	$\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$
Empirical formula	Cs6 O26 P2 W6
Formula weight	2378.38
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Orthorhombic, Pnma $a=14.9294(12) \AA \quad \text { alpha }=90 \text { deg } .$
Unit cell dimensions	$\begin{array}{ll} b=7.1855(5) \AA & \text { beta }=90 \text { deg. } \\ c=25.6895(19) \AA & \text { gamma }=90 \text { deg. } . \end{array}$
Volume	$2755.8(4) \AA \wedge 3$
Z, Calculated density	$4,5.732 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$32.969 \mathrm{~mm}^{\wedge}-1$
F(000)	4046
Crystal size	$0.12 \times 0.10 \times 0.08 \mathrm{~mm}$
Theta range for data collection	1.58 to 25.05 deg.
Limiting indices	$-17 \leq h \leq 14,-8 \leq k \leq 8,-30 \leq 1 \leq 30$
Reflections collected / unique	$17125 / 2661[\mathrm{R}(\mathrm{int})=0.553]$
Completeness to theta $=25.05$	100.00\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.1779 and 0.1098
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	2661 / 289 / 211
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.109
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0361, \mathrm{wR} 2=0.0827$
R indices (all data)	$\mathrm{R} 1=0.0400, \mathrm{wR} 2=0.0845$
Largest diff. peak and hole	4.585 and -5.024 e. $\mathrm{A}^{\wedge}-3$
Empirical formula	Cs6 O26 P2 W6
Formula weight	2378.38
Temperature	293(2) K

Table S2. Atomic coordinates $\left(\times 10^{-4}\right)$ and isotropic displacement coefficients $\left(\AA^{2} \times 10^{-3}\right)$

	in $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$			
	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
$\mathrm{W}(1)$	$8743(1)$	2500	$5770(1)$	$5(1)$
$\mathrm{W}(2)$	$11119(1)$	2500	$6270(1)$	$5(1)$
$\mathrm{W}(3)$	$9308(1)$	$-7(1)$	$7006(1)$	$6(1)$
$\mathrm{W}(4)$	$7488(1)$	$-81(1)$	$4716(1)$	$5(1)$
$\mathrm{P}(1)$	$6564(3)$	2500	$5658(2)$	$7(1)$
$\mathrm{P}(2)$	$10254(4)$	-2500	$7935(2)$	$23(1)$
$\mathrm{O}(1)$	$9536(9)$	2500	$7229(4)$	$10(2)$
$\mathrm{O}(2)$	$8815(6)$	$711(10)$	$6384(3)$	$9(1)$
$\mathrm{O}(3)$	$11567(6)$	$4285(10)$	$5687(3)$	$10(2)$
$\mathrm{O}(4)$	$6622(6)$	$753(10)$	$5303(3)$	$9(2)$
$\mathrm{O}(5)$	$7668(8)$	2500	$4601(4)$	$9(2)$
$\mathrm{O}(6)$	$10576(6)$	$4398(10)$	$6587(3)$	$9(2)$
$\mathrm{O}(7)$	$8481(6)$	$608(11)$	$5338(3)$	$9(1)$
$\mathrm{O}(8)$	$6614(6)$	$-365(11)$	$4285(3)$	$14(2)$
$\mathrm{O}(9)$	$9931(8)$	2500	$5731(4)$	$9(2)$
$\mathrm{O}(10)$	$7439(8)$	-2500	$5041(4)$	$11(2)$
$\mathrm{O}(11)$	$7409(8)$	2500	$6009(4)$	$11(2)$
$\mathrm{O}(12)$	$10148(6)$	$-772(12)$	$7572(3)$	$16(2)$
$\mathrm{O}(13)$	$8323(6)$	$-327(12)$	$7358(3)$	$17(2)$
$\mathrm{O}(14)$	$9454(9)$	-2500	$6751(4)$	$11(2)$
$\mathrm{O}(15)$	$12139(9)$	2500	$6590(5)$	$13(2)$
$\mathrm{O}(16)$	$5710(10)$	2500	$5951(5)$	$21(3)$
$\mathrm{O}(17)$	$9423(14)$	-2500	$8305(7)$	$51(4)$
$\mathrm{O}(18)$	$11044(11)$	-2500	$8205(6)$	$29(2)$
$\mathrm{Cs}(1)$	$5064(1)$	7500	$9416(1)$	$22(1)$
$\mathrm{Cs}(2)$	$7275(1)$	7500	$8209(1)$	$52(1)$
$\mathrm{Cs}(3)$	$12512(1)$	-2500	$8824(1)$	$19(1)$
$\mathrm{Cs}(4)$	$5031(1)$	7500	$5559(1)$	$41(1)$
$\mathrm{Cs}(5)$	$6649(1)$	2500	$7169(1)$	$30(1)$
$\mathrm{Cs}(6)$	$9146(1)$	2500	$8385(1)$	$20(1)$

