SUPPORTING INFORMATION

Lanthanide Promoted Ethylation of Schiff Bases by Triethylaluminum

Dmitry Tsvelikhovsky, Dmitri Gelman, Gary A. Molander* and Jochanan Blum*

Experimental Details

General Procedure for Ethylation of Schiff Bases. A mixture of 1.7 mmol of the lanthanide catalyst, 33.5 mmol of the Schiff base and 30 mL of dry benzene was stirred at room temperature under an Ar atmosphere until a clear solution was obtained (~ 30 min). A 1 M hexane solution containing 33.5 mmol of Et₃Al was added at 25°C and the stirring was continued at this temperature for 24 h. The reaction mixture was quenched with 60 mL of MeOH followed by 15 g of powdered NaOH. After the usual workup the resulting material was separated either by distillation or by column chromatography. The ¹H and ¹³C NMR and EIMS spectra of the known products were compared with those of authentic samples prepared according to the literature. The new products were also subjected to elemental analyses.

Ethylation of Aromatic Nitriles was performed by the same procedure as the ethylation of the Schiff bases except that the quenching was performed with 60 mL of 10% aqueous HCl instead of with powdered NaOH.

Physical Data and Analyses of the New Products

4-(1-Anilinopropyl)benzonitrile [NCC₆H₅CH(C₂H₅)NHC₆H₅]. ν_{CN} (KBr) 2258 cm⁻¹; 300 MHz ¹H NMR (CDCl₃) δ 0.97 (t, 3, *J* = 7.5 Hz), 1.77, 1.82 (2ABq, 2, *J*₁ = *J*₂ = 7.5 Hz); 4.07 (br s, 1), 4.25 (t, 1, *J* = 7.5 Hz), 6.43 (d, 2, *J* = 7.5 Hz), 6.66 (t, 1, *J* = 7.5 Hz), 7.08 (t, 2, *J* = 7.5 Hz), 7.45 (d, 2, *J* = 8.0 Hz), 7.60 (d, 2, *J* = 8.0 Hz); 75 MHz ¹³C NMR (CDCl₃) δ 6.0, 25.0, 54.8, 106.1, 108.5, 113.1, 116.2, 122.5, 124.5, 127.8, 142.1, 145.1; EIMS (70 eV) *m*/*z* (rel intensity) 235 [(M-H)⁺, 15], 206 [(M-C₂H₆)⁺, 100], 104 (C₇H₆N⁺, 12), 93 (C₆H₅N⁺, 8) 77 (C₆H₅⁺, 21). Anal. Calcd for C₁₆H₁₆N₂: C, 81.32; H, 6.82; N, 11.85. Found: C, 81.13; H, 6.62; N, 11.59.

N-(1-Pyridin-2-ylpropyl)phenylamine(2- C_5H_4N)CH(C_2H_5)NHC₆ H_5]. Mp 100-103 °C (from hexane): 300 MHz ¹H NMR (CDCl₃) δ 0.95 (t, 3, *J* = 7.5 Hz), 1.84, 1.95 (2ABq, 2, *J*₁ = *J*₂ = 7.5 Hz); 4.43 (br s and t, 2, *J* = 7.5 Hz), 6.57 (d, 2, *J* = 8.0 Hz), 6.64 (t, 1, *J* = 2 Hz), 7.11 (m, 3), 7.30

(d, 1, J = 8.0 Hz), 7.59 (t, 1, J = 2 Hz), 8.58 (d, J = 2 Hz); 75 MHz ¹³C (CDCl₃) δ 10.6, 25.2, 55.9, 108.6, 112.7, 116.5, 117.2, 124.4, 131.8, 142.7, 144.6, 158.1; EIMS (70 eV) m/z (rel intensity) 211 [(M-H)⁺, 11], 182 [(M-C₂H₆)⁺, 100], 80 (C₅H₆N⁺, 20), 77 (C₆H₅⁺, 8). Anal. Calcd for C₁₄H₁₆N₂: C, 79.20; H, 7.60; N, 13.20. Found: C, 79.08; H, 7.74; N, 13.39.

