Supporting Information

Synthesis of Well-Defined Tower-Shaped 1,3,5-Trisubstituted Adamantanes Incorporating a Macrocyclic Trilactam Ring System
Quan Li, Changshu Jin, Pavel A. Petukhov, Aleksey V. Rukavishnikov, Tatiana O. Zaikova, Avinash Phadke, Donald H. LaMunyon, Melissa D. Lee and John F. W. Keana* Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1253

Table of Contents
General Experimental: S-2
Spectral and analytical data for:

8	S-2	13	S-3	17	S-3	28	S-3
11	S-2	16	S-3	27	S-3		

${ }^{1} \mathrm{H}$ NMR $(\mathbf{3 0 0} \mathbf{~ M H z})$ spectra for:

| $\mathbf{8}$ | S-4 | $\mathbf{1 3}$ | S-9 | $\mathbf{1 8}$ | S-14 | $\mathbf{2 2}$ | S-26 | $\mathbf{2 7}$ | S-39 | $\mathbf{3 2}$ | S-48 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 0}$ | S-5 | $\mathbf{1 5}$ | S-10 | $\mathbf{1 9}$ | S-15 | $\mathbf{2 3}$ | S-23 | $\mathbf{2 8}$ | S-40 | $\mathbf{3 3}$ | S-49 |
| $\mathbf{1 1}$ | S-6 | $\mathbf{1 6}$ | S-12 | $\mathbf{2 0}$ | S-17 | $\mathbf{2 4}$ | S-28 | $\mathbf{2 9}$ | S-41 | | |
| $\mathbf{1 2}$ | S-7 | $\mathbf{1 7}$ | S-13 | $\mathbf{2 1}$ | S-20 | $\mathbf{2 5}$ | S-32 | $\mathbf{3 1}$ | S-46 | | |

${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectra for:

| $\mathbf{2 6}$ | S-34 | $\mathbf{3 0}$ | S-42 |
| :---: | :--- | :--- | :--- | :--- |

${ }^{13} \mathrm{C}$ NMR (75 MHz) spectra for:

| $\mathbf{8}$ | S-5 | $\mathbf{1 3}$ | S-10 | $\mathbf{1 8}$ | S-14 | $\mathbf{2 3}$ | S-25 | $\mathbf{2 8}$ | S-40 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 0}$ | S-6 | $\mathbf{1 5}$ | S-11 | $\mathbf{1 9}$ | S-16 | $\mathbf{2 4}$ | S-30 | $\mathbf{2 9}$ | S-42 |
| $\mathbf{1 1}$ | S-7 | $\mathbf{1 6}$ | S-12 | $\mathbf{2 0}$ | S-19 | $\mathbf{2 6}$ | S-36 | $\mathbf{3 1}$ | S-47 |
| $\mathbf{1 2}$ | S-8 | $\mathbf{1 7}$ | S-13 | $\mathbf{2 1}$ | S-22 | $\mathbf{2 7}$ | S-39 | $\mathbf{3 2}$ | S-49 |

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ s p e c t r a ~ f o r : ~}$

| $\mathbf{2 5}$ | S-32 | | $\mathbf{2 6}$ | S-35 | $\mathbf{3 0}$ | S-43 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2D NMR (500 MHz) for:

| $\mathbf{2 6}$ | S-38 | 30 | S-45 |
| :--- | :--- | :--- | :--- | :--- |

FAB MS for:

$\mathbf{2 2}$	S-28		$\mathbf{2 6}$	S-38		$\mathbf{3 0}$
S-46						

General Information. All reagents were purchased from commercial suppliers and used without further purification unless otherwise stated. Tetrahydrofuran (99.9%, anhydrous, inhibitor free), triethylamine (99.5\%) and chlorobenzene (99.8\%, anhydrous) were used as received. Solvents were well deoxygenated with N_{2} before use in Sonogashira coupling reactions or macrocyclization reactions. Brine refers to a saturated aqueous solution of NaCl . Melting points are uncorrected. A decomposition point is indicated by dec. PHB means that the sample was placed in a preheated block just below the decomposition temperature. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 and 75 MHz , respectively, in CDCl_{3} unless otherwise noted (e.g. 500 and 125 MHz). Chemical shifts are in δ units (ppm) with the residual solvent peak $\left({ }^{1} \mathrm{HCHCl}_{3}, \delta 7.26 ;{ }^{13} \mathrm{C} \mathrm{CDCl}_{3}, \delta 77\right)$ as the internal standard. Coupling constants (J) are reported in hertz (Hz). NMR splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; and br, broad. Column chromatography was carried out on silica gel (60-200 mesh). Analytical TLC was performed on commercially coated 60 mesh F_{254} plastic plates. Spots were rendered visible by exposing the plate to UV light. Radial chromatography (RC) was performed using 1,2 and 4 mm disks covered with silica gel $60 \mathrm{PF}_{254}$ containing gypsum. Fluorescence spectra were acquired at $25^{\circ} \mathrm{C}$ on a fluorescence spectrometer with 5 nm and 10 nm excitation and emission slit widths, respectively, using a 10 mm path quartz cuvette. Mass spectra other than FAB mass spectra were measured by LC-MS.