Table S3. Atomic displacement parameters $\left(\AA^{2} \times 10^{-3}\right)$ in $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$.

	U 3	U 2	U 3	U 4	U	
$\mathrm{W}(1)$	$8(1)$	$5(1)$	$1(1)$	0	$-1(1)$	U
$\mathrm{W}(2)$	$9(1)$	$6(1)$	$1(1)$	0	$0(1)$	0
$\mathrm{~W}(3)$	$13(1)$	$3(1)$	$2(1)$	$1(1)$	$0(1)$	$0(1)$
$\mathrm{W}(4)$	$10(1)$	$3(1)$	$3(1)$	$-1(1)$	$0(1)$	$0(1)$
$\mathrm{Cs}(3)$	$24(1)$	$21(1)$	$13(1)$	0	$4(1)$	0
$\mathrm{P}(1)$	$9(2)$	$9(2)$	$4(2)$	0	$0(2)$	0
$\mathrm{P}(2)$	$27(1)$	$21(1)$	$21(1)$	0	$-2(1)$	0
$\mathrm{O}(1)$	$16(4)$	$7(4)$	$8(4)$	0	$-3(4)$	0
$\mathrm{O}(2)$	$13(3)$	$7(3)$	$8(3)$	$-1(2)$	$-1(3)$	$-1(2)$
$\mathrm{O}(3)$	$13(4)$	$6(3)$	$10(3)$	$2(3)$	$0(3)$	$4(3)$
$\mathrm{O}(4)$	$11(3)$	$7(3)$	$9(3)$	$-1(3)$	$2(3)$	$-1(3)$
$\mathrm{O}(5)$	$16(4)$	$6(4)$	$6(4)$	0	$1(4)$	0
$\mathrm{O}(6)$	$14(3)$	$4(3)$	$10(3)$	$-2(3)$	$-1(3)$	$-2(3)$
$\mathrm{O}(7)$	$11(3)$	$9(3)$	$6(3)$	$3(2)$	$-1(3)$	$0(3)$
$\mathrm{O}(8)$	$21(5)$	$10(4)$	$12(4)$	$-5(3)$	$-9(4)$	$3(3)$
$\mathrm{O}(9)$	$9(2)$	$9(2)$	$8(2)$	0	$0(1)$	0
$\mathrm{O}(10)$	$17(5)$	$7(4)$	$9(4)$	0	$2(4)$	0
$\mathrm{O}(11)$	$11(2)$	$11(2)$	$11(2)$	0	$0(1)$	0
$\mathrm{O}(12)$	$17(2)$	$16(2)$	$16(2)$	$0(1)$	$-1(1)$	$0(1)$
$\mathrm{O}(13)$	$21(5)$	$16(4)$	$12(4)$	$4(3)$	$6(4)$	$-1(4)$
$\mathrm{O}(14)$	$19(5)$	$7(4)$	$8(4)$	0	$0(4)$	0
$\mathrm{O}(15)$	$13(3)$	$13(3)$	$13(3)$	0	$0(1)$	0
$\mathrm{O}(16)$	$20(7)$	$25(6)$	$19(6)$	0	$5(5)$	0
$\mathrm{O}(17)$	$51(4)$	$51(4)$	$51(4)$	0	$0(1)$	0
$\mathrm{O}(18)$	$28(2)$	$30(2)$	$29(2)$	0	$-3(1)$	0
$\mathrm{Cs}(1)$	$25(1)$	$23(1)$	$18(1)$	0	$-7(1)$	0
$\mathrm{Cs}(2)$	$78(1)$	$30(1)$	$47(1)$	0	$41(1)$	0
$\mathrm{Cs}(4)$	$25(1)$	$50(1)$	$47(1)$	0	$-3(1)$	0
$\mathrm{Cs}(5)$	$27(1)$	$47(1)$	$17(1)$	0	$0(1)$	0
$\mathrm{Cs}(6)$	$14(1)$	$39(1)$	$7(1)$	0	$1(1)$	0
						0

