Palladium-Catalyzed Synthesis of Tetrahydrofurans from $\boldsymbol{\gamma}$-Hydroxy Terminal Alkenes: Scope, Limitations, and Stereoselectivity.

Michael B. Hay, Alison R. Hardin, and John P. Wolfe*
Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055

Supporting Information

Experimental procedures and characterization data for new compounds in Tables 2-9 and complete descriptions of stereochemical assignments (37 pages).

Table of Contents

General Considerations S1
Preparation and Characterization of Substrates S2
Characterization Data for Tetrahydrofuran Products S14
Assignment of Stereochemistry S33
References S36

General. All reactions were carried out under an argon or nitrogen atmosphere in oven- or flamedried glassware. All catalysts and reagents were obtained from commercial sources and were used without further purification with the exception of 2-(4-bromophenyl)-[1,3]dioxolane, ${ }^{1}$ (E)-1-bromodec-1-ene, ${ }^{2}$ and 4-bromobenzoic acid tert-butyl ester, ${ }^{3}$ hex-5-en-2-ol (11a), ${ }^{4}$ hept-6-en-3-ol (11b), ${ }^{5}$ 1-(4-methoxyphenyl)pent-4-en-1-ol (15c), ${ }^{4}$ 2-hydroxyhex-5-enoic acid ethyl ester (11d), ${ }^{6}$ 1-phenyl-4-penten-1-ol (11e), ${ }^{7}$ tert-butyldimethyloxiranylmethoxysilane, ${ }^{8}$ 2-phenylpent-4-en-1ol (22c), ${ }^{7}$ 3-phenylpent-4-en-1-ol (20c), ${ }^{7}(\pm)$-($1 S, 2 R$)-2-allylcyclohexanol (24b), ${ }^{9}(\pm)$-($1 R, 2 R$)-2-
allylcyclopentanol (25a), ${ }^{10}$ 4-methylpent-4-en-1-ol (2), ${ }^{11}$ 2,5-dimethylhex-5-en-2-ol (5), ${ }^{12}$ and 1-but-3-enylcyclopentanol (4), ${ }^{13}$ which were made according to literature procedures. Compounds $\mathbf{6 a}, \mathbf{6 c}, 8 \mathrm{Ba}, \mathbf{8 b}, 8 \mathbf{8}, 12 \mathbf{c}, 12 \mathrm{~d}, 21 \mathrm{~d}$, and $\mathbf{2 3} \mathbf{c}$ have been described in a preliminary communication of these studies. ${ }^{7}$ Data for these compounds can be found in the supporting information accompanying the preliminary communication. ${ }^{7}$ Toluene and THF were purified using a GlassContour solvent purification system. Yields refer to isolated yields of compounds estimated to be $\geq 95 \%$ pure as determined by ${ }^{1} \mathrm{H}$ NMR and either capillary GC (known compounds) or combustion analysis (new compounds). The yields reported in the supporting information describe the result of a single experiment, whereas the yields reported in Tables 2-9 are average yields of two or more experiments. Thus, the yields reported in the supporting information may differ from those shown in Tables 2-9.

Preparation and Characterization of Alcohol Substrates

General Procedure 1: Reduction of Esters with LiAlH_{4}. An oven or flame dried flask was purged with argon or nitrogen and charged with LiAlH_{4} (2 equiv, 1.0 M in THF). Additional THF was added to provide a 0.5 M solution of LiAlH_{4}, which was then cooled to $0{ }^{\circ} \mathrm{C}$. The appropriate ester was added dropwise via syringe and the resulting solution was warmed to rt and stirred for 2-4 h until the starting material was found to be completely consumed as judged by TLC analysis. The reaction was diluted twofold with THF and quenched according to the Fieser ${ }^{14}$ procedure by successively adding water $\left(0.4 \mathrm{~mL} / \mathrm{mmol} \mathrm{LiAlH}_{4}\right), \mathrm{NaOH}(0.4 \mathrm{~mL} / \mathrm{mmol}$ $\left.\mathrm{LiAlH}_{4}, 10 \mathrm{M}\right)$, and water $\left(1.2 \mathrm{~mL} / \mathrm{mmol}_{\mathrm{LiAlH}}^{4}\right.$) in a dropwise manner. The resulting suspension was decanted and the organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude primary alcohol product was purified by chromatography on silica gel.

General Procedure 2: Addition of $\mathbf{M e M g B r}$ to Esters. An oven or flame dried flask was purged with argon or nitrogen and charged with MeMgBr (3 equiv, 3.0 M in diethyl ether). Additional ether was added to provide a 1.0 M solution of MeMgBr , which was then cooled to 0 ${ }^{\circ} \mathrm{C}$. The appropriate ester was added dropwise via syringe and the resulting mixture was warmed to rt and stirred for $2-4 \mathrm{~h}$ until the starting material was found to be completely consumed as judged by TLC analysis. A saturated solution of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1: 1$ by volume with reaction mixture) was added dropwise and the resulting mixture was then diluted with ethyl acetate (100 $\mathrm{mL})$. The layers were separated and aqueous layer was extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude tertiary alcohol product was then purified by flash chromatography on silica gel.

General Procedure 3: Johnson Orthoester Claisen Rearrangements. ${ }^{15}$ A round bottom flask equipped with a short path distillation head and a recovery flask was charged with the appropriate allylic alcohol, triethyl orthoacetate (10 equiv), and pivalic acid (0.06 equiv). The mixture was heated to $100{ }^{\circ} \mathrm{C}$ with stirring for 2 h then heated to $140{ }^{\circ} \mathrm{C}$ for 12 h until the starting material had been completely consumed as judged by GC analysis. The reaction mixture was cooled to room temperature and diluted with ethyl acetate (1:1 by volume). A solution of 1 M HCl (1:1 by volume) was slowly added and the resulting biphasic mixture was stirred for 1 h at rt . The layers were separated and the organic layer was washed with water ($2 \times 50 \mathrm{~mL}$), and saturated $\mathrm{NaHCO}_{3}(1 \times 50 \mathrm{~mL})$. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude ester product was used without further purification.

4-Methylpent-4-en-1-ol (2). ${ }^{16}$ Reaction of 2-methylbut-2-en-1-ol ($1.82 \mathrm{~g}, 25 \mathrm{mmol}$) with triethylorthoacetate according to general procedure 3 afforded $2.13 \mathrm{~g}(60 \%)$ of crude 4-
methylpent-4-enoic acid ethyl ester as a yellow oil that was used without further purification. ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$.

The reduction of 4-methylpent-4-enoic acid ethyl ester with LiAlH_{4} was carried out using general procedure 1 to afford $327 \mathrm{mg}(51 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.73-4.72(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.65(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.70(\mathrm{~m}, 5$ H), $1.39(\mathrm{~s}, 1 \mathrm{H})$.

2,5-Dimethylhex-5-en-2-ol (5). ${ }^{12}$ 4-Methylpent-4-enoic acid ethyl ester ($1.22 \mathrm{~g}, 8.62 \mathrm{mmol}$) was treated with $\operatorname{MeMgBr}(7.7 \mathrm{~mL}, 23.1 \mathrm{mmol}, 3.0 \mathrm{M}$ solution in THF) according to general procedure 2 to afford $0.70 \mathrm{~g}(70 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.71(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 1 \mathrm{H})$, 1.25 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 146.2,109.6,70.8,41.5,32.4,29.1,22.5$; IR (film) $3369,1131 \mathrm{~cm}^{-1}$. MS (EI) $m / z 100.0888$ (100.0884 calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}$).

2,2-Dimethylhept-6-en-3-ol (11c). A flame-dried flask was cooled under a stream of argon, charged with Mg turnings ($3.4 \mathrm{~g}, 144 \mathrm{mmol}$) and purged with argon. Diethyl ether (24 mL) was added and the suspension was cooled to $0^{\circ} \mathrm{C}$. Neat 4-bromo-1-butene ($10.80 \mathrm{~g}, 80 \mathrm{mmol}$) was added dropwise to the suspension and the resulting mixture was warmed to rt and stirred for 1 h . The resulting solution was transferred to a dry, argon-filled flask via cannula, and additional $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ was added via syringe. A solution of pivaldehyde $(3.4 \mathrm{~g}, 40 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ was added, the resulting mixture was stirred at rt for 8 h , and then a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ was added dropwise. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The combined organic layers were then dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to afford $3.61 \mathrm{~g}(64 \%)$ of the title compound as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.90-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{dd}, J=2.0,10.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.35-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 1 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 1$ H), 0.87 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.8,114.6,79.2,34.8,31.2,30.6,25.6$; IR (film) $3390,1076 \mathrm{~cm}^{-1}$. MS (CI) $m / z 160.1705$ (160.1701 calcd for $\left.\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}, \mathrm{M}+\mathrm{NH}_{4}^{+}\right)$.

1-Methoxyhex-5-en-2-ol (13a). A flame dried flask was cooled under a stream of argon and charged with allylmagnesium bromide ($48 \mathrm{~mL}, 48 \mathrm{mmol}, 1 \mathrm{M}$ solution in THF) and cooled to 0 ${ }^{\circ} \mathrm{C}$. Neat 2-methoxymethyloxirane $(2.64 \mathrm{~g}, 30 \mathrm{mmol})$ was slowly added and the resulting mixture was warmed to rt and stirred for 4 h . A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$ was slowly added to the reaction mixture, the layers were separated, and the aqueous layer was extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude material was purified by distillation (78 ${ }^{\circ} \mathrm{C}, 35$ torr) to afford $3.55 \mathrm{~g}(91 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.87-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.38(\mathrm{~m}, 4 \mathrm{H})$, 3.26-3.20(m, 1 H$), 2.27-2.12(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.25(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $138.0,114.5,76.9,69.3,58.7,32.0,29.5$; IR (film) $3435,1120 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}$, 64.58; H, 10.84. Found: C, 64.28; H, 11.03.

1-(tert-Butyldimethylsilyloxy)hex-5-en-2-ol (13b). ${ }^{17}$ A flame dried flask was purged with argon and charged with allylmagnesium bromide ($30 \mathrm{~mL}, 30 \mathrm{mmol}, 1 \mathrm{M}$ in diethyl ether). The flask was cooled to $-20^{\circ} \mathrm{C}$, tert-Butyldimethyloxiranylmethoxysilane ${ }^{8}(5.78 \mathrm{~g}, 30 \mathrm{mmol})$ was added dropwise, and the mixture was warmed to rt and stirred for 2 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq) (30 mL) was slowly added, the mixture was stirred for 10 minutes, and then the aqueous layer was separated and extracted with diethyl ether $(3 \times 30 \mathrm{~mL})$. The organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to afford $5.86 \mathrm{~g}(82 \%)$ of the title compound as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.88-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.06-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.61(\mathrm{~m}, 2 \mathrm{H})$, $3.43-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 1 \mathrm{H}), 2.26-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}$,
$6 \mathrm{H})$.

1-(2,6-Di-tert-butyl-4-methylphenoxy)hex-5-en-2-ol (13c). A flame dried flask was purged with argon and charged with p-toluenesulfonyl chloride ($6.73 \mathrm{~g}, 38.12 \mathrm{mmol}$), triethylamine (6.3 $\mathrm{g}, 62.38 \mathrm{mmol}$), and methylene chloride (34 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ and glycidol $(2.56 \mathrm{~g}, 34.66 \mathrm{mmol})$ was added dropwise. The reaction was warmed to rt and stirred for 4 h , then water $(30 \mathrm{~mL})$ was added to the reaction mixture and the layers were separated. The organic layer was washed with water ($2 \times 30 \mathrm{~mL}$) and brine ($1 \times 30 \mathrm{~mL}$), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to afford $3.33 \mathrm{~g}(42 \%)$ of toluene-4-sulfonic acid oxiranylmethyl ester ${ }^{18}$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{dd}, J=$ $3.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=6.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.17(\mathrm{~m}, 1 \mathrm{H})$, $2.60-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$.

