A Simple and General Chiral Silicon Lewis Acid for Asymmetric Synthesis: Highly Enantioselective [3+2] Acylhydrazone-Enol Ether Cycloadditions

Seiji Shirakawa, Pamela J. Lombardi, and James L. Leighton*
Department of Chemistry, Columbia University, New York, New York, 10027

Supporting Information

General Information. All reactions were carried out under an atmosphere of nitrogen in flame- or oven-dried glassware with magnetic stirring unless otherwise indicated. Degassed solvents were purified by passage through an activated alumina column. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker DPX-300 $(300 \mathrm{MHz})$ spectrometer and are reported in ppm from CDCl_{3} internal standard (7.26 ppm). Data are reported as follows: $(\mathrm{s}=$ singlet, $\mathrm{br} \mathrm{s}=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, sep $=$ septet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, $\mathrm{tt}=$ triplet of triplets, $\mathrm{dq}=$ doublet of quartets, ddt $=$ doublet of doublet of triplets; coupling constant(s) in Hz ; integration; assignment). Proton decoupled ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker DPX-300 (75 MHz) and are reported in ppm from CDCl_{3} internal standard (77.0 ppm). Infrared spectra were recorded on a Perkin Elmer Paragon 1000 FT-IR spectrometer. Optical rotations were recorded on a Jasco DIP-1000 digital polarimeter.

Preparation of reagent (S, S)-1: A detailed procedure for the preparation of (S, S) - $\mathbf{1}$ has been previously described. ${ }^{1}$ See the supporting information files.

General procedure for the enantioselective [3+2] cycloaddition of benzoylhydrazones with tertbutyl vinyl ether promoted by ($\boldsymbol{S}, \boldsymbol{S}$)-1: To a solution of the benzoylhydrazone (0.200 mmol) and (S, S)-1
(1) (a) Berger, R.; Duff, K.; Leighton, J. L. J. Am. Chem. Soc. 2004, 126, 5686-5687. (b) Shirakawa, S.; Berger, R.; Leighton, J. L. J. Am. Chem. Soc. 2005, 127, 2858-2859.
($91.2 \mathrm{mg}, 0.300 \mathrm{mmol}$) in toluene (2 mL) is added tert-butyl vinyl ether ($78.9 \mu \mathrm{l}, 0.600 \mathrm{mmol}$) and the resulting mixture is stirred at $23^{\circ} \mathrm{C}$ for 24 h . The reaction is quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and the resulting mixture is stirred for 15 min , and then diluted with EtOAc $(5 \mathrm{~mL})$. The phases are separated, and the aqueous layer is extracted with EtOAc ($5 \mathrm{~mL} \times 2$). The combined organic layers are dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Purification by flash chromatography on silica gel affords the products.

Characterization data for the cycloaddition products from Table 1 and Scheme 4:

(3R,5R)-1-(Benzoyl)-5-(tert-butoxy)-3-(phenethyl)pyrazolidine: $[\alpha]^{26}{ }_{\mathrm{D}}=+99.9^{\circ}\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67$ (dd, $2 \mathrm{H}, J=1.5,8.0 \mathrm{~Hz}, \operatorname{Ar-H}$), 7.33-7.44 (m, 3H, Ar-H), 7.10-7.22 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.00(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}, \operatorname{Ar}-\mathbf{H}), 6.18(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, \mathrm{NH}), 4.05(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}$, $\mathrm{CHO} t-\mathrm{Bu}), 2.77-2.91$ (br m, 1H, NHCH), 2.60 (t, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{PhCH}_{2}$), 2.48 (ddd, 1H, $J=6.8,7.7$, $13.2 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}$), 1.71-1.95 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}$), $1.60\left(\mathrm{ddd}, 1 \mathrm{H}, J=2.9,8.5,13.2 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}\right)$, $1.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,141.0,135.1,130.4,129.2,128.34,128.30$, $127.4,125.9,81.9,74.8,60.0,42.7,34.5,33.0,28.5$; IR (thin film) 3238, 2978, 2937, 1643, 1627, 1389, 1368, 1057, 1026, $699 \mathrm{~cm}^{-1}$; LRMS (FAB+) calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}: 353\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $353\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(3S,5R)-1-(Benzoyl)-3-(benzyloxymethyl)-5-(tert-butoxy)pyrazolidine: $\quad[\alpha]_{\mathrm{D}}^{24}=+63.4^{\circ}(c \quad 1.0$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.24-7.43(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.20(\mathrm{br} \mathrm{d}, 1 \mathrm{H}$, $J=4.6 \mathrm{~Hz}, \mathrm{NH}), 4.61(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{CHO} t-\mathrm{Bu}), 4.54(\mathrm{~d}, 1 \mathrm{H}, J=12.1 \mathrm{~Hz}, \mathrm{PhCH}), 4.49(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=12.1 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 3.62\left(\mathrm{dd}, 1 \mathrm{H}, J=3.9,10.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.53\left(\mathrm{dd}, 1 \mathrm{H}, J=4.7,10.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}\right)$, 3.15-3.27 (br m, 1H, NHCH), 2.37 (ddd, $1 \mathrm{H}, J=6.5,8.5,13.1 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}$), 1.69 (ddd, $1 \mathrm{H}, J=2.6$, 8.6, 13.1 Hz, $\mathrm{CHCH}_{2} \mathrm{CH}$), $1.29\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,137.9,135.1$, $130.5,129.1,128.4,127.7,127.4,81.5,74.7,73.0,68.8,59.8,38.6,28.5$; IR (thin film) 3258, 2975, 2932,