Table S4. Bond distances (\AA) in $\mathrm{Cs}_{3} W_{3} P O_{13}$.

bonds	length	bonds	length
$\mathrm{W}(1)-\mathrm{O}(9)$	$1.776(12)$	$\mathrm{W}(3)-\mathrm{O}(12)$	$1.997(9)$
$\mathrm{W}(1)-\mathrm{O}(7)$	$1.797(8)$	$\mathrm{W}(4)-\mathrm{O}(8)$	$1.722(9)$
$\mathrm{W}(1)-\mathrm{O}(2)$	$2.038(8)$	$\mathrm{W}(4)-\mathrm{O}(5)$	$1.898(3)$
$\mathrm{W}(1)-\mathrm{O}(11)$	$2.085(12)$	$\mathrm{W}(4)-\mathrm{O}(10)$	$1.930(5)$
$\mathrm{W}(2)-\mathrm{O}(15)$	$1.731(13)$	$\mathrm{W}(4)-\mathrm{O}(4)$	$2.074(8)$
$\mathrm{W}(2)-\mathrm{O}(6)$	$1.783(8)$	$\mathrm{W}(4)-\mathrm{O}(7)$	$2.237(8)$
$\mathrm{W}(2)-\mathrm{O}(3)$	$2.082(8)$	$\mathrm{P}(1)-\mathrm{O}(16)$	$1.480(14)$
$\mathrm{W}(2)-\mathrm{O}(9)$	$2.250(12)$	$\mathrm{P}(1)-\mathrm{O}(11)$	$1.549(13)$
$\mathrm{W}(3)-\mathrm{O}(13)$	$1.742(9)$	$\mathrm{P}(1)-\mathrm{O}(4)$	$1.555(8)$
$\mathrm{W}(3)-\mathrm{O}(2)$	$1.835(8)$	$\mathrm{P}(2)-\mathrm{O}(18)$	$1.368(17)$
$\mathrm{W}(3)-\mathrm{O}(14)$	$1.919(4)$	$\mathrm{P}(2)-\mathrm{O}(12)$	$1.560(9)$
$\mathrm{W}(3)-\mathrm{O}(1)$	$1.920(4)$	$\mathrm{P}(2)-\mathrm{O}(17)$	$1.56(2)$

Table S5. The angles for $\mathrm{Cs}_{3} \mathrm{~W}_{3} \mathrm{PO}_{13}$.