A flame dried flask was purged with argon and charged with sodium hydride $(0.64 \mathrm{~g}, 16.06 \mathrm{mmol}$, 60% suspension in mineral oil) and DMF (15 mL). The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of 2,6-di-tert-butyl-4-methylphenol ($3.53 \mathrm{~g}, 16.06 \mathrm{mmol}$) in DMF (7 mL) was added dropwise. The resulting mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, and then toluene-4-sulfonic acid oxiranylmethyl ester ($3.33 \mathrm{~g}, 14.6 \mathrm{mmol}$) was added dropwise. The reaction mixture was warmed to rt and stirred for 8 h , then water (40 mL) was added and the resulting mixture was stirred for an additional 10 min . The layers were separated and the aqueous layer extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to afford $1.72 \mathrm{~g}(43 \%)$ of 2-(2,6-di-tert-butyl-4-methylphenoxymethyl)oxirane as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.18$ (s, 2 H), 4.16 (dd, $\left.J=2.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.88(\mathrm{dd}, J=5.6$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.57$ (s, 18 H).

A flame dried flask was purged with argon and charged with allylmagnesiumbromide (10.6 mL ,
$10.6 \mathrm{mmol}, 1 \mathrm{M}$ in diethyl ether). The solution was cooled to $0^{\circ} \mathrm{C}$ and a solution of 2-(2,6-di-tert-butyl-4-methylphenoxymethyl)oxirane ($1.72 \mathrm{~g}, 6.2 \mathrm{mmol}$) in diethyl ether (10 mL) was added dropwise. The reaction mixture was warmed to rt and stirred for 8 h , then a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added dropwise. The layers were separated, the aqueous layer was extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$), and the combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to afford $1.49 \mathrm{~g}(76 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.05(\mathrm{~s}, 2 \mathrm{H}), 5.87-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.21$ (m, 1H), 3.84-3.79 (m, 1 H), 3.67-3.63 (m, 1 H$), 2.41$ (s, 1 H$), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.16(\mathrm{~m}, 2$ H), 1.62-1.53 (m, 2 H), $1.42(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 115.1,143.1,138.0$, $131.9,127.5,115.0,79.9,70.1,35.6,32.2,32.0,29.6,21.2$; IR (film) $3436,1204 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{2}$: C, 79.19; H, 10.76. Found: C, 79.30; H, 10.81.

4-(1-Hydroxypent-4-enyl)benzonitrile (15a). The title compound was prepared from 4-formyl benzonitrile ($0.70 \mathrm{~g}, 5.3 \mathrm{mmol}$) and 4-bromo-1-butene ($1.43 \mathrm{~g}, 10.6 \mathrm{mmol}$) using a procedure analogous to that employed for the synthesis of $\mathbf{1 1 c}$. This procedure afforded $0.34 \mathrm{~g}(34 \%)$ of 4-(hydroxypent-4-enyl)benzonitrile as a pale yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65$ (d, J $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.86-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.80-4.79(\mathrm{~m}$, $1 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 1 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $149.9,137.6,132.2,126.4,118.8,115.5,73.1,38.1,29.7$; IR (film) $3429,2229,1066 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 76.98 ; \mathrm{H}, 7.00$; $\mathrm{N}, 7.48$. Found: C, 76.71; H, 7.18; $\mathrm{N}, 7.34$.

1-(4-Trifluoromethylphenyl)pent-4-en-1-ol (15b). The title compound was prepared from 4trifluormethyl benzaldehyde ($0.75 \mathrm{~g}, 4.3 \mathrm{mmol}$) and 4-bromo-1-butene ($1.16 \mathrm{~g}, 8.6 \mathrm{mmol}$) using a procedure analogous to that employed for the synthesis of $11 \mathbf{c}$. This procedure afforded 0.38 g (38 \%) of 1-(4-trifluoromethylphenyl)pent-4-en-1-ol as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.89-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.99(\mathrm{~m}$,
$2 \mathrm{H}), 4.79-4.76(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 1 \mathrm{H}), 1.89-1.75(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5,137.7,126.1,125.4,125.3,122.2,115.3,73.3,38.1,29.8$; IR (film) 3350, $1127 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}: \mathrm{C}, 62.60 ; \mathrm{H}, 5.69$. Found: C, 62.59; H, 5.72.

1-(4-Dimethylaminophenyl)pent-4-en-1-ol (15d). The title compound was prepared from 4N, N-dimethylamino benzaldehyde $(0.71 \mathrm{~g}, 4.8 \mathrm{mmol})$ and 4-bromo-1-butene $(1.29 \mathrm{~g}, 9.6 \mathrm{mmol})$ using a procedure analogous to that employed for the synthesis of 11c. This procedure afforded $0.77 \mathrm{~g}(78 \%)$ of 1-(4-dimethylaminophenyl)pent-4-en-1-ol as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.72(\mathrm{~m}, 2 \mathrm{H}), 5.91-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.97(\mathrm{~m}, 2$ H), 4.59-4.56 (m, 1 H), 2.95 ($\mathrm{s}, 6 \mathrm{H}), 2.18(\mathrm{~s}, 1 \mathrm{H}), 2.16-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 1 \mathrm{H})$, $1.82-1.74(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.4,138.7,132.8,127.1,114.8,112.8$, 73.9, 40.9, 37.9, 20.4; IR (film) $3384 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 76.06 ; \mathrm{H}, 9.33$; $\mathrm{N}, 6.82$. Found: C, 75.81; H, 9.41; N, 6.83.

3-Methylhept-6-en-3-ol (18a). A flame dried flask was purged with argon and charged with ethylmagnesium bromide ($16 \mathrm{~mL}, 5.33 \mathrm{mmol}, 3.0 \mathrm{M}$ in diethyl ether) and additional diethyl ether $(32 \mathrm{~mL})$. The solution was cooled to $0^{\circ} \mathrm{C}$ and a solution of hex-5-en-2-one (3.92 g, 40 mmol$)$ in diethyl ether $(6 \mathrm{~mL})$ was added dropwise. The resulting mixture was warmed to rt and stirred for 3 h , then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ was added and the mixture was stirred for 10 min . The layers were separated and the aqueous layer was extracted with diethyl ether ($2 \times 30 \mathrm{~mL}$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to afford 1.94 g (38 $\%$) of the title compound as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.89-5.79(\mathrm{~m}, 1$ H), 5.06-4.92 (m, 2 H), 2.14-2.03 (m, 2 H), 1.55-1.46(m, 4 H), $1.30(\mathrm{~s}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.89$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.0,114.2,72.7,40.1,34.2,28.2,26.1$, 8.1; IR (film) $3380,1145 \mathrm{~cm}^{-1}$. MS (CI) $m / z 146.1549$ (146.1545 calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}, \mathrm{M}+\mathrm{NH}_{4}{ }^{+}$).

2-Phenylhex-5-en-2-ol (18b). ${ }^{12}$ The title compound was prepared from hex-5-en-2-one (3.92 g , 40 mmol) and phenylmagnesium chloride ($24 \mathrm{~mL}, 48 \mathrm{mmol}, 2.0 \mathrm{M}$ in THF) using a procedure analogous to that employed in the synthesis of 18a. This procedure afforded $6.33 \mathrm{~g}(90 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33$ (m, 2 H$), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 5.83-5.76(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.91(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.04(\mathrm{~m}, 1 \mathrm{H})$, 1.96-1.87 (m, 3 H$), 1.79(\mathrm{~s}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H})$.

3-Methylpent-4-en-1-ol (20a). ${ }^{19}$ But-2-en-1-ol ($5.88 \mathrm{~mL}, 70 \mathrm{mmol}$) was treated with triethyl orthoacetate ($22.6 \mathrm{~mL}, 124 \mathrm{mmol}$) using general procedure 3 to afford $6.4 \mathrm{~g}(65 \%)$ of 3-methylpent-4-enoic acid ethyl ester as a yellow oil. This material was used without further purification. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.84-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.06-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{sp}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}$).

3-Methylpent-4-enoic acid ethyl ester ($1.0 \mathrm{~g}, 7 \mathrm{mmol}$) was treated with $\mathrm{LiAlH}_{4}(17.6 \mathrm{~mL}, 17.6$ mmol, 1 M solution in THF) using general procedure 1 to afford $420 \mathrm{mg}(60 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.79-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.94(\mathrm{~m}, 2$ H), $3.67(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{sp}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 1 \mathrm{H}), 1.03$ (d, $J=9.2 \mathrm{~Hz}, 3 \mathrm{H}$).

3-Ethylpent-4-en-1-ol (20b). ${ }^{20}$ Pent-2-en-1-ol (5.90 mL , 58 mmol) was treated with triethyl orthoacetate ($22.6 \mathrm{~mL}, 124 \mathrm{mmol}$) using general procedure 3 to afford $5.40 \mathrm{~g}(60 \%)$ of 3 -ethylpent-4-enoic acid ethyl ester as a yellow liquid. This material was used without further purification. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.99-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.48-2.24(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}$).

3-Ethylpent-4-enoic acid ethyl ester ($2.0 \mathrm{~g}, 13 \mathrm{mmol}$) was treated with $\mathrm{LiAlH}_{4}(32 \mathrm{~mL}, 32 \mathrm{mmol}$, 1 M solution in THF) using general procedure 1 to afford $890 \mathrm{mg}(60 \%)$ of the title compound
as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.59-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.99(\mathrm{~m}, 2 \mathrm{H})$, 3.70-3.59 (m, 2 H), 2.05-1.99 (m, 1 H), 1.70-1.64 (m, 1 H), 1.52-1.47 (m, 1 H), 1.46-1.39 (m, 2 H), $1.32-1.23(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$.

2-(tert-Butyl)pent-4-en-1-ol (20d). ${ }^{21}$ A flame dried 3-neck flask equipped with a reflux condenser was charged with pivaldehyde ($4.0 \mathrm{~g}, 46 \mathrm{mmol}$), carboethoxymethylene triphenyl phosphorane ($24.0 \mathrm{~g}, 69 \mathrm{mmol}$), and THF (46 mL). The resulting suspension was heated to reflux under argon for 3 hours, then was cooled to rt and concentrated in vacuo. The resulting material was triturated with pentane (150 mL) and filtered. The pentane solution was concentrated in vacuo to afford $4.87 \mathrm{~g}(68 \%)$ of (E)-4,4-dimethylpent-2-enoic acid ethyl ester as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.96(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H})$.
(E)-4,4-Dimethylpent-2-enoic acid ethyl ester ($3.5 \mathrm{~g}, 22.4 \mathrm{mmol}$) was treated with DIBAL (49 $\mathrm{mL}, 49 \mathrm{mmol}, 1 \mathrm{M}$ solution in hexane) according to the procedure of Pericas ${ }^{22}$ to afford 1.80 g (70 \%) of (E)-4,4-dimethylpent-2-en-1-ol as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $5.72-5.68(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.57-5.50(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 1 \mathrm{H})$, 1.01 (s, 9 H).
(E)-4,4-Dimethylpent-2-en-1-ol ($1.80 \mathrm{~g}, 15.7 \mathrm{mmol}$) was treated with triethyl orthoacetate (28 $\mathrm{mL}, 157 \mathrm{mmol})$ using general procedure 3 to afford $2.20 \mathrm{~g}(76 \%)$ of 3-tert-butylpent-4-enoic acid ethyl ester as a yellow oil that was used without further purification. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.70-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{q}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{dd}, J=3.5,13.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.33-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=11.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86$ (s, 9 H).