1,3,5-Triethynyladamantane (8). Colorless crystals, mp $84-86{ }^{\circ} \mathrm{C}\left(\operatorname{Lit} .{ }^{1} 84-86^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.78$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.95(\mathrm{~s}, 6 \mathrm{H}), 2.11(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 27.79,29.76,40.39$, 46.15, 68.15, 90.02; MS calcd for $\mathrm{C}_{16} \mathrm{H}_{15}(\mathrm{M}-1)$ 207.1, found 207.1. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16}: \mathrm{C}, 92.26$; H, 7.74. Found: C, 92.11; H, 7.77.

Pyrrolidin-1-yl-(4-trimethylsilanylethynylphenyl)diazene (11). Light yellow crystals, which were pure by TLC and NMR: mp 110-112 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{2}{ }^{\mathrm{mp}} 101{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.24(\mathrm{~s}, 9 \mathrm{H}), 2.02(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $4 \mathrm{H}), 3.79(\mathrm{brs}, 4 \mathrm{H}), 7.34(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 0.04,23.75,93.57$,
105.71, 119.28, 120.12, 132.73, 151.32; MS calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{Si}(\mathrm{M}) 271.1$, found 271.0. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{Si} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.29 ; \mathrm{H}, 7.79 ; \mathrm{N}, 15.23$. Found: C, 65.49; H, 7.95; N, 15.31.
(4-Iodophenylethynyl)trimethylsilane (13). Colorless crystals, which were pure by TLC and NMR: mp 68-70 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{3} \mathrm{mp} 56-58^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.24(\mathrm{~S}, 9 \mathrm{H}), 7.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=$ 8.7 Hz, 2H); ${ }^{13} \mathrm{C}$ NMR $\delta-0.15,94.46,95.86,103.95,122.59,133.41,137.34 ;$ MS calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ISi}$ (M-1) 299.0, found 299.0. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ISi}: \mathrm{C}, 44.01$; H, 4.36. Found: C, 43.72; H, 4.16.

Thioacetic Acid S-(4-Iodobenzyl) Ester (16). Colorless solid, ${ }^{4}$ which was pure by TLC and NMR: mp 41-42 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{5} \mathrm{mp} 40-41{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta 2.34(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 30.30,32.85,92.65,130,75,137.44,137.64,194.82$; MS calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IOSNa} 314.94$, found 315.0.

3,5-Bis(acetylsulfanylmethyl)iodobenzene (17). Colorless solid, ${ }^{6}$ which was pure by TLC and NMR: mp 39-41 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{6}$ no mp); ${ }^{1} \mathrm{H}$ NMR $\delta 2.35$ (s, 6H), $4.00(\mathrm{~s}, 4 \mathrm{H}), 7.15$ (s, 1H), 7.50 (d, $J=1.5$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 30.31,32.39,94.40,128.65,136.55,140.17,194.64$.

Thioacetic Acid S-(4-Trimethylsilanylethynylbenzyl) Ester (27). A light yellow solid, which was pure by TLC and NMR: mp $41-42{ }^{\circ} \mathrm{C}\left(\mathrm{lit} .{ }^{5} \mathrm{mp} 41-42{ }^{\circ} \mathrm{C}\right)$; ${ }^{\mathrm{H}} \mathrm{H}$ NMR $\delta 0.27(\mathrm{~s}, 9 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{~s}$, $2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta-0.08,30.27,33.18,94.38,104.71$, 122.05, 128.66, 132.13, 138.09, 194.83; MS calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{OSSi}(\mathrm{M}+1)$ 263.1, found 263.1. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{OSSi}: \mathrm{C}, 64.07 ; \mathrm{H}, 6.91$. Found: C, 63.94; H, 6.73.