angle	degree	angle	degree
$\mathrm{O}(9)-\mathrm{W}(1)-\mathrm{O}(7)$	$100.5(3)$	$\mathrm{O}(8)-\mathrm{W}(4)-\mathrm{O}(5)$	$97.1(5)$
$\mathrm{O}(9)-\mathrm{W}(1)-\mathrm{O}(2)$	$89.5(4)$	$\mathrm{O}(8)-\mathrm{W}(4)-\mathrm{O}(10)$	$98.2(4)$
$\mathrm{O}(7)-\mathrm{W}(1)-\mathrm{O}(2)$	$90.7(3)$	$\mathrm{O}(5)-\mathrm{W}(4)-\mathrm{O}(10)$	$162.4(5)$
$\mathrm{O}(9)-\mathrm{W}(1)-\mathrm{O}(11)$	$166.1(5)$	$\mathrm{O}(8)-\mathrm{W}(4)-\mathrm{O}(4)$	$91.7(4)$
$\mathrm{O}(7)-\mathrm{W}(1)-\mathrm{O}(11)$	$88.5(3)$	$\mathrm{O}(5)-\mathrm{W}(4)-\mathrm{O}(4)$	$85.4(4)$
$\mathrm{O}(2)-\mathrm{W}(1)-\mathrm{O}(11)$	$79.7(3)$	$\mathrm{O}(10)-\mathrm{W}(4)-\mathrm{O}(4)$	$85.5(4)$
$\mathrm{O}(15)-\mathrm{W}(2)-\mathrm{O}(6)$	$100.5(4)$	$\mathrm{O}(8)-\mathrm{W}(4)-\mathrm{O}(7)$	$171.0(4)$
$\mathrm{O}(15)-\mathrm{W}(2)-\mathrm{O}(3)$	$93.4(4)$	$\mathrm{O}(5)-\mathrm{W}(4)-\mathrm{O}(7)$	$78.5(4)$
$\mathrm{O}(6)-\mathrm{W}(2)-\mathrm{O}(3)$	$90.2(3)$	$\mathrm{O}(10)-\mathrm{W}(4)-\mathrm{O}(7)$	$85.1(4)$
$\mathrm{O}(15)-\mathrm{W}(2)-\mathrm{O}(9)$	$170.4(5)$	$\mathrm{O}(4)-\mathrm{W}(4)-\mathrm{O}(7)$	$80.2(3)$
$\mathrm{O}(6)-\mathrm{W}(2)-\mathrm{O}(9)$	$85.6(3)$	$\mathrm{O}(16)-\mathrm{P}(1)-\mathrm{O}(11)$	$113.9(7)$
$\mathrm{O}(3)-\mathrm{W}(2)-\mathrm{O}(9)$	$79.1(3)$	$\mathrm{O}(16)-\mathrm{P}(1)-\mathrm{O}(4)$	$110.3(5)$
$\mathrm{O}(13)-\mathrm{W}(3)-\mathrm{O}(2)$	$98.7(4)$	$\mathrm{O}(11)-\mathrm{P}(1)-\mathrm{O}(4)$	$107.2(4)$
$\mathrm{O}(13)-\mathrm{W}(3)-\mathrm{O}(14)$	$98.6(5)$	$\mathrm{O}(18)-\mathrm{P}(2)-\mathrm{O}(12)$	$113.0(5)$
$\mathrm{O}(2)-\mathrm{W}(3)-\mathrm{O}(14)$	$90.6(4)$	$\mathrm{O}(18)-\mathrm{P}(2)-\mathrm{O}(17)$	$112.1(10)$
$\mathrm{O}(13)-\mathrm{W}(3)-\mathrm{O}(1)$	$96.8(5)$	$\mathrm{O}(12)-\mathrm{P}(2)-\mathrm{O}(17)$	$106.4(6)$
$\mathrm{O}(2)-\mathrm{W}(3)-\mathrm{O}(1)$	$93.8(4)$	$\mathrm{W}(3)-\mathrm{O}(2)-\mathrm{W}(1)$	$150.8(5)$
$\mathrm{O}(14)-\mathrm{W}(3)-\mathrm{O}(1)$	$163.1(5)$	$\mathrm{P}(1)-\mathrm{O}(4)-\mathrm{W}(4)$	$134.0(5)$
$\mathrm{O}(13)-\mathrm{W}(3)-\mathrm{O}(12)$	$96.7(4)$	$\mathrm{W}(1)-\mathrm{O}(7)-\mathrm{W}(4)$	$138.8(4)$
$\mathrm{O}(2)-\mathrm{W}(3)-\mathrm{O}(12)$	$164.6(4)$	$\mathrm{W}(1)-\mathrm{O}(9)-\mathrm{W}(2)$	$138.8(6)$
$\mathrm{O}(14)-\mathrm{W}(3)-\mathrm{O}(12)$	$85.4(4)$	$\mathrm{P}(1)-\mathrm{O}(11)-\mathrm{W}(1)$	$127.3(7)$
$\mathrm{O}(1)-\mathrm{W}(3)-\mathrm{O}(12)$	$86.0(4)$	$\mathrm{P}(2)-\mathrm{O}(12)-\mathrm{W}(3)$	$135.8(6)$

References

(1) Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
(2) Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 827.
(3) Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7.
(4) (a) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64, 1045-1097. (b) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. Kristallogr. Z. 2005, 220, 567-570.
(5) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188-5192.
(6) Wang, C. S. and Klein, B. M. Phys. Rev. B 1981, 24, 3417-29
(7) http://www.lasurface.com/database/elementxps.php

[^0]: Li, ${ }^{\star}$ Chuangtian Chen ${ }^{\dagger}$ and Zheshuai Lin*'s
 ${ }^{\dagger}$ Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
 ${ }^{\ddagger}$ State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
 ${ }^{\S}$ University of the Chinese Academy of Sciences, Beijing 100049, China.