3-tert-Butylpent-4-enoic acid ethyl ester ($2.20 \mathrm{~g}, 11.9 \mathrm{mmol}$) was treated with $\mathrm{LiAlH}_{4}(47.6 \mathrm{~mL}$, $47.6 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in THF) using general procedure 1 to afford $1.22 \mathrm{~g}(72 \%)$ of the title compound as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.67-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=$ $2.0,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=2.5,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.53(\mathrm{~m}, 1 \mathrm{H})$,
$2.05-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$.

2,4-Dimethylhex-5-en-2-ol (20e). ${ }^{23}$ 3-Methylpent-4-enoic acid ethyl ester ($1.50 \mathrm{~g}, 10.6 \mathrm{mmol}$) was treated with methylmagnesium bromide ($10 \mathrm{~mL}, 30 \mathrm{mmol}, 3 \mathrm{M}$ solution in diethyl ether) using general procedure 2 to afford $746 \mathrm{mg}(55 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=1.0,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=$ $1.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 1 \mathrm{H}), 1.58(\mathrm{dd}, J=9.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{dd}$, $J=3.5,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

2-Methylpent-4-en-1-ol (22a). ${ }^{24}$ A flame-dried flask was purged with argon and charged with diisopropylamine ($15 \mathrm{~mL}, 105.6 \mathrm{mmol}$), and THF (30 mL). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of n-butyllithium ($40.2 \mathrm{~mL}, 100.5 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) was added dropwise. The resulting mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$ and then a solution of ethyl propionate $(7.2 \mathrm{~g}$, $70.4 \mathrm{mmol})$ in THF (2 mL) was added dropwise. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , then was cooled to $-78{ }^{\circ} \mathrm{C}$ and DMPU ($7.3 \mathrm{~mL}, 60.4 \mathrm{mmol}$) and allyl bromide $(9.6 \mathrm{~mL}, 110.6 \mathrm{mmol})$ were added. The reaction mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$, then warmed to rt and stirred for an additional 10 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}).(50 \mathrm{~mL})$ and pentane $(100 \mathrm{~mL})$ were added, the layers were separated, and the aqueous layer was extracted with pentane ($2 \times 100 \mathrm{~mL}$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude product was fractionally distilled $\left(150{ }^{\circ} \mathrm{C}, 760\right.$ torr $)$ to afford $2.2 \mathrm{~g}(22 \%)$ of 2-methylpent-4enoic acid ethyl ester ${ }^{25}$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.79-5.58(\mathrm{~m}, 1 \mathrm{H})$, 5.03-4.98 (m, 2 H), $4.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.07(\mathrm{~m}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.15$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
2-Methylpent-4-enoic acid ethyl ester ($2.2 \mathrm{~g}, 15.4 \mathrm{mmol}$) was treated with LiAlH_{4} using general procedure 1 to afford $1.04 \mathrm{~g}(67 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.86-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 1 \mathrm{H})$, $1.98-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

2-Ethylpent-4-en-1-ol (22b). ${ }^{26}$ Ethyl butyrate ($8.2 \mathrm{~g}, 70.4 \mathrm{mmol}$) was alkylated with allyl bromide ($13.4 \mathrm{~g}, 110.6 \mathrm{mmol}$) using a procedure analogous to that described above for the synthesis of 2-methylpent-4-enoic acid ethyl ester to afford $1.07 \mathrm{~g}(10 \%)$ of 2-ethylpent-4-enoic acid ethyl ester as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.79-5.69(\mathrm{~m}, 1 \mathrm{H})$, 5.07-4.98 (m, 2 H), 4.11 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.48$ (m, 2 H), $1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$

2-Ethylpent-4-enoic acid ethyl ester ($1.07 \mathrm{~g}, 7.0 \mathrm{mmol}$) was treated with LiAlH_{4} using general procedure 1 to afford $0.28 \mathrm{~g}(36 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.86-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.10(\mathrm{~m}, 2 \mathrm{H})$, $1.56-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.31(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.

2-tert-Butylpent-4-en-1-ol (22d). ${ }^{27}$ A flame dried flask was purged with argon and charged with ethanol ($5.06 \mathrm{~g}, 110 \mathrm{mmol}$), triethylamine ($11.1 \mathrm{~g}, 110 \mathrm{mmol}$), and diethyl ether (100 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ and 3,3-dimethylbutyryl chloride ($13.45 \mathrm{~g}, 100 \mathrm{mmol}$) was added dropwise with stirring. The resulting mixture was then warmed to rt and stirred for 1 h , then water (50 mL) was added and the mixture was stirred for an additional 5 min . The layers were separated and the aqueous layer was extracted with diethyl ether ($2 \times 50 \mathrm{~mL}$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude product was distilled $\left(145{ }^{\circ} \mathrm{C}, 760\right.$ torr) to afford $7.81 \mathrm{~g}(54 \%)$ of 3,3-dimethylbutyric acid ethyl ester ${ }^{28}$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.85(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 2$ H), $0.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 9 \mathrm{H})$.

3,3-Dimethylbutyric acid ethyl ester $(7.81 \mathrm{~g}, 55.5 \mathrm{mmol})$ was alkylated with allyl bromide (7.6 $\mathrm{mL}, 87.23 \mathrm{mmol}$) using a procedure analogous to that described above for the synthesis of 2-methylpent-4-enoic acid ethyl ester to afford $5.58 \mathrm{~g}(38 \%)$ of 2-tert-butylpent-4-enoic acid ethyl ester ${ }^{20}$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.75-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.95(\mathrm{~m}, 2$ H), $4.11(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.0 \mathrm{H}, 3 \mathrm{H})$,
0.98 (s, 9 H).

2-tert-Butylpent-4-enoic acid ethyl ester ($4.0 \mathrm{~g}, 21.8 \mathrm{mmol}$) was treated with LiAlH_{4} using general procedure 1 to afford $1.02 \mathrm{~g}(25 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.97-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{dd}, J=4.0,11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.62(\mathrm{dd}, J=5.5,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.32(\mathrm{~m}, 2 \mathrm{H})$, 0.94 (s, 9 H).

2,4-Dimethylpent-4-en-1-ol (22e). ${ }^{29}$ 2-Methylprop-2-en-1-ol (3.02 g, 42 mmol) was treated with triethyl orthopropionate following the general procedure 3 to provide $3.93 \mathrm{~g}(60 \%)$ of 2,4-dimethylpent-4-enoic acid ethyl ester as a yellow oil, which was used without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.72(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2$ H), 2.65-2.56(m, 1 H$), 2.43-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=$ 7.0 Hz, 3 H).

2,4-Dimethylpent-4-enoic acid ethyl ester ($4.00 \mathrm{~g}, 25.6 \mathrm{mmol}$) was treated with LiAlH_{4} using general procedure 1 to afford $0.83 \mathrm{~g}(31 \%)$ of the title compound as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 4.73(\mathrm{~d}, J=20.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 1 \mathrm{H})$, $1.91-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H})$.
(\pm)-(1R,2R)-2-Allylcyclohexanol (24a). ${ }^{30}$ 2-Allylcyclohexanone ${ }^{31}(1.70 \mathrm{~g}, 12.3 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ was treated with L-selectride ($14 \mathrm{~mL}, 14 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in THF) using the procedure developed Marvell and Rusay for the reduction of 2-substituted cyclohexanones. ${ }^{32}$ This procedure afforded $740 \mathrm{mg}(43 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.86-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 1 \mathrm{H})$, 2.06-2.00(m, 1 H$), 1.81-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.34(\mathrm{~m}, 6 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 2$ H).
$\mathbf{(\pm) - (1 S , 2 R) - 2 - A l l y l c y c l o p e n t a n o l ~ (2 5 b) .}{ }^{33} \quad(\pm)-(1 S, 2 R)$-2-Allylcyclopentanol was prepared
from 2-allylcyclopentanone ($4.12 \mathrm{~g}, 33 \mathrm{mmol}$) and L-selectride ($34 \mathrm{~mL}, 34 \mathrm{mmol}, 1 \mathrm{M}$ solution in THF) using a procedure analogous to that employed in the synthesis of $(\pm)-(1 R, 2 R)-2-$ allylcyclohexanol to afford $1.25 \mathrm{~g}(30 \%)$ of $(\pm)-(1 S, 2 R)$-2-allylcyclopentanol. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.87-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.93(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.11(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 1$ H), 2.13-2.08 (m, 1 H$), 1.83-1.66(\mathrm{~m}, 5 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.37$ (m, 1 H).

Characterization data for tetrahydrofuran products.

2-(4-methylbenzyl)tetrahydrofuran (6b). ${ }^{34}$ Reaction of 4-penten-1-ol ($43 \mathrm{mg}, 0.5 \mathrm{mmol}$) with 4-bromotoluene ($123 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) following the general procedure afforded $57 \mathrm{mg}(65 \%)$ of the title compound as a colorless oil. NMR data were consistent with previously published data ${ }^{34}$ and the compound was judged to be $\geq 95 \%$ pure by ${ }^{1} \mathrm{H}$ NMR and GC analysis.

4-(Tetrahydrofuran-2-ylmethyl)benzonitrile ($\mathbf{6 d}$). Reaction of 4-penten-1-ol ($25 \mathrm{mg}, 0.25$ mmol) with 4-bromobenzonitrile ($91 \mathrm{mg}, 0.5 \mathrm{mmol}$) following the general procedure afforded 18 $\mathrm{mg}(40 \%)$ of the title compound as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 2 \mathrm{H}), 4.08-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.70$ (m, 1 H), 2.91-2.82 (m, 2 H$), 2.00-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 144.7,132.0,130.1,119.0,110.0,79.1,68.0,41.9,31.1,25.5$; IR (film) 2200, 1060 cm^{-1}. Anal calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 76.98 ; \mathrm{H}, 7.00 ; \mathrm{N}, 7.48$. Found C, 76.09; H, 6.83; $\mathrm{N}, 7.64$.

The major side product formed in this transformation was 4-pent-4-enyloxybenzonitrile: ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 2 \mathrm{H}), 5.88-5.78(\mathrm{~m}, 2 \mathrm{H})$, 5.08-4.99 (m, 1 H$), 4.01(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.89$ (pentet, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3,137.3,133.9,119.2,115.5,115.1,103.7,67.4,29.8,28.0 ;$ IR (film) $2225 \mathrm{~cm}^{-1}$; MS (EI) $m / z 187.0993$ (187.0997 calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}$).

4-(Tetrahydrofuran-2-ylmethyl)benzoic acid tert-butyl ester (6e). Reaction of 4-penten-1-ol ($25 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 4-bromobenzoic acid tert-butyl ester ($128 \mathrm{mg}, 0.5 \mathrm{mmol}$) following the general procedure afforded $24 \mathrm{mg}(37 \%)$ of the title compound as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.87$ (m, 1 H), 3.76-3.72 (m, 1H), $2.94(\mathrm{dd}, J=6.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=6.0,13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.93-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H}), 1.57-1.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7$, $143.8,129.9,129.4,129.0,80.7,79.5,67.9,41.8,30.9,28.1,25.5$; IR (film) $1760,1292 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$: C, 73.25; H, 8.45. Found C, 73.07; H, 8.43.

