Supporting Information

for

Impregnation of Polyethylenimine in Mesoporous Multilamellar Silica Vesicles

for CO₂ Capture: A Kinetic Study

Lihuo Zhang, Ni Zhan, Qing Jin, Jun Hu*, Honglai Liu

State Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237,

China. *E-mail: junhu@ecust.edu.cn

Figure S1 (a) TG profile (MMSV(a)-PEI-60%) for dry CO₂ adsorption and desorption at 90 °C and (b) TG profile (MMSV(a)-PEI-60%) for humid CO₂ (30%RH) adsorption and desorption at 90 °C

Figure S2 SEM image of MMSV(c)

Figure S3 (a) TG and (b) DTG curves for MMSV(a), DTAB, DHDAB and MMSV(c) with a temperature ramp of 10 $^{\circ}$ C/min in pure N₂

Figure S4 TG (a) and DTG (b) curves for MMSV(c)/PEIs with a temperature ramp of 10 °C/min in pure N_2

Figure S5 Nitrogen adsorption/desorption isotherms of MMSV-PEIs

Figure S6 Repeating demonstrations of CO_2 dynamic adsorption on MMSV(a)-PEI-60%

The CO₂ capacities are 4.68, 4.73, and 4.59 mmol/g, respectively, and the standard deviation is calculated as ± 0.058 .

Figure S7 CO_2 adsorption capacity of MMSV(a)/PEIs with different amine loadings, Pure PEI and MMSV(a) at 90 °C under 20 mL/min flow rate of pure CO_2 in TGA

Figure S8 (a) Comparison of dynamic CO₂ adsorption in isothermal conditions for MMSV-PEI-60% at adsorption temperatures of 60, 75, 90 and 100 °C under 20 mL/min flow rate of pure CO₂ in TGA, (b) CO₂ adsorption capacity of MMSV(a)/PEIs with different amine loadings at adsorption temperatures of 60, 75, 90 and 100 °C under 20 mL/min flow rate of pure CO₂ in TGA and (c) Fitting plots of t/q_t against t as predicted by the second-order rate law

Figure S9 Cyclic adsorption/desorption of MMSV(a)-PEI-60% under dry pure CO₂ at 90 $^{\circ}\text{C}$

Samples	$S_{BET}(m^2/g)$	Volume(cm ³ /g)
MSMV(c)	797.7	0.857
MSMV(c)-PEI-40%	39.7	0.13
MSMV(c)-PEI-50%	16.9	0.034
MSMV(c)-PEI-60%	9.5	0.016
MSMV(c)-PEI-70%	3.4	0.005
MSMV(a)	43.9	0.192
MSMV(a)-PEI-40%	10.9	0.049
MSMV(a)-PEI-50%	2.37	0.001
MSMV(a)-PEI-60%	0.09	

Table S1 Pore properties of MMSV-PEIs

Materials	CO ₂ capacity (mmol/g)	Amine efficiency* (%)	Refs.
MCM-41/75%PEI	3.02	37.1	[1]
MCM-48/50%PEI	2.70	46.4	[2]
SBA-15/55%PEI	3.93	61.4	[3]
SBA-16/50%PEI	2.93	50.4	[2]
KIT-6/50%PEI	3.07	52.8	[2]
HMS/60%PEI	4.18	59.9	[4]
PE-MS/70%PEI	4.95	60.8	[5]
MCF/50%PEI	4.09	70.4	[6]
Monolith/65%PEI	4.77	63.1	[7]
Mesoporous capsules/83%PEI	5.70	59.1	[8]
Silica foam/83%PEI	5.80	60.1	[9]
Spherical silica foams/56.5%	4.27	65.0	[10]
MMSV(a)-PEI-60%	4.73	67.8	This work

Table S2 CO₂ adsorption capacity and amine efficiency of various sorbents of porous silica with PEI impregnated

* The amine efficiency was defined as the ratio of mol CO_2 captured per 2 mol of amino groups in the sorbent and expressed as a % of the maximum adsorption capacity

Sample	CO ₂ capacity (mmol/g)	Amine efficiency (%)
MMSV(a)-PEI-40%	2.57	55.3
MMSV(a)-PEI-50%	3.14	54.6
MMSV(a)-PEI-60%	3.85	55.1
MMSV(a)-PEI-70%	1.95	23.8

Table S3 CO₂ capacity of MMSV(a)/PEIs at the simulated flue gas (with 15:85 v/v CO_2/N_2 and dry) at 90 °C

1. Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W. Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO₂ Capture. *Energy Fuels* **2002**, 16, 1463-1469.

2. Song, W. J.; Choi, J. S.; Ahn, W. S Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. *Microporous Mesoporous Mater.* **2008**, 113, 31-40.

3. Heydari-Gorji, A.; Yang, Y.; Sayari, A. Effect of the Pore Length on CO₂ Adsorption over Amine-Modified Mesoporous Silicas. *Energy Fuels* **2011**, 25, 4206-4210.

4. Chen, C.; Son, W.-J.; You, K.-S.; Ahn, J.-W.; Ahn, W.-S. Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity. *Chem. Eng. J.* **2010**, 161, 46-52.

5. Park, J.-E.; Youn, H.-K.; Yang, S.-T.; Ahn, W.-S. CO₂ capture and MWCNTs synthesis using mesoporous silica and zeolite 13X collectively prepared from bottom ash. *Catal. Today* **2012**, 190, 15-22.

6. Zhao, J.; Simeon, F.; Wang, Y.; Luo, G.; Hatton, T. A. Polyethylenimine-impregnated siliceous mesocellular foam particles as high capacity CO_2 adsorbents. *RSC Adv.* **2012**, 2, 6509-6519.

7. Chen, C.; Yang, S. T.; Ahn, W. S.; Ryoo, R. Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO_2 capture capacity. *Chem. Commun.* **2009**, 24, 3627-3629.

8. Qi, G.; Wang, Y.; Estevez, L.; Duan, X.; Anako, N.; Park, A.-H. A.; Li, W.; Jones, C. W.; Giannelis, E. P. High efficiency nanocomposite sorbents for CO₂ capture based on amine-functionalized mesoporous capsules. *Energy Environ. Sci.* **2011**, *4*, 444-452.

9. Qi, G.; Fu, L.; Choi, B. H.; Giannelis, E. P. Efficient CO₂ sorbents based on silica foam with ultra-large mesopores. *Energy Environ. Sci.* **2012**, *5*, 7368.

10. Han, Y.; Hwang, G.; Kim, H.; Haznedaroglu, B. Z.; Lee, B. Amine-impregnated millimeter-sized spherical silica foams with hierarchical mesoporous–macroporous structure for CO₂ capture. *Chem. Eng. J.* **2015**, 259, 653-662.