Support Information

Electrode Reaction Mechanism of Ag₂VO₂PO₄ Cathode

Ruibo Zhang,^{†,§} Tesfaye A. Abtew,[#] Nicholas F. Quackenbush,[§] Linda W. Wangoh,[§] Matthew Huie,[‡] Alexander B. Brady,[‡] David Bock,^Δ Harry Efstathiadis,[⊥] M. Stanley Whittingham^{†, Π}, Amy C. Marschilok,^{‡, \P} Kenneth J. Takeuchi,^{‡, \P} Esther S. Takeuchi,^{‡, \P,Δ} Peihong Zhang,[#] and Louis F. J. Piper^{*,§}

[†] Institute for Materials Research, The State University of New York at Binghamton, Binghamton, NY, 13902, USA

[§] Department of Physics, Applied Physics and Astronomy, The State University of New York at Binghamton, Binghamton, NY 13902, USA

[#] Department of Physics, The State University of New York at Buffalo, Buffalo, NY 14260 USA

[‡] Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794, USA

[¶] Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA

⁴ Energy Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA

¹ Colleges of Nanoscale Science and Engineering, The State University of New York Polytechnic Institute, Albany, NY 12203, USA

^{II} Department of Chemistry, The State University of New York at Binghamton, Binghamton, NY, 13902, USA

Key words: Cathode, Li-ion battery, $Ag_2VO_2PO_4$, in-situ, pair-distribution function, XPS, XAS, molecular dynamics

Elements	Atomic %	Cal. Atomic %
Oxygen	54.72	60
Silver	19.33	20
Vanadium	13.71	10
Phosphorus	10.58	10
Carbon	1.67	

Table S1. SEM-EDS results of as-made Ag₂VO₂PO₄.

(b)

Figure S1. (a) SEM images and EDS mapping of as-made $Ag_2VO_2PO_4$; (b) surface composition of $Ag_2VO_2PO_4$ shown by XPS.

Figure S2. (Top) The V L-edge and O K-edge XAS of $Ag_2VO_2PO_4$ powder, which displays a V⁵⁺ line-shape and 2.3 eV splitting between the unoccupied e_g and t_{2g} states (highlighted). (Bottom) The GGA (P)DOS of $Ag_2VO_2PO_4$, a 2.3 eV energy separation is observed between the e_g and t_{2g} states (highlighted).

Figure S3. Sputtering effect on XPS O1s and V2p region of $Ag_2VO_2PO_4$. The binding energy shift in the V 2p3/2 peak is consistent with the V^{5+,} V⁴⁺ and V³⁺ oxidation assignments. The O:V peak area variation reflects compositional changes associated with the preferential sputtering.

Figure S4. Electrochemistry of in-situ PDF experiment of Ag₂VO₂PO₄.

Atomic Pairs	Distances (Å)
Ag-O	2.862
Ag-Ag	3.03
Ag-O	3.082
V-V	3.106
V-P	3.202
V-P	3.237
Ag-Ag	3.268
Ag-Ag	3.319
Ag-P	3.361
Ag-V	3.371
Ag-O	3.426
V-O	3.555
Ag-P	3.578
V-O	3.582
Ag-Ag	3.592
V-O	3.61
Ag-P	3.679
Ag-V	3.729
Ag-O	3.73
Ag-O	3.733
Ag-O	3.753
V-O	3.759
Ag-O	3.795
Ag-V	3.845
Ag-O	3.894
Ag-O	3.984
Ag-P	3.989

Table S2. Atomic pairs of Ag-O, Ag-Ag, V-V, V-P, Ag-V, and Ag-P in $Ag_2VO_2PO_4$ structure within the range of 2.8-4.0 Å.