The main side product formed in this reaction was 4-pent-4-enyloxybenzoic acid tert-butylester, which was characterized by examination of the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture and correlation of the extraneous peaks with the closely related known compound 4butoxybenzoic acid tert-butyl ester. ${ }^{35}$ Data for the side product: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.91(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.87-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 9 \mathrm{H})$.

2-(E)-($\boldsymbol{\beta}$-Styryl)-tetrahydrofuran ${ }^{36}$ ($\mathbf{6 f}$). Reaction of 4-penten-1-ol ($25 \mathrm{mg}, 0.25 \mathrm{mmol}$) with β-bromostyrene ($91 \mathrm{mg}, 0.5 \mathrm{mmol}$) following the general procedure afforded $13 \mathrm{mg}(30 \%)$ of the title compound as a pale yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dt}, J=7.2,15.6 \mathrm{~Hz}, 1$ H), 3.99-3.88 (m, 2 H), 3.78-3.72 (m, 1 H), 2.54-2.46 (m, 1 H), 2.44-2.37 (m, 1 H), 2.04-1.99 (m, 1 H$), 1.99-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 1 \mathrm{H})$.

The main side product formed in this reaction was 2-pent4-enyloxyvinylbenzene: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.85-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.78$
(pentet, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.0,141.2,131.4,128.1$, 123.3, 115.2, 108.0, 105.8, 69.1, 29.9, 28.4; IR(film) $2360 \mathrm{~cm}^{-1}$; MS (EI) $m / z 188.1208$ (188.1201 calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}$).

2-Methyl-2-(4-methylbenzyl)tetrahydrofuran (7) Reaction of 4-methylpent-4-en-1-ol ($25 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 4-bromotoluene $(85.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) following the general procedure afforded $10 \mathrm{mg}(20 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.28-7.21 (m, 4 H), 4.02-3.96 (m, 1 H), 3.94-3.89 (m, 1 H$), 2.89(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$, $2.06-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.49$, $135.44,130.2,128.5,82.8,67.3,46.4,36.1,26.3,26.0,21.0$; IR (film) $1046 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 82.06 ; \mathrm{H}, 9.53$. Found: C, 82.05; H, 9.49.

2-(4-tert-Butylbenzyl)-1-oxaspiro[4.4]nonane (9). Reaction of 1-but-3-enylcyclopentanol ${ }^{16}$ (4) ($35 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 1-bromo-4-tert-butylbenzene ($106 \mathrm{mg}, 0.50 \mathrm{mmol}$) following the general procedure afforded $48 \mathrm{mg}(71 \%)$ of the title compound as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.10(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=6.0$, $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=6.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.48(\mathrm{~m}, 12 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.8,135.8,129.0,125.1,91.3,79.2,42.3,39.2,38.4,36.4,34.3,31.4$, 24.0, 23.9; IR (film) $1092 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}: \mathrm{C}, 83.77$; H, 10.36. Found: C, 83.57; H, 10.36 .

2-(2-Methylbenzyl)-1-oxaspiro[4.4]nonane (10). Reaction of 1-but-3-enylcyclopentanol ${ }^{16}$ (35 $\mathrm{mg}, 0.25 \mathrm{mmol}$) with 2-bromotoluene $(85.5 \mathrm{mg}, 0.50 \mathrm{mmol})$ following the general procedure afforded $35 \mathrm{mg}(61 \%)$ of the title compound as a pale yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.26-7.15 (m, 4 H), 4.20-4.15 (m, 1 H), 3.03 (dd, $J=6.0,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=6.0,13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.54(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.2,136.5$, $130.1,130.0,126.1,125.7,91.2,78.1,39.8,39.3,38.5,36.5,31.4,24.0,23.9,19.7$; IR (film)
$1165 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 83.43 ; \mathrm{H}, 9.63$. Found: C, 83.31; H, 9.74.
(\pm)-(2R,5S)-2-(4-tert-Butylbenzyl)-5-methyltetrahydrofuran (12a). Reaction of hex-4-en-2-ol ($25 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 1-bromo-4-tert-butylbenzene ($106.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) was conducted following the general procedure. After the starting material had been completely consumed, the reaction mixture was cooled to rt , a solution of $\mathrm{LiAlH}_{4}(0.1 \mathrm{~mL}, 0.1 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added, and the resulting mixture was stirred for 1 h at rt . Water $(0.1 \mathrm{~mL}), \mathrm{NaOH}(0.1 \mathrm{~mL}, 10 \mathrm{M})$, and additional water $(0.3 \mathrm{~mL})$ were added slowly in succession, then ethyl acetate $(10 \mathrm{~mL})$ was added and the layers were separated. The aqueous layer was extracted with ethyl acetate (2×10 mL) and the combined organic layers were dried over anhydrous $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. This alternate workup was employed to facilitate chromatographic separation of an undesired ketone side product. The crude material was purified by flash chromatography on silica gel to afford $24 \mathrm{mg}(41 \%)$ of the title compound as a colorless oil. This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.27-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.14(\mathrm{~m}$, $1 \mathrm{H}), 2.96$ (dd, $J=5.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=7.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.96$ (m, 2 H), $1.67-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.8,135.7,128.9,125.1,79.5,74.7,41.8,34.3,33.8,31.8,31.4,21.4$; IR (film) $1088 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 82.70 ; \mathrm{H}, 10.41$. Found: C, 82.69; H, 10.45.
(\pm)-(2R,5S)-2-(4-tert-Butylbenzyl)-5-ethyltetrahydrofuran (12b). Reaction of hept-4-en-2-ol ($28 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 1-bromo-4-tert-butylbenzene ($106.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) was conducted following the general procedure. After the starting material had been completely consumed, the reaction mixture was cooled to rt , a solution of $\mathrm{LiAlH}_{4}(0.1 \mathrm{~mL}, 0.1 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added, and the resulting mixture was stirred for 1 h at rt . Water $(0.1 \mathrm{~mL}), \mathrm{NaOH}(0.1 \mathrm{~mL}, 10 \mathrm{M})$, and additional water $(0.3 \mathrm{~mL})$ were added slowly in succession, then ethyl acetate $(10 \mathrm{~mL})$ was added and the layers were separated. The aqueous layer was extracted with ethyl acetate (2×10
mL) and the combined organic layers were dried over anhydrous $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. This alternate workup was employed to facilitate chromatographic separation of an undesired ketone side product. The crude material was purified by flash chromatography on silica gel to afford $21 \mathrm{mg}(34 \%)$ of the title compound as a colorless oil. This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.24-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.93(\mathrm{~m}$, $1 \mathrm{H}), 2.98(\mathrm{dd}, J=5.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=8.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 2 \mathrm{H})$, $1.69-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.8,135.7,128.9,125.1,80.3,79.5,41.7,34.3,31.6,31.4,31.3,31.3,28.8$, 10.3; IR (film) $1086 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}: \mathrm{C}, 82.87 ; \mathrm{H}, 10.64$. Found: C, 82.99; H, 10.53 .

6-(4-tert-Butylphenyl)-2-hydroxyhex-4-enoic acid ethyl ester (Product from Reaction of

 11d). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.72-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.54-5.44(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$, $1.21-1.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.5,148.8,137.2,133.7$, $128.0,125.2,124.8,70.2,61.6,38.5,37.4,34.3,31.3,14.1$; IR (film) $3468,1734 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 313.1780\left(313.7180\right.$ calcd for $\left.\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}, \mathrm{M}+\mathrm{Na}^{+}\right)$.(\pm)-(2R,5S)-2-[4-(5-Phenyltetrahydrofuran-2-ylmethyl)phenyl]-[1,3]dioxolane
(12e).
Reaction of 1-phenyl-4-penten-1-ol ($40.5 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 2-(4-bromophenyl)-1,3-dioxolane $(114.5 \mathrm{mg}, 0.50 \mathrm{mmol})$ following the general procedure afforded $47 \mathrm{mg}(61 \%)$ of the title compound as a pale yellow oil. This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.22(\mathrm{~m}, 9 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.04-4.99(\mathrm{~m}, 1 \mathrm{H})$, 4.48-4.44 (m, 1 H), 4.15-4.01 (m, 4 H), 3.07 (dd, $J=6.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (dd, $J=6.0,12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz,
$\left.\mathrm{CDCl}_{3}\right) \delta 143.7,139.7,135.7,129.5,128.3,127.0,126.4,125.5,103.7,80.5,80.4,77.3,77.0$, 76.7, 65.3, 41.9, 35.2, 31.6; IR (film) $1219 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}, 77.39 ; \mathrm{H}, 7.14$. Found: C, 77.35; H, 7.11.
(\pm)-(2R,5R)-2-Phenyl-5-[(E)-3-phenylallyl]tetrahydrofuran (12f). Reaction of 1-phenyl-4-penten-1-ol ($40.5 \mathrm{mg}, 0.25 \mathrm{mmol}$) with β-bromostyrene ($91.5 \mathrm{mg}, 0.50 \mathrm{mmol}$) following the general procedure afforded $25 \mathrm{mg}(38 \%)$ of the title compound as a pale yellow oil. ${ }^{37}$ This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.40-7.19(\mathrm{~m}, 10 \mathrm{H}), 6.50(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36-6.26(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=6.0$ Hz, 1 H$), 4.39-4.35(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.36$ (m, 1 H$)$, 2.18-2.13 (m, 1 H), 1.93-1.78 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.9$, 137.8, 132.4, 128.7, 128.5, 127.3, 126.8, 126.3, 125.8, 94.6, 80.8, 79.7, 39.8, 35.5, 31.9; IR (film) $1055 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 86.32 ; \mathrm{H}, 7.63$. Found: C, 86.11; H, 7.47.
(\pm)-(2R,5R)-2-Phenyl-5-[(E)-undec-2-enyl]tetrahydrofuran (12g). Reaction of 1-phenyl-4-penten-1-ol ($40.5 \mathrm{mg}, 0.25 \mathrm{mmol}$) with (E)-1-bromo-1-undecene ($109.5 \mathrm{mg}, 0.50 \mathrm{mmol}$) following the general procedure afforded $22 \mathrm{mg}(29 \%)$ of the title compound as a pale yellow oil. ${ }^{37}$ This material was obtained with dr $>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 5.55-5.53(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{dd}, J=6.0,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.25-4.22(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.80$ $(\mathrm{m}, 1 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.27(\mathrm{~m}, 14 \mathrm{H}), 0.88(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.9,133.2,133.0,130.7,129.4,128.4,128.0,127.0,125.8,80.4,79.8,42.6$, $39.2,35.1,32.7,31.9,29.3,22.7,14.1$; IR (film) $1057 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}: \mathrm{C}, 83.94 ; \mathrm{H}$, 10.73. Found: C, 83.98; H, 10.94.
(\pm)-(2R,5R)-2-(4-tert-Butylbenzyl)-5-methoxymethyltetrahydrofuran (14a). Reaction of 1-methoxyhex-5-en-2-ol ($33 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 1-bromo-4-tert-butylbenzene $(106.5 \mathrm{mg}, 0.5$
mmol) following the general procedure afforded $50 \mathrm{mg}(75 \%)$ of the title compound as a pale yellow oil. This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.23-4.19(\mathrm{~m}, 2 \mathrm{H})$, $3.39-3.35(\mathrm{~m}, 5 \mathrm{H}), 3.01(\mathrm{dd}, J=5.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=8.0,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.91$ (m, 2 H), 1.68-1.54 (m, 2 H), $1.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.8,135.5,128.9$, $125.1,80.2,77.5,75.6,59.2,41.3,34.3,31.3,31.1,28.3$; IR (film) $1086 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}: \mathrm{C}, 77.82 ; \mathrm{H}, 9.99$. Found: C, 77.82; H, 9.94.