2866, 1643, 1474, 1367, 1100, 1059, 1028, $697 \mathrm{~cm}^{-1}$; LRMS (FAB+) calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}: 369$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $369\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(3S,5R)-1-(Benzoyl)-5-(tert-butoxy)-3-(isopropyl)pyrazolidine: $[\alpha]^{24}{ }_{\mathrm{D}}=+100.9^{\circ}\left(c 0.65, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74$ (dd, $2 \mathrm{H}, J=1.4,8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathbf{H}$), 7.33-7.44 (m, 3H, Ar-H), 6.18 (br s, 1 H , NH), 4.10 (br d, $1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{CHOt}-\mathrm{Bu}$), 2.65 (br quin, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}), 2.44(\mathrm{ddd}, 1 \mathrm{H}, J=$ $\left.6.8,7.9,13.2 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 1.58-1.71\left(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.92\left(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 0.90\left(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.3,135.0,130.3,129.2,127.3,82.0,74.7,67.1,40.9,31.1,28.5,20.5,19.2$; IR (thin film) 3227,2968 , 2947, 2875, 1618, 1509, 1389, 1363, 1052, $694 \mathrm{~cm}^{-1}$; LRMS (FAB+) calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}: 291$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $291\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(3S,5R)-1-(Benzoyl)-5-(tert-butoxy)-3-(cyclohexyl)pyrazolidine: $[\alpha]_{\mathrm{D}}^{25}=+82.7^{\circ}\left(c 1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (dd, 2H, $J=1.4,8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathbf{H}$), 7.30-7.41 (m, 3H, Ar-H), 6.16 (br s, 1 H , NH), 4.06 (br d, $1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{CHO} t-\mathrm{Bu}$), $2.59-2.71$ (br m, $1 \mathrm{H}, \mathrm{NHCH}$), 2.43 (ddd, $1 \mathrm{H}, J=6.8,7.6$, $13.2 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}$), 1.58-1.79 (m, $\left.4 \mathrm{H}+1 \mathrm{H}+1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{CHCH}_{2} \mathrm{CH}+\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 1.29(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.08-1.41\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.85-1.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3$, $135.0,130.3,129.2,127.3,81.8,74.7,66.1,41.0,40.9,31.0,29.6,28.5,26.3,25.8,25.7$; IR (thin film) 3238, 2974, 2923, 2856, 1646, 1473, 1447, 1392, 1363, 1054, 1029, $695 \mathrm{~cm}^{-1}$; LRMS (FAB+) calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}: 331\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $331\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(3S,5R)-1-(Benzoyl)-5-(tert-butoxy)-3-(tert-butyl)pyrazolidine: $[\alpha]^{25}=+108.8^{\circ}\left(c 0.73, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73$ (dd, 2H, $J=1.5,8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathbf{H}$), $7.30-7.42$ (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.15 (br s, 1 H , NH), 4.16 (br d, $1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{CHO} t-\mathrm{Bu}), 2.68-2.79$ (br m, $1 \mathrm{H}, \mathrm{NHCH}$), 2.28 (ddd, $1 \mathrm{H}, J=6.6,8.3$, $\left.13.2 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 1.69\left(\mathrm{ddd}, 1 \mathrm{H}, J=2.6,9.0,13.2 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 1.28\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.91(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1,135.1,130.3,129.3,127.3,81.8,74.6,69.8,38.2$, $31.3,28.5,26.5$; IR (thin film) 3248, 2968, 2875, 1618, 1374, 1057, 793, 715, $694 \mathrm{~cm}^{-1}$; LRMS (FAB+) calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}: 305\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $305\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(3S,5R)-1-(Benzoyl)-5-(tert-butoxy)-3-(phenyl)pyrazolidine: $[\alpha]^{24}{ }_{\mathrm{D}}=+40.3^{\circ}\left(c \quad 0.80, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73$ (dd, $2 \mathrm{H}, J=1.3,8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.23-7.43 (m, $8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $6.38(\mathrm{br} \mathrm{d}, 1 \mathrm{H}$, $J=5.0 \mathrm{~Hz}, \mathrm{NH}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}, \mathrm{CHO} t-\mathrm{Bu}), 4.01-4.