1-[4-(S-Acetylthiomethyl)phenyl]acetylene (28). A yellow oil, ${ }^{5}$ which was pure by TLC and NMR: ${ }^{1} \mathrm{H}$ NMR $\delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 30.23,33.09,77.00,83.26,120.96,128.74,132.28,138.49,194.74$; MS calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{OS}(\mathrm{M}-1)$ 189.0, found 189.0. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{OS}: \mathrm{C}, 69.44 ; \mathrm{H}, 5.30$. Found: C, 69.65; H, 5.31.

Compound $\mathbf{8}$

q1i-256
Pulse Sequence: s2pul

Compound 8

Changshu021004d
Pulse Sequence: s2pul

Compound 10
$\stackrel{i}{i}$

pulse sequence: s2pur

Compound 11

q71011126b
Pulse Sequence: s2p
Solvent: encla
Solvent: eocis

PULSE SEQUENGE
Relax. delay 1.000 sec
Pulse 42.6 degrees
Pulse 42.6 degrees

250 repetitians
OBSERE C CB3 75.4216991
DECUPLE H1, 29.9478514

Power 32 dB
continuousiy on
WALTZ-16 modulated
WAIA PROCESSING
DINe broadening
Line broadening 1.0 Hz
FT size $32768 \mathrm{~min}, 42 \mathrm{sec}$
Total time $6 \mathrm{~min}, 4$

quanli020207a
Pulse Sequence: s2pul
Solvent: cDC13
Ambient temperature
File: quanlio20207a
File: quanlij020207a
INOVA-500 "acetone"
PULSE SE LUENCE
Relax. delay 1.000 sec
Pulse 37 . g degrees
Acq time ${ }^{2.500}$
Widith 7799.0 Hz
8 repet itions
OBSERE H1, 299.9468689 NHz
OBSERVE H1, 299.9468689 N
OATA PROGESSNG
Line broadening 0.2 Hz
Line broadening 0.2 Hz
fT size 3768 c
Total time 0 min, 28 sec

Compound 12

PULSE SEquENCE
Relax.
Relax. delay 1.000 sec
Pulse 37.9 degrees
Pulse 37.9 degrees
Ac4 time 2.500 sec
Widith
Width 4799.0500
8 repetitions
OBSERVE H1, 29.9468689 MHz
OBSERVE H1, 299.9468689 MHZ
DATA PROCESSNG
Line broadening 0.2 Hz
FT size 32768 ng 0.2 Hz
Total tige 0 min, 28 sec

Compound 12

Compound 12


```
quan1i020207b
Pulse Sequence: s2pu1
Solvent: CDC13
Ambient temperature
NOVA-500 "acetone"
MUSS SEQUENGE 
Mulse 42.6 degrees 
```



```
    Power 32 dB
    cont nyous ly on
    LATA PROCESSING 
    FTine size brodening 1.0 Hz
Total time 8 min, 3 sec
```


Compound 12

Compound 13

quanifici1127b
Pulse Sequence: s2pul
Solvent: CDC13
Solvent: CDC13
Ambilent temperature
File: ylion1127b
File: ${ }^{\text {qlijoili27b }}$
INOVA-500 "acetone"
PULSE SEQUENCE
Relax. delay 1.000 se
Pulse
d2 g degrees
Pulse 42.6 degrees
Acq.
time 0.5 ge
se
Acy time 0.59 sin
Width 16501.7 Hz
200 repetitions
OBERVE C13, 75.4216995 MHZ
DECOUPLE $\mathrm{HI}, 299.9478455 \mathrm{MHZ}$
Power 32 dB
cont inuaus 1 y
cont inuaus ly on
WAITZ-16 modulate
OALA PRCESSING
Line bradening 1.0 Hz
Line broadening 1.0 Hz
TT size 32768
Total time $5 \mathrm{~min}, 22 \mathrm{sec}$

Compound 13

(
q) $\mathrm{f}-280$

Pulse Sequence: szput

Compound 15

\square
Pulse Sequence: szpul
Solvent: CDC13
AMovint temperature
PULSE SEQUENCE
Relax. delay $1.000 ~ s e c ; ~$
Relax. delay 1.000
pulse 37 g degres
Acy.