(\pm)-tert-Butyl-[(2R,5R)-5-(4-tert-butylbenzyl)tetrahydrofuran-2-ylmethoxy]dimethylsilane

(14b). Reaction of 1-(tert-butyldimethylsilyloxy)hex-5-en-2-ol ($58 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 1-bromo-4-tert-butylbenzene ($106.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) following the general procedure afforded 62 mg (68%) of the title compound as a pale yellow oil. This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15$ (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.20-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=4.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55$ $(\mathrm{dd}, J=5.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=6.0,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=7.6,13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.95(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.8,135.8,128.9,125.1,80.2,79.2,65.9,41.5,34.3,31.4$, 31.3, 27.9, 25.9, 18.4, -5.3; IR (film) $1084 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{SiO}: \mathrm{C}, 72.87 ; \mathrm{H}, 10.56$. Found: C, 72.94; H, 10.55.
(\pm)-(2R,5R)-2-(4-tert-Butylbenzyl)-5-(2,6-di-tert-butyl-4-
methylphenoxymethyl)tetrahydrofuran (14c). Reaction of 1-(2,6-di-tert-butyl-4-methylphenoxy)hex-5-en-2-ol ($80 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 1-bromo-4-tert-butylbenzene (106.5 mg , $0.5 \mathrm{mmol})$ following the general procedure afforded $91 \mathrm{mg}(81 \%)$ of the title compound as a pale yellow oil. This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 7.47-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.05(\mathrm{~m}$, $1 \mathrm{H}), 4.61-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}$,
$J=6.0,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=7.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.01(\mathrm{~m}, 1 \mathrm{H})$, 2.04-2.01 (m, 1 H), 1.78-1.70 (m, 2 H), $1.40(\mathrm{~s}, 18 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 155.6,148.8,143.3,135.8,131.5,131.0,129.1,128.9,127.4,127.2,125.1,125.0,79.9$, $78.3,77.6,41.3,35.6,34.3,32.2,32.1,31.5,31.4,31.4,31.2,30.3,28.4,21.3$; IR (film) 1096 cm^{-1}. Anal calcd for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}: \mathrm{C}, 82.61 ; \mathrm{H}, 10.29$. Found: C, $82.31 ; \mathrm{H}, 10.16$.

(\pm)-tert-Butyl-[(2R,5R)-5-(4-[1,3-dioxolan-2-yl]benzyl)tetrahydrofuran-2-

ylmethoxy]dimethylsilane (14d). Reaction of 1-(tert-butyldimethylsilyloxy)hex-5-en-2-ol ($57.5 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 2-(4-bromophenyl)-1,3-dioxolane ($114.5 \mathrm{mg}, 0.50 \mathrm{mmol}$) following the general procedure afforded $37 \mathrm{mg}(39 \%)$ of the title compound as a pale yellow oil. This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 4.19-4.01(\mathrm{~m}, 6 \mathrm{H}), 3.61(\mathrm{dd}, J$ $=3.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=3.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=6.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J$ $=6.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.2,131.7,129.5,128.4,126.6,103.9,80.3$, $79.5,66.2,65.5,41.9,31.4,28.1,26.1,-5.1$; IR (film) $1252 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}$, 66.62; H, 9.05; Found: C, 66.60; H, 9.15.

(\pm)-tert-Butyldimethyl-[(2R,5R)-5-[(E)-3-phenylallyl]tetrahydrofuran-2-ylmethoxy]silane

 (14e). Reaction of 1-(tert-butyldimethylsilyloxy)hex-5-en-2-ol ($58 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 1-bromo-4-tert-butylbenzene $(106.5 \mathrm{mg}, 0.5 \mathrm{mmol})$ following the general procedure afforded 30 mg (36%) of the title compound as a pale yellow oil. ${ }^{37}$ This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}$, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26-6.20(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.06(\mathrm{~m}, 2$ H), $3.64(\mathrm{dd}, J=5.0,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=5.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.47$, (m, 1 H), 2.41-2.35 (m, 1 H), 2.03-1.97 (m, 2 H), 1.80-1.74 (m, 1 H$), 1.64-1.58(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, $0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 137.6,131.8,128.4,126.9,126.8,126.0,79.4$,$78.9,65.9,39.3,31.2,28.0,25.9,19.3,18.4,-5.3$; IR (film) $1252 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{SiO}$: C, 72.23; H, 9.70. Found: C, 72.05; H, 9.64.
(土)-4-[(2R,5R)-5-(4-tert-Butylbenzyl)tetrahydrofuran-2-yl]benzonitrile (16a). Reaction of 4-(1-hydroxypent-4-enyl)benzonitrile ($47 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 1-bromo-4-tert-butylbenzene ($106.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) following the general procedure afforded $67 \mathrm{mg}(84 \%)$ of the title compound as a pale yellow oil. This material was obtained with dr $>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}$, $2 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{t}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.43(\mathrm{~m}, 1 \mathrm{H}), 3.03$ (dd, $J=6.4,13.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=6.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.71$ (m, 2 H), $1.32(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.5,149.0,135.2,132.1,128.8,126.0$, $125.2,118.8,110.6,81.0,79.6,41.5,35.1,34.3,31.7,31.4$; IR (film) $1059 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}: \mathrm{C}, 82.72 ; \mathrm{H}, 7.89 ; \mathrm{N}, 4.38$. Found: C, 82.34; H, 7.84; N, 4.17.
(\pm)-(2R,5R)-2-(4-tert-Butylbenzyl)-5-(4-trifluoromethylphenyl)tetrahydrofuran
(16b).
Reaction of 1-(4-trifluoromethylphenyl)pent-4-en-1-ol ($58 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 1-bromo-4-tertbutylbenzene ($106.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) following the general procedure afforded $50 \mathrm{mg}(57 \%)$ of the title compound as a pale yellow oil. This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H})$, 7.32-7.19 (m, 4 H), 5.10-4.48 (m, 1 H), 4.48-4.45 (m, 1 H), 3.03 (dd, $J=6.0,13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.79(\mathrm{dd}, J=6.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 2 \mathrm{H})$, 1.32 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.0,148.1,135.3,128.9,125.6,125.2,125.2$, $125.1,80.9,79.8,41.5,35.1,34.3,31.6,31.3$; IR (film) $1067 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) $m / z 362.1858$ (362.1857 calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}$).
(\pm)-(2S,5S)-2-(4-tert-Butylbenzyl)-5-phenyltetrahydrofuran (16c). Reaction of 1-phenylpent-4-en-1-ol ($40 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 1-bromo-4-tert-butylbenzene ($106.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) following
the general procedure afforded $47 \mathrm{mg}(64 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 4 \mathrm{H}), 5.09-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.54(\mathrm{~m}$, $1 \mathrm{H}), 3.07(\mathrm{dd}, J=5.5,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=7.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.32(\mathrm{~m}, 1 \mathrm{H})$, 2.09-2.04 (m, 1 H), 1.88-1.72 (m, 2 H), $1.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.9$, $143.8,135.5,128.9,128.2,127.0,125.5,125.1,80.6,80.4,41.7,35.1,34.3,31.7,31.3$; IR (film) $1054 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}: \mathrm{C}, 85.67 ; \mathrm{H}, 8.90$. Found: C, 85.38; H, 8.86.
(\pm)-(2R,5R)-2-(4-tert-Butylbenzyl)-5-(4-methoxyphenyl)tetrahydrofuran (16d) Reaction of 1-(4-methoxyphenyl)pent-4-en-1-ol ($48 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 1-bromo-4-tert-butylbenzene ($106.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) following the general procedure afforded $51 \mathrm{mg}(63 \%)$ of an inseparable 5:1 mixture of the title compound and 1-(4-methoxyphenyl)pent-4-en-1-one ${ }^{38}$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. Characterization data are for the title compound, which was obtained with $\mathrm{dr}>$ 20:1 as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.08(\mathrm{~m}, 8 \mathrm{H})$, 5.01-4.96 (m, 1 H), 4.50-4.43 (m, 1 H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{dd}, J=8.0,21.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (dd, $J=7.5,21.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 9$ H) ${ }^{13}{ }^{3} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.7,148.8,135.7,135.5,128.9,126.8,125.1,113.6,80.4$, 80.1, 41.7, 35.0, 34.3, 31.8, 31.3, 31.2; IR (film) $1053 \mathrm{~cm}^{-1}$. MS (ESI) $m / z 347.1993$ (347.1987 calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Na}, \mathrm{M}+\mathrm{Na}^{+}$).

Data for 1-(4-methoxyphenyl)pent-4-en-1-one: ${ }^{38}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94$ (d, $J=7.0$ Hz, 2 H), 6.93 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$); 5.93-5.87 (m, 1 H), $5.10-4.99$ (m, 2 H$), 3.87$ (s, 3 H), 3.02 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-2.46(\mathrm{~m}, 2 \mathrm{H})$.
(\pm)-\{4-[(2R,5R)-5-(4-tert-Butylbenzyl)tetrahydrofuran-2-yl]phenyl\}dimethylamine (16e). Reaction of 1-(4-dimethylamino)pent-4-en-1-ol (51 mg, 0.25 mmol) with 1-bromo-4-tertbutylbenzene ($106.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) following the general procedure afforded $26 \mathrm{mg}(31 \%)$ of an inseparable 3:1 mixture of the title compound and 1-(4-dimethylaminophenyl)pent-4-en-1-one as
judged by ${ }^{1} \mathrm{H}$ NMR analysis. Characterization data are for the title compound, which was obtained with dr $>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.33-7.19(m, 8 H$), 4.98-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=8.0,13.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.93 (s, 6 H), 2.76 (dd, $J=8.0,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.03(\mathrm{~m}, 1 \mathrm{H})$, $1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0$, $148.8,135.6,130.9,128.9,126.7,125.1,112.6,80.4,80.2,41.7,40.7,34.8,31.9,31.3$; IR (film) $1053 \mathrm{~cm}^{-1}$. MS (ESI) 338.2482 (338.2484 calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}, \mathrm{M}+\mathrm{H}^{+}$).