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}), 2.75(\mathrm{ddd}, 1 \mathrm{H}, J=6.4$, $\left.9.1,13.5 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 2.12\left(\mathrm{ddd}, 1 \mathrm{H}, J=2.1,7.4,13.5 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 1.36\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,139.0,134.8,130.6,129.3,128.7,128.1,127.7,127.4,81.6,75.1,64.1$, 43.4, 28.6; IR (thin film) 3248, 2978, 2926, 1643, 1472, 1368, 1052, 1026, 761, $699 \mathrm{~cm}^{-1}$; LRMS (FAB+) calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}: 325\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $325\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(3S,5R)-1-(Benzoyl)-5-(tert-butoxy)-3-(4-fluoro-phenyl)pyrazolidine: $\quad[\alpha]^{26}{ }_{\mathrm{D}}=+41.0^{\circ}$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.32-7.44(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.99-7.04(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.37(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}, \mathrm{NH}), 4.33(\mathrm{~d}, 1 \mathrm{H}, J=11.3 \mathrm{~Hz}, \mathrm{CHOt}-\mathrm{Bu}), 4.00-4.09(\mathrm{~m}, 1 \mathrm{H}$, NHCH), 2.74 (ddd, $1 \mathrm{H}, J=6.3,9.2,13.5 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}$), 2.07 (ddd, $1 \mathrm{H}, J=2.0,7.2,13.5 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}\right), 1.36\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.2,164.1,160.8,134.91,134.87$,
134.7, 130.6, 129.6, 129.5, 129.3, 127.5, 115.7, 115.4, 81.5, 75.2, 63.3, 43.3, 28.5; IR (thin film) 3244 , 2976, 1645, 1514, 1472, 1368, 1227, 1052, 836, $697 \mathrm{~cm}^{-1}$; LRMS (FAB+) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{2}: 343$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $343\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(3S,5R)-1-(Benzoyl)-5-(tert-butoxy)-3-(furan-2-yl)pyrazolidine: $[\alpha]^{23}{ }_{\mathrm{D}}=+42.3^{\circ}\left(c \quad 1.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{dd}, 2 \mathrm{H}, J=1.5,8.2 \mathrm{~Hz}, \mathrm{Ar}-\mathbf{H}$), 7.31-7.44 (m, 4H, Ar-H), 6.27-6.35 (m, $1 \mathrm{H}+2 \mathrm{H}, \mathrm{NH}+\mathrm{Ar}-\mathrm{H}), 4.53(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}, \mathrm{CHOt}-\mathrm{Bu}), 4.02-4.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}), 2.69(\mathrm{ddd}, 1 \mathrm{H}, J$ $\left.=6.6,8.6,13.4 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 2.21\left(\mathrm{ddd}, 1 \mathrm{H}, J=2.7,8.5,13.4 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 1.33\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,151.3,142.4,134.8,130.7,129.3,127.5,110.4,108.1,81.6,75.0$, 57.6, 41.7, 28.5; IR (thin film) 3239, 2974, 2933, 1646, 1473, 1366, 1188, 1050, 1025, $696 \mathrm{~cm}^{-1}$; LRMS (FAB+) calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}: 315\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $315\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(3R,4S,5R)-1-(Benzoyl)-5-(tert-butoxy)-4-(methyl)-3-(phenethyl)pyrazolidine: $[\alpha]^{26}{ }_{\mathrm{D}}=+115.6^{\circ}(c$ 1.1, CHCl_{3}) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.34-7.45(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.12-7.23 (m, 3H, Ar-H), 7.04 (d, 2H, $J=6.7 \mathrm{~Hz}, \operatorname{Ar}-\mathbf{H}$), $5.99(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{NH}), 4.11(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J$ $=9.5 \mathrm{~Hz}, \mathrm{CHOt}-\mathrm{Bu}), 2.98-3.09(\mathrm{br} \mathrm{m}, 1 \mathrm{H}, \mathrm{NHCH}), 2.50-2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 2.38(\mathrm{~m}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{3}\right), 1.62-1.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 1.29\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.96\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,141.3,135.1,130.4,129.2,128.5,128.3,127.4,125.9,82.5,74.7,60.9$, $40.6,33.3,31.9,28.3,8.9$; IR (thin film) 3237, 2971, 2936, 1630, 1497, 1388, 1368, 1195, $1104 \mathrm{~cm}^{-1}$; LRMS (FAB+) calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}: 367\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $367\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Procedure for the diastereo- and enantioselective [3+2] cycoaddition of benzoic acid isobutylidene-hydrazide with tert-butyl vinyl ether on a 5.0 g scale: To a solution of (S, S)-1 $(9.60 \mathrm{~g}$, 31.6 mmol) in toluene (200 mL) was added benzoic acid isobutylidene-hydrazide ($5.00 \mathrm{~g}, 26.3 \mathrm{mmol}$). After 10 min , tert-butyl vinyl ether ($4.15 \mathrm{~mL}, 31.6 \mathrm{mmol}$) was added. After 24 h , the reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$. The resulting mixture was stirred for 30 min , and the phases were then separated. The aqueous layer was extracted with EtOAc ($100 \mathrm{~mL} \times 2$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. The filtrate was concentrated to a volume of $\sim 50 \mathrm{~mL}$, and then hexane (50 mL) was gradually added. The resulting solution was placed in a refrigerator for 3 h and the resulting crystalline solid was filtered and dried to yield 1-(benzoyl)-5-(tert-butoxy)-3-(isopropyl)pyrazolidine as a white crystalline solid (7.08 g, 24.4 mmol, 93% yield $) .[\alpha]^{22}{ }_{\mathrm{D}}=+108.0^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess of this material was determined to be 99% by chiral HPLC analysis (see below for the details of the assay).