Vidth 4799. Hz
y repetitions
OBSERVE
OATA PRDCESS
DATA PRDCESSING
Line bradenlag 0.2 Hz

Compound 17

Compound 17

Compound 19

Compound 19

Compound 20

Compound 20

Changshu021007e

Pulse Sequence: s2pul

Compound 21

Compound 21

Compound 21

Changshu021007
Pulse Sequence: s2pur

Compound 21

Compound 21


```
cj-44A
Mulse Sequence: s2pu1 
MULSE SEDUENCE, 1.000 sec
    Rulse 37,9 degrees se
    ACy.thine 2.501
*)
lol
l
```

Compound 23

$$
\begin{aligned}
& \text { Relax. delay i.coo se } \\
& \text { Pulse 42. degrees } \\
& \text { Aq. tiee } 0.599 \text { sec } \\
& \text { yidth } 16501.7 \mathrm{~Hz}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Width } 165017 \mathrm{~Hz} \\
& 28592 \text { repetitions. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ltre broadening } 1.0 \mathrm{~Hz} \\
& \text { FTsize } 32768 \\
& \text { Total tine } 14 \mathrm{hr}, 44 \mathrm{~min}, 25 \mathrm{sec}
\end{aligned}
$$

Acg time 0.599
Yidit $16501.7 ~ H z ~$
28592 repetitions
OBERVE C13, 75.4180974 MHz
OECOUPLE H1, 299.9335198 KHz

OATA PROCESSING
Line broadening 1.1 Hz
Line hroadening 1.0 Hz
FT size 32768 m
Total tine $14 \mathrm{hr}, 44 \mathrm{~min}, 25 \mathrm{sec}$

Compound 23

q1i-269
Pulse sequence: s2pul

Compound 22

q11-26

Pulse Sequence: szpu

Compound 22

411-269

Pulse sequence: s2pu

Compound 22

Quan Li
Sample: Qli-269 dimer
Compound 22

CJ-54Ac
Pulse sequence: s2pul

Compound 24

Compound 24

CJ-54Ac
Pulse Sequence: $s 2 p u 1$

Compound 24

Compound 24

CJ-54Ac

Pulse Sequence: sípu

Compound 24

standard 1 h observe
Pulse sequence: szpul
Solvent: opso
Ambient temperature
Ambient temperature
inova-3jo "sun
PULSE SEQUENCE
Relax. dejay 1.000 sec
Pulse 37.9 degrees
Pulse 37.9 degrees
Acq. time 2.501 sec
16 repetitions

tine broadening 0.2 Hz
FT size 3279
FT size 32768 ning 56 sec
Total time 0 min,

Compound 25

Mac-23
Pulse Sequence: 52 pul
Solvent: dmso
Temp. 25,0 ,
, $298.1 ~ K$

PULSE SEQUENCE
Rejax. delay 7.000 sec
Re jax. dence 7.000
Pulse 37.6 degrees
Pulse 37.6 degrees
Acq time 0.540 sec
Width 303030 Hz
31712 repetitions
31712 repetitions
OBSERVE $\mathrm{C13}, 125.7519684 \mathrm{MHZ}$
OECOUPLE H1; 500.1065979 MHZ
Power 40 dB
on dur ing acquisition
off
off during delay
waltzi6 modulated

FT 51 ze 65536
Total time $104 \mathrm{kr}, 52 \mathrm{~min}, 26 \mathrm{sec}$

quanli-239
Pulse Sequence: s2pu1

DBG-5mm 13C
QLi-239
CDC13
Puise Sequence: s2pul
Compound 26

Compound 26

Compound 26

Sample:QLI-239
Quan Li

ChangshuerogibAa
Puise Sequence: s2pul
Solvent: cocis
Ambient temperature
File: changhuor orisia
INOVA-500
INOVA-500 "hanshotetone"

PULSE SEqUENCE
Rerax. delay 1.000 sec
Relax- delay 1.000
Pulse 37.9 degrees
Act. time 2.500 ser
Pulse 37.9 degree
Acq. time 2.5005
Width 4799.0 Hz
Width 4799.0 Hz
8 repetitions
8 repetitions
OSERVE H1 $299,9468689 \mathrm{KHz}$
DATA PROCESSING
DATA PROCESSING
Line broadening 0.2 Hz
FT sizze 32768
Total time $0 \mathrm{~min}, 28 \mathrm{sec}$

Compound 27

changshu020918Ab
Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature
File: changhuozor18Ab
INOVA-500 ${ }_{\text {Nacetone" }}$
File: changshu02018
INOVA-500 ${ }^{\text {acetone" }}$
PULSE SEQUENCE 1.000 se
Rulax. delay 42,6 degrees
Acg time 0.599
with 16501.7 Hz
400 repetitions
OBSEVEC13, 75.4216995 MHz
DECOUPLE H1, 299.9478455 MHZ
Power 32 dB
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz
Line broadening 1.0 Hz
FT size 32768 m
Total time $21 \mathrm{~min}, 28 \mathrm{sec}$