Data for 1-(4-dimethylaminophenyl)pent-4-en-1-one: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~d}, J$ $=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.92-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 6$ H), 2.97 (t, $J=9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.50-2.45 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4,153.2$, 137.7, 130.0, 124.7, 114.7, 110.4, 39.8, 36.8, 28.6; IR (film) $1639 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 226.1208$ (226.1208 calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NONa}, \mathrm{M}+\mathrm{Na}^{+}$).
(\pm)-(2S,5R)-5-(4-tert-Butylbenzyl)-2-ethyl-2-methyltetrahydrofuran (19a). Reaction of 2-methylhept-6-en-2-ol ($32 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 1-bromo-4-tert-butylbenzene ($106.5 \mathrm{mg}, 0.5$ $\mathrm{mmol})$ following the general procedure afforded $37 \mathrm{mg}(57 \%)$ of the title compound as a pale yellow oil. This material was obtained as a ca 3:1 mixture of diastereomers as judged by ${ }^{1} \mathrm{H}$ NMR analysis. Data are for the major diastereomer. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.31(\mathrm{~m}, 2$ H), 7.20-7.15 (m, 2 H), 4.20-4.08 (m, 1 H), 3.03-2.94 (m, 1 H$), 2.66-2.59(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.80$ (m, 2 H), 1.77-1.56 (m, 4 H), 1.34 (s, 9 H), $1.22(\mathrm{~s}, 1.25) 1.17$ ($\mathrm{s}, 1.75 \mathrm{H}), 0.93-0.87(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 148.8,135.8,135.7,128.9,128.9,127.9,125.08,125.06,83.4$, $83.3,79.8,79.1,42.3,42.1,36.2,35.9,34.6,34.3,33.9,31.42,31.37,26.5,25.7,9.05,9.01$; IR (film) $1109 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}: \mathrm{C}, 83.02 ; \mathrm{H}, 10.84$. Found: C, $80.28 ; \mathrm{H}, 10.46$.
(\pm)-(2R,5R)-5-(4-tert-Butylbenzyl)-2-methyl-2-phenyltetrahydrofuran (19b). Reaction of 2-phenylhex-5-en-2-ol ($44 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 1-bromo-4-tert-butylbenzene ($106.5 \mathrm{mg}, 0.5$
$\mathrm{mmol})$ following the general procedure afforded $61 \mathrm{mg}(78 \%)$ of the title compound as a pale yellow oil. This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 4 \mathrm{H})$, 4.30-4.24 (m, 1 H), $3.09(\mathrm{dd}, J=5.5,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=8.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.15$ $(\mathrm{m}, 1 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.2,148.8,129.3,128.3,126.5,125.4,124.9,84.9,79.9,42.4,39.4,34.6$, 31.6, 31.1, 31.0; IR (film) $1109 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}: \mathrm{C}, 85.66 ; \mathrm{H}, 9.15$. Found: C, 85.31; H, 9.27.

(\pm)-2-\{4-[(2R,5R)-5-Methyl-5-phenyltetrahydrofuran-2-ylmethyl]phenyl\}-1,3-dioxolane

(19c). A reaction of 2-phenyl-5-hexen-2-ol ($44 \mathrm{mg}, 0.25 \mathrm{mmol}$) with (4-bromophenyl)-1,3dioxolane ($114.5 \mathrm{mg}, 0.50 \mathrm{mmol}$) following the general procedure afforded $69 \mathrm{mg}(85 \%)$ of the title compound as a pale yellow oil. This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.19(\mathrm{~m}, 9 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 4.28-4.17(\mathrm{~m}$, $1 \mathrm{H}), 4.15-4.01(\mathrm{~m}, 4 \mathrm{H}), 3.08(\mathrm{dd}, J=6.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=6.0,12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.18-2.12 (m, 1 H), 2.02-1.93 (m, 1 H), 1.80-1.67 (m, 2 H), 1.53 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 148.4,139.8,135.6,131.4,129.5,128.1,128.0,126.3,124.7,103.7,84.7,79.3,65.2$, 42.3, 39.0, 30.6; IR (film) $1273 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3}$: C, 77.75; H, 7.46. Found: C, 77.88; H, 7.49.
(\pm)-4-[(2R,5R)-5-Methyl-5-phenyltetrahydrofuran-2-ylmethyl]benzoic acid tert-butyl ester (19d). Reaction of 2-phenyl-5-hexen-2-ol ($44 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 4-bromobenzoic acid tertbutyl ester ($128.5 \mathrm{mg}, 0.50 \mathrm{mmol}$) following the general procedure afforded $56 \mathrm{mg}(64 \%)$ of the title compound as a pale yellow oil. This material was obtained as a ca. 4:1 mixture of diastereomers as judged by ${ }^{1} \mathrm{H}$ NMR analysis. Data are for the major isomer ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.18(\mathrm{~m}, 7 \mathrm{H}), 4.29-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=6.0$, $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=6.0,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 1 \mathrm{H})$,
1.84-1.80(m, 2 H), $1.60(\mathrm{~s}, 9 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,148.3$, $143.6,130.0,129.4,129.3,128.1,126.3,124.5,84.8,80.7,79.0,42.4,39.0,30.8,30.6,28.2$; IR (film) $1291 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{3}$: C, $78.38 ; \mathrm{H}, 8.01$. Found: C, $78.27 ; \mathrm{H}, 8.06$.
$(\pm)-(2 R, 5 R)-2-M e t h y l-2-p h e n y l-5-[(E)$-3-phenylallyl]tetrahydrofuran (19e). A reaction of 2-phenyl-5-hexen-2-ol ($44 \mathrm{mg}, 0.25 \mathrm{mmol}$) with β-bromostyrene ($91.5 \mathrm{mg}, 0.50 \mathrm{mmol}$) following the general procedure afforded $40 \mathrm{mg}(58 \%)$ of the title compound as a pale yellow oil. ${ }^{37}$ This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.44-7.20(\mathrm{~m}, 10 \mathrm{H}), 6.50(\mathrm{~d}, ~ J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36-6.28(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.15(\mathrm{~m}, 1$ H), 2.63-2.59 (m, 1 H), 2.55-2.48 (m, 1 H), 2.26-2.20(m, 1 H$), 2.12-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.87$ (m, 1 H), 1.79-1.74 (m, 1 H), $1.57(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.4,137.6,132.1$, $128.5,128.1,127.0,126.6,126.3,126.0,124.6,84.7,78.3,39.7,39.2,30.8,30.7$; IR (film) 1264 cm^{-1}. Anal calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 86.29 ; \mathrm{H}, 7.97$. Found: C, 86.19; H, 7.91.
(\pm)-(2R,3S)-2-Biphenyl-4-yl-3-methyltetrahydrofuran (21a). Reaction of 3-methyl-4-penten-1-ol ($50 \mathrm{mg}, 0.5 \mathrm{mmol}$) with 4-bromobiphenyl ($232 \mathrm{mg}, 1.0 \mathrm{mmol}$) following the general procedure afforded $95 \mathrm{mg}(76 \%)$ of the title compound as a pale yellow oil. The product was isolated as a ca. 3:1 mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR. Data is for the major diastereomer. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.44$ (m, 2 H$), 7.38-7.34(\mathrm{~m}, 3 \mathrm{H}), 3.90-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=4.4,14.0$ Hz, 1 H), 2.88-2.84 (m, 1 H), 2.14-2.10 (m, 1 H), 1.97-1.94 (m, 1 H), 1.61-1.56 (m, 1 H), 1.06 $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.2,138.5,129.9,129.6,128.9,127.3$, $127.24,127.21,86.6,67.1,40.4,38.9,34.8,17.5$; IR (film) $1076 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}$: C, 85.67; H, 7.99. Found: C, 85.71; H, 8.05.
(\pm)-(2R,3S)-3-Ethyl-2-(4-methylbenzyl)tetrahydrofuran (21b). Reaction of 3-ethyl-4-propen-1-ol ($57 \mathrm{mg}, 0.5 \mathrm{mmol}$) with 4-bromotoluene ($171 \mathrm{mg}, 1.0 \mathrm{mmol}$) following the general procedure
afforded $67 \mathrm{mg}(66 \%)$ of the title compound as a pale yellow oil. The product was isolated as a ca. 6:1 mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR. Data is for the major diastereomer. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16-7.09(\mathrm{~m}, 4 \mathrm{H}), 3.85-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.65(\mathrm{~m}, 1 \mathrm{H})$, $2.84(\mathrm{dd}, J=4.4,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=7.2,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 1$ H), 1.78-1.73 (m, 1 H), 1.58-1.52 (m, 1 H), 1.50-1.44 (m, 1 H$), 1.27-1.19(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) δ 136.3, 135.7, 129.4, 129.2, 85.2, 67.2, 46.1, 40.9, 32.5, 26.1, 21.3, 12.9; IR (film) $1074 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 82.30 ; \mathrm{H}, 9.87$. Found: C, 82.36; H, 9.94.
(\pm)-(2R,3S)-3-Ethyl-2-(2-methoxybenzyl)tetrahydrofuran (21c). Reaction of 3-ethyl-4-penten-1-ol ($28.5 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 2-bromoanisole ($93.5 \mathrm{mg}, 0.50 \mathrm{mmol}$) following the general procedure afforded $31 \mathrm{mg}(56 \%)$ of the title compound as a pale yellow oil. The product was isolated as a ca. 8:1 mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR. Data is for the major diastereomer. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.83(\mathrm{~m}, 2 \mathrm{H})$, $3.90-3.70(\mathrm{~m}, 6 \mathrm{H}), 2.90(\mathrm{dd}, J=6.0,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=6.0,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.03$ (m, 1 H), $1.80-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.16(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 157.6,133.5,131.1,127.7,120.5,110.3,83.6,67.1,55.3,46.2$, $35.6,32.5,26.2,12.7$; IR (film) $1241 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 76.33; H, 9.15. Found: C, 76.27; H, 8.93.
(\pm)-(2R,3S)-3-tert-Butyl-2-(4-methylbenzyl)tetrahydrofuran (21e). Reaction of 3-tert-butyl-4-penten-1-ol ($71 \mathrm{mg}, 0.5 \mathrm{mmol}$) with 4-bromotoluene ($171 \mathrm{mg}, 1.0 \mathrm{mmol}$) following the general procedure afforded $63 \mathrm{mg}(54 \%)$ of the title compound as a pale yellow oil. This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.18-7.11 (m, 4 H), 4.04-3.99 (m, 1 H), $3.82-3.71$ (m, 2 H), 2.81 (dd, $J=4.0,14.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.71(\mathrm{dd}, J=8.0,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.72(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.8,135.7,129.4,129.1,81.4,67.5,54.4,42.6,32.4,28.9,28.1,21.2$; IR (film) $1076 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 82.70 ; \mathrm{H}, 10.41$. Found: C, 82.80; H, 10.41.
(\pm)-(2R,3S)-5-Biphenyl-4-ylmethyl-2,2,4-trimethyltetrahydrofuran (21f). Reaction of 1,1,3-trimethyl-4-penten-1-ol ($64 \mathrm{mg}, 0.5 \mathrm{mmol}$) with 4-bromobiphenyl ($232 \mathrm{mg}, 1.0 \mathrm{mmol}$) following the general procedure afforded $109 \mathrm{mg}(78 \%)$ of the title compound as a pale yellow oil. The product was isolated as a ca. 8:1 mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR. Data is for the major diastereomer. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 2 \mathrm{H})$, 7.44-7.42 (m, 2 H), 7.36-7.34 (m, 3 H), 3.82-3.77 (m, 1 H), 2.93-2.91 (m, 2 H), 2.08-1.92 (m, 2 H), 1.48-1.42 (m, 2 H), $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.4,139.1,138.2,130.2,128.9,127.2,127.0,85.4,79.6,48.3,40.4,38.9$, 29.8, 29.6, 16.9; IR (film) $1066 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}: \mathrm{C}, 85.67$; H, 8.63. Found: C, 85.39; H, 8.81 .
(\pm)-(2S,4S)-2-Biphenyl-4-ylmethyl-4-methyltetrahydrofuran (23a). Reaction of 2-methylpent-4-en-1-ol ($25 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 4-bromobiphenyl ($116.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) following the general procedure afforded $44 \mathrm{mg}(70 \%)$ of the title compound as a pale yellow oil. This material was isolated as a ca. 1.5:1 mixture of diastereomers as judged by ${ }^{1} \mathrm{H}$ NMR analysis. Data are for the mixture. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.53(\mathrm{~m}, 2 \mathrm{H})$, 7.45-7.42 (m, 2 H$), 7.35-7.31(\mathrm{~m}, 3 \mathrm{H}), 4.28-4.23(\mathrm{~m}, 0.4 \mathrm{H}), 4.19-4.14(\mathrm{~m}, 0.6 \mathrm{H}), 4.05(\mathrm{dd}, J$ $=7.0,8.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.93(\mathrm{t}, J=8.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.31(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $0.4 \mathrm{H}), 3.00(\mathrm{dd}, J=6.5,15.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.94(\mathrm{dd}, J=7.0,13.7 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.84(\mathrm{dd}, J=7.0$, $13.7 \mathrm{~Hz}, 0.6 \mathrm{H}$), 2.79 (dd, $J=6.0,13.5 \mathrm{~Hz}, 0.4 \mathrm{H}$), 2.38-2.30 (m, 1 H$), 2.17-2.12$ (m, 0.6 H), $1.86-1.81(\mathrm{~m}, 0.4 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 0.4 \mathrm{H}), 1.28-1.21(\mathrm{~m}, 0.6 \mathrm{H}), 1.07-1.02(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.1,139.1,138.1,138.1,129.6,129.5,128.6,127.0,126.9,126.9,80.7$, $79.4,75.1,74.6,41.9,41.9,40.6,39.1,34.3,33.1,17.9,17.4$; IR (film) $1040 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 82.70 ; \mathrm{H}, 10.41$. Found: C, 82.47; H, 10.39.
(\pm)-(2S,4S)-2-Biphenyl-4-ylmethyl-4-ethyltetrahydrofuran (23b). Reaction of 2-ethylpent-4-en-1-ol ($28 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 4-bromobiphenyl ($116.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) following the general procedure afforded $54 \mathrm{mg}(81 \%)$ of the title compound as a pale yellow oil. This material was obtained as a ca. 1.5:1 mixture of diastereomers as judged by ${ }^{1} \mathrm{H}$ NMR analysis. Data are for the mixture. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2$ H), 7.34-7.29 (m, 3 H), 4.21-4.09 (m, 1 H), 4.07-4.03 (m, 0.6 H), $3.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 0.4 \mathrm{H})$, $3.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.00-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.74(\mathrm{~m}, 1 \mathrm{H})$, 2.20-2.09 (m, 1.4 H$), 1.83-1.76(\mathrm{~m}, 0.4 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 0.4 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.17$ (m, 0.8 H), 0.92-0.87 (m, 3 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 141.1, 139.1, 138.1, 129.6, $129.5,128.6,127.0,126.9,80.6,79.4,73.4,73.8,41.9,41.8,41.6,40.6,38.5,37.0,26.5,26.3$, 12.8, 12.7; IR (film) $1075 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 85.67$; H, 8.32. Found: C, 85.68; H, 8.31.
(\pm)-(2S,4R)-2-Biphenyl-4-ylmethyl-4-tert-butyltetrahydrofuran (23d). Reaction of 2-tert-butylpent-4-en-1-ol ($35 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 4-bromobiphenyl ($116.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) following the general procedure afforded $54 \mathrm{mg}(88 \%)$ of the title compound as a pale yellow oil. The material was obtained as a ca. 2:1 mixture of diastereomers as judged by ${ }^{1} \mathrm{H}$ NMR analysis. Data are for the mixture. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H})$, 7.44-7.40 (m, 2 H), 7.34-7.28 (m, 3H), 4.14-4.06 (m, 1 H$), 3.96(\mathrm{t}, J=8.4 \mathrm{~Hz}, 0.34 \mathrm{H}), 3.79(\mathrm{t}$, $J=8.4 \mathrm{~Hz}, 0.66 \mathrm{H}), 3.72(\mathrm{t}, J=8.4 \mathrm{~Hz}, 0.66 \mathrm{H}), 3.49(\mathrm{t}, J=8.8 \mathrm{~Hz}, 0.34 \mathrm{H}), 3.01-2.90(\mathrm{~m}, 1$ H), 2.84-2.73 (m, 1 H), 2.18-2.10(m, 1 H), 1.92-1.85 (m, 0.66 H$), 1.79-1.74(\mathrm{~m}, 0.34 \mathrm{H})$, $1.67-1.62(\mathrm{~m}, 0.34 \mathrm{H}), 1.40-1.27(\mathrm{~m}, 0.66 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta$ $141.1,139.1,138.1,129.5,129.4,128.7,127.0,127.0,126.9,126.8,80.8,80.3,69.5,69.0,50.5$, $49.2,41.9,41.5,33.8,32.5,31.3,31.2,27.6,27.5$; IR (film) $1120 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}$: C, 85.67; H, 8.90. Found: C, 85.59; H, 8.72.