The pseudoephedrine was recovered by the following procedure: the combined aqueous extracts from the above workup were basified with $1 N$ aqueous $\mathrm{NaOH}(150 \mathrm{ml})$ and the cloudy suspension was extracted with EtOAc (100 mL x 3). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ and brine $(100 \mathrm{~mL})$, and then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to yield pure (S, S)-pseudoephedrine as a white solid ($5.22 \mathrm{~g}, 31.6 \mathrm{mmol},>99 \%$ recovery).

(3R,5R)-2-(Acetyl)-1-(benzoyl)-5-(tert-butoxy)-3-(phenethyl)pyrazolidine: To a cooled $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of 1-(benzoyl)-5-(tert-butoxy)-3-(phenethyl)pyrazolidine (1.06 $\mathrm{g}, \quad 3.00 \mathrm{mmol}$), 4(dimethylamino)pyridine ($73.3 \mathrm{mg}, 0.600 \mathrm{mmol}$), and pyridine ($2.43 \mathrm{~mL}, 30.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}$)
was added acetyl chloride ($2.13 \mathrm{~mL}, 30.0 \mathrm{mmol}$). The reaction mixture was allowed to warm to ambient temperature and stirred for 2 h . The reaction was quenched by the addition of saturated aqueous NaHCO_{3} $(20 \mathrm{~mL})$ and the phases were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated. The residue was purified by flash chromatography on silica gel (hexane/EtOAc gradient $2 / 1$ to $1 / 1$) to yield 2-(acetyl)-1-(benzoyl)-5-(tert-butoxy)-3-(phenethyl)pyrazolidine as a slightly yellow oil ($1.17 \mathrm{~g}, 2.96 \mathrm{mmol}, 99 \%$ yield). $[\alpha]^{27}{ }_{\mathrm{D}}=-25.7^{\circ}$ (c 1.7, CHCl_{3}); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.68$ (br m, 2H, Ar-H), 7.38-7.48 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.15-7.26 (m, 5H, Ar-H), 5.54 (br d, $1 \mathrm{H}, J=4.2 \mathrm{~Hz}, \mathrm{CHO} t-\mathrm{Bu}), 4.25$ and 4.73 (br, $1 \mathrm{H}, \mathrm{NAcCH}$), 2.62$3.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 1.76-2.39\left(\mathrm{~m}, 2 \mathrm{H}+2 \mathrm{H}+3 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}, \mathrm{CHCH}_{2} \mathrm{CH}, \mathrm{C}=\mathrm{OCH}_{3}\right.$), 0.73 and 1.24 (br, 9H, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$); IR (thin film) 3062, 3027, 2975, 2936, 2864, 1679, 1664, 1449, 1393, 1379, 1319, 1102, 1056, 911, 732, $700 \mathrm{~cm}^{-1}$; LRMS (FAB+) calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}: 394\left(\mathrm{M}^{+}\right)$, found $394\left(\mathrm{M}^{+}\right)$.