New Data for the Known Products

N-(4-Methylphenyl)-*N*-(1-phenylpropyl)amine $[C_6H_5CH(C_2H_5)NHC_6H_4$ -4-CH₃]¹⁷. Bp. 160-162 °C, 2 mm); 300 MHz ¹H NMR (CDCl₃) δ 0.95 (t, 3, *J* = 7.5 Hz), 1.80 (dq, 2, *J*_d = 7 Hz), *J*_q = 7.5 Hz), 2.15 (s, 3), 4.20 (t, 1, *J* = 7 Hz), 6.64 (d, 2, *J* = 8 Hz), 6.89 (d, 2, *J* = 8 Hz), 7.27 (br s, 1), 7.32 (m, 4); 75 MHz ¹³C NMR (CDCl₃) δ 10.8, 20.3, 31.7, 60.0, 113.3, 126.2, 126.5, 126.8, 128.4, 129.5, 144.1, 145.2; EIMS (70 eV) *m*/*z* (rel intensity) 224 [(M-H)⁺, 18], 195 [(M-C₂H₆)⁺, 100], 118 (C₈H₈N⁺, 11), 106 (C₇H₈N⁺, 7), 91 (C₇H₇⁺, 34), 77 (CH₅⁺, 7). [Anal. Calcd for C₁₆H₁₉N: C, 85.28; H, 8.50; N, 6.22. Found: C, 85.36; H, 8.54; N, 5.98].

N-[1-(4-Methylphenyl)propyl)]phenylamine [4-CH₃C₆H₄CH(C₂H₅)NHC₆H₅]⁷. Bp. 165 °C, 2 mm); 300 MHz ¹H NMR (CDCl₃) \delta 0.95 (t, 3, *J* **= 7.4 Hz), 1.78, 1.80 (2ABq, 2,** *J***₁ =** *J***₂ = 7.4 Hz); 2.32 (s, 3), 3.70 (br s, 1), 4.20 (t, 1,** *J* **= 7.4 Hz), 6.52 (d, 2,** *J* **= 8 Hz), 6.62 (t, 1,** *J* **= 8 Hz), 7.08-7.25 (m, 6); 75 MHz ¹³C NMR (CDCl₃) \delta 10.8, 23.4, 31.6, 59.4, 113.1, 117.0, 126.3, 127.6, 128.3, 136.3, 141.1, 145.5, 147.6; EIMS (70 eV)** *m/z* **(rel intensity) 224 [(M-H)⁺, 15], 195 [(M-C₂H₆)⁺, 100], 105 (C₈H₉⁺, 20), 91 (C₇H₇⁺, 12), [Anal. Calcd for C₁₆H₁₉N: C, 85.28; H, 8.50; N, 6.22. Found: C, 85.03; H, 8.64; N, 5.99].**

N-[1-(4-Chlorophenyl)propyl)]phenylamine [4-ClC₆H₄CH(C₂H₅)NHC₆H₅]¹⁸. Bp. 178 °C, 4 mm); 300 MHz ¹H NMR (CDCl₃) δ 0.96 (t, 3, *J* = 7.5 Hz), 1.76, 1.82 (2ABq, 2, *J*₁ = *J*₂ = 7.5 Hz); 4.02 (br s, 1), 4.22 (t, 1, *J* = 7.5 Hz), 6.47 (d, 2, *J* = 8 Hz), 6.64 (t, 1, *J* = 8 Hz), 7.08 (t, 2, *J* = 8 Hz), 7.28 (m, 4); 75 MHz ¹³C NMR (CDCl₃) δ 10.6, 27.0, 61.1, 108.5, 112.7, 122.7, 123.1, 123.9, 127.7, 137.8, 142.5; EIMS (70 eV) *m*/*z* (rel intensity) 246, 244 [(M-H)⁺, 10], 217, 215 [(M-C₂H₆)⁺, 100], 127, 125 (C₇H₆Cl⁺, 23), 104 (C₇H₆N⁺, 18), 77 (C₆H₅⁺, 20), [Anal. Calcd for C₁₅H₁₆ClN: C, 73.31; H, 6.56; Cl, 14.43; N, 5.70. Found: C, 73.06; H, 6.76; Cl, 14.44; N, 5.48].