Reaction of 2-tert-butyl-4-penten-1-ol ($35.5 \mathrm{mg}, 0.25 \mathrm{mmol}$) with p-bromo-1,1-dimethylaniline ($100 \mathrm{mg}, 0.50 \mathrm{mmol}$) following the general procedure afforded $50 \mathrm{mg}(77 \%)$ of the title compound as a pale green oil. The material was obtained as a ca. 2:1 mixture of diastereomers as judged by ${ }^{1} \mathrm{H}$ NMR analysis. Data are for the mixture. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12-7.09$ (m, 2 H), 6.73-6.70 (m, 2 H), 4.04-3.92 (m, 1.33 H), 3.81-3.75 (m, 0.66 H), 3.69-3.63 (m, 0.66 H), 4.01-3.92 (m, 0.34 H$), 2.94-2.81(\mathrm{~m}, 7 \mathrm{H}), 2.69-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H})$, $1.88-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 129.7$, $112.9,81.4,80.8,69.4,68.9,50.5,49.2,41.3,40.9,33.8,32.3,31.3,31.2,27.6,27.5$; IR (film) $1059 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}: \mathrm{C}, 78.11 ; \mathrm{H}, 10.41 ; \mathrm{N}, 5.36$. Found: C, $77.87 ; \mathrm{H}, 10.38 ; \mathrm{N}$, 5.24.
(\pm)-(2R,4R)-4-tert-Butyl-2-[(E)-3-phenylallyl]tetrahydrofuran (23f). Reaction of 2-tert-butyl-4-penten-1-ol ($35.5 \mathrm{mg}, 0.25 \mathrm{mmol}$) with β-bromostyrene ($91.5 \mathrm{mg}, 0.50 \mathrm{mmol}$) following the general procedure afforded $41 \mathrm{mg}(64 \%)$ of the title compound as a pale yellow oil. The material was obtained as a ca. 2:1 mixture of diastereomers as judged by ${ }^{1} \mathrm{H}$ NMR analysis. Data are for the mixture. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.47-6.45(\mathrm{~m}, 1 \mathrm{H}), 6.16-6.16$ $(\mathrm{m}, 1 \mathrm{H}), 3.97-3.88(\mathrm{~m}, 1.34 \mathrm{H}), 3.80-3.74(\mathrm{~m}, 0.66 \mathrm{H}), 3.67-3.62(\mathrm{~m}, 0.66 \mathrm{H}), 3.50-3.41(\mathrm{~m}$, $0.34 \mathrm{H}), 2.54-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 0.66 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 0.34 \mathrm{H})$, $1.64-1.52(\mathrm{~m}, 0.34 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 0.66 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 137.7, 132.1, 128.6, 127.2, 126.9, 126.3, 79.9, 79.3, 69.7, 69.2, 50.8, 49.5, 39.8, 32.6, 31.5, 27.8, 27.7; IR (film) $1067 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 83.55$; H, 9.90. Found: C, 83.67; H, 9.94.
(\pm)-(2S,4S)-2-Biphenyl-4-ylmethyl-2,4-dimethyltetrahydrofuran (23g). Reaction of 2,4-dimethylpent-4-en-1-ol ($28 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 4-bromobiphenyl ($116.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) following the general procedure afforded $50 \mathrm{mg}(75 \%)$ of the title compound as a pale yellow oil. The material was obtained as a ca. 1:1 mixture of diastereomers as judged by ${ }^{1} \mathrm{H}$ NMR analysis.

Data are for the mixture. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H})$, 7.44-7.40(m, 2 H), 7.34-7.28 (m, 3H), 4.0-3.95 (m, 1 H$), 3.38-3.34(\mathrm{~m}, 0.5 \mathrm{H}), 3.26-3.21(\mathrm{~m}$, $0.5 \mathrm{H}), 2.90-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 1 \mathrm{H})$, $1.87-1.82(\mathrm{dd}, J=8,12.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.54-1.46(\mathrm{dd}, J=12.4,16.0, \mathrm{~Hz}, 0.5 \mathrm{H}), 1.26(\mathrm{~s}, 1.5 \mathrm{H})$, 1.21 (s, 1.5 H), 1.00-0.96 (m, 3 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.1,141.0,138.9,138.9$, $137.7,137.6,130.8,130.7,128.7,126.9,126.9,126.6,126.5,83.5,83.4,74.4,74.2,47.4,46.8$, $45.4,45.3,34.2,33.9,27.4,26.8,17.3,16.8$; IR (film) $1042 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}$, 85.67; H, 8.32. Found: C, 85.80; H, 8.35.
(\pm)-(2R,3aR,7aR)-2-Biphenyl-4-ylmethyloctahydrobenzofuran (26a). Reaction of (\pm)$(1 R, 2 R)$-2-allylcyclohexanol ($70 \mathrm{mg}, 0.5 \mathrm{mmol}$) with 4-bromobiphenyl ($232 \mathrm{mg}, 1.0 \mathrm{mmol}$) following the general procedure afforded $87.6 \mathrm{mg}(60 \%)$ of the title compound as a pale yellow oil. This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 3 \mathrm{H}), 4.49-4.46(\mathrm{~m}, 1$ H), 4.04-4.01 (m, 1 H), 3.05 (dd, $J=5.6,13.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.81 (dd, $J=6.8,13.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.07-2.04 (m, 1 H), 1.97-1.93 (m, 1 H), 1.79-1.76 (m, 1 H), 1.64-1.20 (m, 8 H$) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.3,139.2,138.1,130.1,130.0,128.9,127.2,127.1,78.1,76.9,42.9,38.5$, $38.3,28.6,27.8,24.3,20.9$; IR (film) $1016 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 86.29 ; \mathrm{H}, 8.27$. Found: C, 86.29; H, 8.26.
(\pm)-(2R,3aR,7aS)-2-Biphenyl-4-ylmethyloctahydrobenzofuran (26b) Reaction of (\pm)$(1 S, 2 R)$-2-allylcyclohexanol ($70 \mathrm{mg}, 0.5 \mathrm{mmol}$) with 4-bromobiphenyl ($232 \mathrm{mg}, 1.0 \mathrm{mmol}$) following the general procedure afforded $102 \mathrm{mg}(70 \%)$ of the title compound as a pale yellow oil. This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3$ H), 4.38-4.33 (m, 1 H), 3.23-3.18(m, 1H), 3.06 (dd, $J=5.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=5.6$, $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.83(\mathrm{~m}, 1 \mathrm{H})$,
$1.78-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.13(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $141.4,139.3,138.3,130.0,129.0,127.3,127.2,82.7,79.4,77.6,46.5,42.9,38.1,31.8,29.3$, 26.0, 24.6; IR (film) $1068 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 85.67$; H, 8.63. Found: C, 85.48; H, 8.62.
(\pm)-(2R,3aR,7aS)-2-Undec-2-enyloctahydrobenzofuran (27). Reaction of ($35 \mathrm{mg}, 0.25 \mathrm{mmol}$) of $(\pm)-(1 S, 2 R)$-2-allylcyclohexanol with (E)-1-bromoundec-1-ene ($109.5 \mathrm{mg}, 0.50 \mathrm{mmol}$) following the general procedure afforded $29.5 \mathrm{mg}(42 \%)$ of the title compound as a pale yellow oil. This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.48-5.40(\mathrm{~m}, 2 \mathrm{H}), 4.07-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.29(\mathrm{~m}, 1$ H), 2.20-2.16(m, 1H), 2.09-1.70(m, 11 H$), 1.28-1.05(\mathrm{~m}, 14 \mathrm{H}), 0.87(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.1,126.0,82.4,78.3,46.3,39.9,37.4,32.7,31.9,31.5,29.5$, 29.3, 29.2, 29.0, 25.7, 24.4, 22.7, 14.1; IR (film) $1061 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}: \mathrm{C}, 81.95 ; \mathrm{H}$, 12.31. Found: C, 81.70; H, 12.17.
(\pm)-(2R,3aR,6aR)-2-(4-tert-Butylbenzyl)-hexahydrocyclopenta[b]furan (28). Reaction of (\pm)$(1 S, 2 S)$-2-allylcyclopentanol ($31.5 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 1-bromo-4-tert-butylbenzene (106 mg , $0.50 \mathrm{mmol})$ following the general procedure afforded $32.5 \mathrm{mg}(51 \%)$ of the title compound as a pale yellow oil. This material was obtained with $\mathrm{dr}>20: 1$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 7.32-7.30(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.13(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.60-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.16(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=6.0,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.59(\mathrm{~m}, 2 \mathrm{H})$, 1.86-1.63 (m, 8 H), $1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.8,135.9,131.0$, 128.8, $125.2,84.5,80.1,42.6,41.0,39.3,34.8,32.9,31.4,24.9$; IR (film) $1042 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}: \mathrm{C}, 83.67$; H, 10.14. Found: C, 83.45; H, 10.21.