(3R,5R)-2-(Acetyl)-5-(allyl)-1-(benzoyl)-3-(phenethyl)pyrazolidine: To a cooled $\left(-15{ }^{\circ} \mathrm{C}\right)$ solution of 2-(acetyl)-1-(benzoyl)-5-(tert-butoxy)-3-(phenethyl)pyrazolidine ($0.370 \mathrm{~g}, 0.938 \mathrm{mmol}$) and allyltrimethylsilane $(0.745 \mathrm{~mL}, 4.69 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added trimethylsilyl trifluoromethanesulfonate ($204 \mu \mathrm{~L}, 1.13 \mathrm{mmol}$). After 24 h , the reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL} \times 2)$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated. The residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right.$ gradient $20 / 1$ to $15 / 1$) to yield 2-(acetyl)-5-(allyl)-1-(benzoyl)-3-(phenethyl)pyrazolidine as a white solid (222 mg, $0.612 \mathrm{mmol}, 65 \%$ yield). $[\alpha]^{27}{ }_{\mathrm{D}}=-44.6^{\circ}(c$ $\left.0.75, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.50(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{Ar}-$ $\mathbf{H}), 7.42(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.13-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.65-5.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.09-5.17(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), 4.41-4.58 (br m, 1H, NAcCH), 4.12-4.31 (br m, 1H, NBzCH), 2.61-2.80 (m, 2H, PhCH $)$, 2.39-2.49 (m, 1H, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 2.16-2.28 (m, $\left.1 \mathrm{H}+2 \mathrm{H}+3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{CHCH}_{2} \mathrm{CH}, \mathrm{COCH}_{3}\right)$, 1.65-1.78 (m, 2H, $\mathrm{PhCH}_{2} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,172.7,141.5,134.0,133.1,131.6$,
$128.6,128.4,128.3,127.9,125.8,119.0,61.0,55.8,37.8,37.3,36.3,32.6,21.3$; IR (thin film) 3083 , 3025, 2980, 2929, 2852, 1671, 1447, 1402, 1351, 1319, 921, $703 \mathrm{~cm}^{-1}$; LRMS (FAB+) calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}: 363\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $363\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(4R,6R)-6-(Acetylamino)-4-(benzoylamino)-8-phenyl-1-octene: To a degassed solution of 2-(acetyl)-5-(allyl)-1-(benzoyl)-3-(phenethyl)pyrazolidine ($72.5 \mathrm{mg}, 0.200 \mathrm{mmol}$) in $\mathrm{MeOH}(2 \mathrm{~mL}$) was added $\mathrm{SmI}_{2}(6.00 \mathrm{~mL}, 0.600 \mathrm{mmol}, 0.1 \mathrm{M}$ in THF). After 30 min , the reaction mixture was concentrated. The residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone gradient $5 / 1$ to $\left.1 / 1\right)$ to give 6-(acetylamino)-4-(benzoylamino)-8-phenyl-1-octene as a slightly yellow solid ($63.4 \mathrm{mg}, 0.174$ mmol, 87% yield $) .[\alpha]^{26}=-3.2^{\circ}\left(c 0.37, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}$, $\operatorname{Ar}-\mathbf{H}), 7.47(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{Ar}-\mathbf{H}), 7.40(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{Ar}-\mathbf{H}), 7.20-7.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.11-7.15$ $(\mathrm{m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.41(\mathrm{~d}, 1 \mathrm{H}, J=8.3, \mathrm{NH}), 5.71-5.85\left(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}, \mathrm{NH}+\mathrm{CH}=\mathrm{CH}_{2}\right), 5.08-5.15(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}=\mathrm{CH}_{2}$), 4.04-4.16 (m, 1H, NCH), 3.88-4.00 (m, 1H, NCH), 2.57-2.73 (m, 2H, PhCH_{2}), 2.33-2.54 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 1.75-2.03 (m, $2 \mathrm{H}+2 \mathrm{H}+3 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}, \mathrm{CHCH}_{2} \mathrm{CH}, \mathrm{C}=\mathrm{OCH}_{3}$) ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.3,167.3,141.4,134.4,134.3,131.5,128.6,128.4,128.3,126.8,126.0,118.3,46.9,46.8$, $39.2,38.8,36.4,32.6,23.5$; IR (thin film) 3287, 3064, 3028, 2953, 2925, 2856, 1636, 1539, 1491, 1440, $1373,1313,1265,1093,1029,916,802,752,699 \mathrm{~cm}^{-1}$; LRMS (FAB+) calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}: 365$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $365\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Proof of relative stereochemistry of the cycloaddition products and 6: The relative stereochemistry of the cycloaddition products and compound $\mathbf{6}$ was determined by selective 1D NOESY experiments as illustrated in Scheme 1:

