SUPPORTING INFORMATION

Expanding the Origin of Stereocontrol in Propene Polymerization Catalysis

Claudio De Rosa, Rocco Di Girolamo, and Giovanni Talarico*
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia, I-80126 Napoli, Italy.
E mail: talarico@unina.it

1. Details of computational methods - Page S2
2. Scheme S1 of the "chiral growing chain orientation stereocontrol" - Page S3
3. Primary propene insertion TSs into the methyl chain for system Ia: Figure S1- Page S4
4. Regiochemistry of propene insertion promoted by system Ia: Figure S2 - Page S5
5. References - Page S6

1. Details of computational methods

All the DFT static calculations have been performed at the GGA level with the Gaussian09 set of programs, ${ }^{1}$ using the B3LYP functional of Becke and Perdew. ${ }^{2}$ The electronic configuration has been described with the standard split-valence basis set with a polarization function of Ahlrichs and co-workers for $\mathrm{H}, \mathrm{C}, \mathrm{N}$, and $\mathrm{O}(\mathrm{SVP})^{3}$ and with the SDD basis and pseudopotential ${ }^{4}$ at the metal (a f function with exponent 0.5 was added for Hf). Stationary points were characterized using vibrational analysis, and this analysis has been also used to calculate zero-point energies and thermal (enthalpy and entropy) corrections ($298.15 \mathrm{~K}, 1$ bar). Improved electronic energies, obtained from single-point energy calculations using a TZVP basis set ${ }^{5}$ on the main atoms, a solvation contribute (PCM model, ${ }^{6}$ toluene) and the dispersion corrections ${ }^{7}$ (EmpiricalDispersion=D3 in the Gaussian09 D. 01 package) are used in the paper and named as ΔE. These energies added to the SVP-level thermal corrections are named ΔG in the remainder of the paper. The growing polymer chains have been simulated by iso-butyl groups and only the most stable TSs are reported. For each TS calculation, several chain conformations have been used in order to find the lower energetic path.

2. Scheme S1 of the "chiral growing chain orientation stereocontrol"

Scheme S1. Main features of Corradini model discussed in the text. In particular, in a) is reported the influence of α-agostic interaction in the transition state (TS) of alkene insertion (here we used ethene) to select only two possible chain orientations (A and \mathbf{A}^{\prime}). The two chiral orientation of the growing chain were labeled as (-) and (+) growing chain according to the IUPAC recommendations for stereochemistry. In b) is shown the influence of chiral site (here a typical ansa-metallocene) to orient the growing polymer chain in \mathbf{B} with respect to \mathbf{B}^{\prime} to avoid the sterical interaction between chain and ligand. In \mathbf{c}) is reported the preferred orientation of the growing polymer chain which selects the propene enantioface (here re face, C) in anti to the first $\mathrm{C}_{\alpha}-\mathrm{C}$ of the chain to avoid the sterical contact reported with an arrow (si face in C^{\prime}). For the sake of readability in \mathbf{b}) the hydrogen atoms of the metallocene skeleton are omitted. With $\mathrm{P}=$ polymer chain.

3. Primary propene insertion TS into the methyl chain for the system Ia:

A

B

Figure S1. Primary propene insertion TS into the methyl chain for the system Ia at site 1 with the 1,2 si (A) and 1,2 re (B) enantioface. For both TSs the growing polymer chain does not assume a chiral conformation and the chain-monomer interactions are negligible. The energetic difference (free energies) of $3.5(2.0) \mathrm{kcal} / \mathrm{mol}$ are due to steric ligand-monomer interactions (${ }^{i} \mathrm{Pr}$ substituents on phenyl ring, see Chart 1) reported with a dashed red arrow in Figure $2(\mathbf{B})$. This interaction is also responsible of the larger $\mathrm{Hf}-\mathrm{N}-\mathrm{C}$ angle $\left(122.5^{\circ}\right)$ reported in \mathbf{B} with respect to $\mathbf{A}\left(119.4^{\circ}\right) . \mathrm{H}$ atoms are omitted for clarity.

4. Regiochemistry of propene insertion promoted by system Ia

Figure S2. Secondary (or 2,1) propene insertion TS in the primary growing polymer chain at site 1 with the si (A) and re (B) enantioface. The lower energetic path leading to the structure \mathbf{A} is due to steric ligand-monomer interaction reported with a dashed red arrow in (\mathbf{B}). H atoms are omitted for clarity. The preferred 2,1 insertion enantioface (\mathbf{A}) is the same of the primary insertion reported in Figure 2 A, see text.

5. References

(1) Gaussian 09, Revision D.02, Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, Jr., J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; and Pople, J.A.; Gaussian, Inc., Wallingford CT, 2004.
(2) (a) Lee, C.; Yang, W. R.; Parr, G. Phys. Rev. B 1988, 37, 785-789; (b) Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377; (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
(3) Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571-2577.
(4) (a) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284-298; (b) Hay, P. J ; Wadt, W. R. J. Chem. Phys. 1985, 82, 299-310.
(5) Weigend, F.; Furche, F.; Ahlrichs, R. J. Chem. Phys. 2003, 119, 12753-12762.
(6) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995-2001.
(7) (a) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104/154101-154104/154119;
(b) Grimme, S. J. Comput. Chem. 2004, 25, 1463-1473.