Assignment of Stereochemistry

2,5-Disubstituted Tetrahydrofurans (Table 3 and Table 5)

The trans stereochemistry of $(\pm)-(2 R, 5 S)$-2-(4-tert-butylbenzyl)-5-ethyltetrahydrofuran (12b) was assigned on the basis of nOe signals between the hydrogen on C 2 and one of the benzylic hydrogens on C 1 ' as shown below.

The trans-stereochemistry of the remaining 2,5-disubstituted tetrahydrofuran products shown in Tables 3 and 5 was assigned based on analogy to the above molecule.

2,5- Disubstituted Alkoxymethyl Tetrahydrofurans (Table 4)

The trans stereochemistry of (\pm) - tert-butyldimethyl-\{ $(2 R, 5 R)-5-[(E)-3-$ phenylallyl]tetrahydrofuran-2-ylmethoxy\} silane (14e) was assigned on the basis of nOe signals between the hydrogen on C 2 and one of the benzylic hydrogens on C 1 ' as shown below.

The trans-stereochemistry of the remaining 2,5-disubstituted tetrahydrofuran products shown in Table 4 were assigned based on analogy to the above molecule.

2,5,5-Trisubstituted Tetrahydrofurans (Table 6)

The trans stereochemistry of $(\pm)-(2 R, 5 R)-5$-(4-tert-butylbenzyl)-2-methyl-2phenyltetrahydrofuran (19b) was assigned on the basis of nOe signals between the methyl group attached to C 2 and one of the benzylic hydrogens on C 1 ' as shown below.

The trans-stereochemistry of the remaining 2,5,5-trisubstituted tetrahydrofuran products shown in Table 6 were assigned based on analogy to the above molecule.

2,3-Disubstituted Tetrahydrofurans (Table 7)

The trans stereochemistry of the 2,3-disubstituted tetrahydrofuran product $(\pm)-(2 R, 3 S)-3$-tert-butyl-2-(4-methylbenzyl)tetrahydrofuran (21e) was assigned on the basis of nOe signals between the hydrogen attached to C 3 and one of the benzylic hydrogens on C 1 ' as shown below.

The trans-stereochemistry of the remaining 2,3-disubstituted tetrahydrofurans products shown in Table 7 were assigned based on analogy to the above molecule.

Octahydrobenzofurans (Table 9)

The relative stereochemistry of the octahydrobenzofuran product $(\pm)-(2 R, 3 a R, 7 a R)-2$-biphenyl-4-ylmethyloctahydrobenzofuran (26a) was determined on the basis of nOe signals shown below.

The relative stereochemistry at the C2, C3a, and C6a carbons of the octahydrobenzofuran product (\pm)-(2R,3aR,7aS)-2-biphenyl-4-ylmethyloctahydrobenzofuran (26b) was determined on the basis of nOe signals as shown below.

The relative stereochemistry of $(\pm)-(2 R, 3 a R, 7 a S)$-2-undec-2-enyloctahydrobenzofuran (27) was assigned based on analogy to the above molecule.

Cyclopenta[b]furans (Table 9)

The relative stereochemistry of the cyclopenta[b]furan product $(\pm)-(2 R, 3 a R, 6 a R)-2-(4-$ tertbutylbenzyl)hexahydrocyclopenta[b]furan (28) was determined on the basis of nOe signals as shown below.

nOe

References

${ }^{1}$ Lee, Y. and Silverman, R. B. Org. Lett. 2000, 2, 303-306.
${ }^{2}$ Kropp, P. J. and Crawford, S. D. J. Org. Chem. 1994, 59, 3102-3112.
${ }^{3}$ Lee, J.; Velarde-Ortiz, R.; Guijarro, A.; Wurst, J. R.; Rieke, R. D. J. Org. Chem., 2000, 65, 5428-5430.
${ }^{4}$ Ashcroft, M. M.; Bougerard, P.; Bury, A.; Cooksey, C.; Johnson, M. D.; Hungerford, J. M.; Compman, G. M.
J. Org. Chem. 1984, 49, 1751-1761.
${ }^{5}$ Tokuda, M.; Yamada, Y.; Takagi, T.; Suginone, H.; Furusaki, A. Tetrahedron Lett. 1985, 26, 6085-6088.
${ }^{6}$ Macritchie, J. A.; Silcock, A.; Willis, C. L. Tetrahedron: Asymmetry 1997, 8, 3895-3902.
${ }^{7}$ Motorina, I. A.; Fowler, F. W.; Grierson, D. S. J. Org. Chem. 1997, 62, 2098-2105.
${ }^{8}$ Davies, A. G.; Hawari, J.; Muggleton, B.; Tse, M. J. Chem. Soc., Perkin Trans. 2 1981, 1132-1137.
${ }^{9}$ Schomaker, J. M.; Travis, B. R.; Borhan, B. Org. Lett. 2003, 5, 3089-3092.
${ }^{10}$ Curran, D. P.; Liu, H. J. Chem. Soc., Perkin Trans. 1 1994, 1377-1394.
${ }^{11}$ Boyer, F. -D.; Ducrot, P. -H. Eur. J. Org. Chem. 1999, 1201-1212.
${ }^{12}$ Bloodworth, A. J.; Curtis, R. J.; Spencer, M. J.; Tallant, N. A. Tetrahedron 1993, 49, 2729-2750.
${ }^{13}$ Baskaran, S.; Islam, I.; Chandrasekaran, S. J. Org. Chem. 1990, 55, 891-895.
${ }_{15}^{14}$ Fieser, L. F.; Fieser, M. Reagents for Organic Synthesis 1967, 1, 584.
${ }^{15}$ Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Li, T.; Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc. 1970, 92, 741-743.
${ }^{16}$ Buffet, M. F.; Dixon, D. J.; Edwards, G. L.; Ley, S. V.; Tate, E.W. J. Chem. Soc., Perkin Trans. 1. 2000, 1815-1828.
${ }^{17}$ Yoshida, M.; Takikawa, H.; Mori, K.; J. Chem. Soc., Perkin Trans. 1 2001, 1007-1017.
${ }^{18}$ Klunder, J. M.; Ko, S.; Sharpless, K. B. J. Org. Chem. 1986, 51, 3710-3712.
${ }^{19}$ Reitz, A. B.; Nortey, S. O.; Maryanoff, B. E.; Liotta, D.; Monahan, R. J. Org. Chem. 1987, 52, 4191-4202.
${ }^{20}$ Morken, J. P.; Didiuk, M. T.; Hoveyda, A. H. J. Am. Chem. Soc. 1993, 115, 6997-6998.
${ }^{21}$ Staehle, M., Hartmann, J.; Schlosser, M. Helv. Chim. Acta 1977, 60, 1730-1738.
${ }^{22}$ Jimeno, C.; Pasto, M.; Riera, A.; Pericas, M. A. J. Org. Chem. 2003, 68, 3130-3138.
${ }^{23}$ Kimura, M; Fujimatsu, H.; Ezoe, A.; Shibata, K.; Shimizu, M.; Matsumoto, S.; Tamaru, Y. Angew. Chem. Int. Ed. 1999, 38, 397-400.
${ }^{24}$ Ashcroft, M. R.; Bougeard, P.; Bury, A.; Cooksey, C. J.; Johnson, M. D.; Hongertord, J. M.; Lampman, G. M. J. Org. Chem. 1984, 49, 1751-1761.
${ }^{25}$ Battersby, A. R.; Westwood, S. W. J. Chem. Soc., Perkin Trans. 1, 1987, 1679-1688.
${ }^{26}$ Evans, D. A.; Rieger, D. L.; Jones, T. K.; Kaldor, S. W. J. Org. Chem. 1990, 55, 6260-6268.
${ }^{27}$ Sjoeholm, A.; Hemmerling, M.; Pradeille, N.; Somfai, P. J. Chem. Soc., Perkin Trans. 1 2001, 891-899.
${ }^{28}$ Ayala, L.; Lucero, C. G.; Romero, J. A. C.; Tabacco, S. A.; Woerpel, K. A. J. Am. Chem. Soc. 2003, 125, 15521-15528.
${ }^{29}$ Scheck, M.; Waldmann, H. Can. J. Chem. 2002, 80, 571-576.
${ }^{30}$ Pandey, G.; Soma Sekhar, B. B. V. J. Org. Chem. 1992, 57, 4019-4023.
${ }_{31}^{31}$ Molander, G. A.; Cameron, K. O. J. Org. Chem. 1993, 58, 5931-5943.
${ }^{32}$ Marvell, E.N.; Rusay, R. J. Org. Chem. 1977, 42, 3336-3340.
${ }^{33}$ Sato, Y.; Takimoto, M.; Mori, M. Tetrahedron Lett. 1996, 37, 887-90.
${ }^{34}$ Senda, Y.; Kanto, H.; Itoh, H. J. Chem. Soc., Perkin Trans. 2 1997, 1143-1146.
${ }^{35}$ Torraca, K. E.; Huang, X.; Parrish, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 10770-10771.
${ }^{36}$ Jang, Y.; Shih, Y.; Liu, J.; Kuo, W; Yao, C. Chem. Eur. J. 2003, 9, 2123-2128.
${ }^{37}$ The main side product in this reaction derives from O-vinylation of the starting alcohol, and was characterized by comparison of the crude ${ }^{1} \mathrm{H}$ NMR spectrum to the spectrum of 2-pent-4-enyloxyvinylbenzene isolated from the reaction that afforded product $\mathbf{6 f}$.
${ }^{38}$ Marvell, E. N.; Li, T. H. C. J. Am. Chem. Soc. 1978, 100, 883-888.