Proof of absolute configuration of the cycloaddition products: The p-nitrobenzoylhydrazone of dihydrocinnamaldehyde was prepared and subjected to the cycloaddition reaction with tert-butyl vinyl ether (Scheme 2). The product is a known compound previously prepared by Kobayashi and coworkers. ${ }^{2}$ Comparison of the chiral HPLC traces (DAICEL Chiralpak AD-H, hexane/i-PrOH $=97.5 / 2.5,0.8$ $\mathrm{mL} / \mathrm{min}$, retention time $=25.6$ (minor) and 33.5 (major) min) allowed the assignment of absolute stereochemistry for this cycloaddition product. The absolute configurations of all other cycloaddition products were assigned by analogy.

Scheme 2

Determination of ee of the cycloaddition products by chiral HPLC analysis:

Table 1, entry 1: DAICEL Chiralpak AD-H, hexane $/ \mathrm{EtOH}=97 / 3,1.0 \mathrm{~mL} / \mathrm{min}$.

Table 1, entry 1

(2)Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 11279-11282.

Table 1, entry 2: DAICEL Chiralpak AD-H, hexane $/ \mathrm{EtOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}$.

Table 1, entry 2

Table 1, entry 3: DAICEL Chiralcel OD, hexane $/ i-\mathrm{PrOH}=99 / 1,0.7 \mathrm{~mL} / \mathrm{min}$.

Table 1, entry 4: DAICEL Chiralcel OD, hexane $/ i-\mathrm{PrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}$.

Table 1, entry 5: DAICEL Chiralcel OD, hexane $/ i-\mathrm{PrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}$.

Table 1, entry 5

Table 1, entry 6: DAICEL Chiralcel OD, hexane $/ i-\operatorname{PrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}$.

Table 1, entry 7: DAICEL Chiralcel OD, hexane $/ i-\mathrm{PrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}$

Table 1, entry 8: DAICEL Chiralcel OD, hexane $/ i-\mathrm{PrOH}=97 / 3,1.0 \mathrm{~mL} / \mathrm{min}$

Product from Scheme 4: DAICEL Chiralcel OJ-H, hexane $/ \mathrm{EtOH}=93 / 7,1.0 \mathrm{~mL} / \mathrm{min}$.

Product from Scheme 4

${ }^{1}$ H NMR Spectra of the cycloaddition products and compounds 6 and 7 from Scheme 6:

Table 1, entry 1

Table 1, entry 3

Table 1, entry 4