Compound 28

quan 1020807d
Puise sequence: s2pul
Solvent : cocis
Solvent: COCl3
Ambient tenperature
INOVA-3DO "sunofnmir"
PULSE SEquence
Relax. delay 1.000 sec
Pulse
Pulse 42 . f degrees
Acq. time 0.59 g
sec

Continuously on
WALTZ-16 motulated
OATA PROCESSING
Line broadening 1.6 Hz
fT size 32768
Total time 10 in, 43 sec

417-215
Pulse sequence: s2pu
Solvent: CDC13
Ambient temperature
PULSE SEOUENGE Rulse 37.9 degrees Acq. ${ }^{\text {tine }}{ }^{2} .501$ sec
Width
4799.0 Hz
8 repet 1tions
OBSERVE H1, $299.9325201 ~ M H Z$

Line broadening 0.2 Hz
FT size 32768
Total time $0 \mathrm{~min}, 28 \mathrm{sec}$

q11-215
Pulse Sequence: s2pu
Solvent: COC13
Ambient temperature
NOVA-300 "suno
PULSE SEQUENCE
Relax. delay 1.00 sec
Pulse
Pulse 37.9 degrees
Acq. tine 2.501 sec Acg t 1 ne 2.501
Wdith
4799.0 Hz
8 repetitions
HI, 29.9325201 MHz
OBERVE H1, 299.932520
DATA PROCESSING
Line broadening 0.2
Line broadening 0.2 Hz

Compound 30

DBG-5min 13C
Quan-254
cocis
Pulse Sequence: $\mathbf{s} 2 \mathrm{pul}$

Compound 30

DBG-5mm 13C
Quan-254
cocl3
Pulse Sequence: spal
Compound 30

cj-246Aa
Pulse sequence: szput
Solvent: cocis

PULSE SEOUENCE
Relax. delay 1.000 sec
Relax. delay
Pulse 37.9 degrees
Act. time 2.501 sec
Pulse $37 .{ }^{3}$ degrees
Acy t 4 me 2. 501 se
wnith 4799.0 Hz
With $4799,0 \mathrm{~Hz}$
repetitions

data processing Line broadening 0.2 Hz
Line broadening 0.2 Hz
FT size $32768 \mathrm{~min}, 2 \mathrm{sec}$
Totaltime $0 \mathrm{~min}, ~$

cj-246Aa
Pulse Sequence: s2pul
Solvent: cocis
Anbient temperature
pulse sequence
Relax. delay

Widit 4799.0 Hz
B repet itions
OBSERVE H1, 299.9325259
MHZ
OATA PROCESSING
Line broadening 0.2 Hz
FT size 32768
Total time $0 \mathrm{~min}, 28 \mathrm{sec}$

cj-246ae
Pulse sequence: s2pul
Solvent: $\operatorname{coc} 13$
Anblent temperature
INOVA- 300 sunofnme. uoregon.edu
PULSE SEQUENCE ${ }_{\text {Relax. delay }}$.ead sec
Relax. delay 1.000
Pulse 47.4 degrees
Pulse 4.4 degrees
Act. time
W.599 ser
Act.
Width 16501.79 Hz
288
288 repetitions
OBSERVE C13, 75.4180964 MHz
DECOUPLE H1, 299.9335198 MHz
OBSERVE C13, 75.4180964 MHZ
DECOUPLE
H1,
POUET
Power 32 dB
cont inuously on
WALTZ-16 modulated
DATA PROCESSING
DATA PROCESSING Line broadtening 1.0 Hz
FT size 32768 ing 1.0 Hz
Total time $24 \mathrm{~min}, 7 \mathrm{sec}$

47i-278
Pulse Sequence: szpu1
Compound 32

Compound 32

(1) Malik, A. A.; Archibald, T. G.; Baum, K.; Unroe, M. R. J. Polymer Sci.: Part A: Polymer Chem. 1992, 30, 1747.
(2) Godt, A. J. Org. Chem. 1997, 62, 7471.
(3) Hsung, R. P.; Chidsey, C. E. D.; Sita, L. R. Organometallics 1995, 14, 4808.
(4) Li, Q.; Rukavishnikov, A. V.; Petukhov, P. A.; Zaikova, T. O.; Jin, C.; Keana, J. F. W. J. Org. Chem. 2003, 68, 4862.
(5) Gryko, T. T.; Clausen, C.; Roth, K. M.; Dontha, N.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. J. Org. Chem. 2000, 65, 7345.
(6) Rukavishnikov, A. V.; Phadke, A.; Lee, M. D.; LaMunyon, D. H.; Petukhov, P. A.; Keana. J. F. W. Tetrahedron Lett. 1999, 40, 6353.

