Experimental Section

Supporting Information

Design and Synthesis of Tricyclic Imidazo[4,5-b]pyridin-2-ones as Corticotropin-Releasing Factor-1 ($\mathbf{C R F}_{1}$) Antagonists

Zhiqiang Guo ${ }^{1 *}$, John E. Tellew ${ }^{1}$, Raymond S. Gross ${ }^{1}$, Brian Dyck ${ }^{1}$, Jonathan Grey ${ }^{1}$, Mustapha Haddach ${ }^{1}$, Mehrak Kiankarimi ${ }^{1}$, Marion Lanier ${ }^{1}$, Bin-Feng Li ${ }^{1}$, Zhiyong Luo ${ }^{1}$, James R. McCarthy ${ }^{1}$, Manisha Moorjani ${ }^{1}$, John Saunders ${ }^{1}$, Robert Sullivan ${ }^{1}$, Xiaohu Zhang ${ }^{1}$, Said ZamaniKord ${ }^{1}$, Dimitri E. Grigoriadis ${ }^{2}$, Paul D. Crowe ${ }^{2}$, Ta Kung Chen ${ }^{3}$, and John P. Williams ${ }^{1}$
${ }^{1}$ Department of Medicinal Chemistry;
${ }^{2}$ Department of Pharmacology;
${ }^{3}$ Department of Preclinical Development

Neurocrine Biosciences, Inc., 12790 El Camino
Real, San Diego, CA 92130

Chemistry

Elemental analysis results are indicated by atom symbols and are within 0.4% of theoretical values except where indicated. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Spectrometer (Mercury 300 Hz) using TMS as the internal standard and CDCl_{3} as solvent except where indicated. Final products were purified by Gilson preparatory HPLC system, which was connected to a mass spectrometer and fractional collector. The fractional collector was triggered by the desired mass. All final compounds after purification were re-analyzed by reverse phase HPLC-MS system (HP-4500 series with APCI mode for mass detection) and determined to be at least 98% pure based on two UV absorbance wavelengths ($220 \mathrm{nM}, 254 \mathrm{nM}$) and total ion current (TIC) monitoring from the mass spectrometer.

6-Methyl-3-nitro-4-(1-propyl-butylamino)-

 pyridin-2-ol (12). To a solution of 4-hydroxy-6-methyl-3-nitro-2-pyridone ($8,931 \mathrm{~g}, 5.47 \mathrm{~mol}$) in anhydrous tetrahydrofuran (THF, 8.0 L) was added 4-dimethylaminopyridine ($33 \mathrm{~g}, 0.27$ mol). Triethylamine ($725 \mathrm{~mL}, 5.20 \mathrm{~mol}$) was added carefully while keeping the temperature below $35^{\circ} \mathrm{C}$. The resulting bright yellow slurry was refluxed for 2 hours, benzenesulfonyl chloride ($700 \mathrm{~mL}, 5.47 \mathrm{~mol}$) in anhydrous THF (500 mL) was added dropwise over 1 hour, and the mixture was refluxed for 1 hour. To the mixture was carefully charged 4-heptylamine ($630 \mathrm{~g}, 5.47 \mathrm{~mol}$) in THF (500 mL) over 30 minutes. Triethylamine ($762 \mathrm{~mL}, 5.47 \mathrm{~mol}$) was charged over 30 minutes, the mixture was heated to reflux over 3 hours and then held at $40^{\circ} \mathrm{C}$ for 12 hours. The mixture was cooled to ambient temperature and the slurry was filtered over celite. The celite was washed with THF (200 mL). The solvent was removed in vacuo and the crude product diluted with EtOAc (4 L). The resulting precipitate (organic salts) was filtered and the filter cake washed with 1 L of EtOAc.The filtrate was washed with 2 L of D.I. water, and twice with 2 L of brine. The solvent was removed in vacuo affording a precipitate. The precipitate was slurried with EtOAc (1 L), chilled, and the precipitate collected by filtration affording the desired product $(\mathbf{1 2}, 949 \mathrm{~g})$. The mother liquor was filtered through a plug of silica gel, eluting with 1:1 EtOAc/hexanes until the eluant became clear. The silica gel was then rinsed with pure EtOAc, which when concentrated, afforded an additional 120 g of product. All product was combined affording 12 $(1069 \mathrm{~g}, 73 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.32-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.64(\mathrm{~m}$, $4 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.61(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{~s}$, $1 \mathrm{H}), 9.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 11.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; MS (CI) $m / z 268.1\left(\mathrm{MH}^{+}\right)$.

4-(4-Heptyl-amino)-2-amino-(4-methoxyphenyl)-6-methyl-3-nitropyridine

 $(\mathbf{1 3 g})$. To a solution of $\mathbf{1 2}(619 \mathrm{~g}, 2.32 \mathrm{~mol})$ in anhydrous acetonitrile (3.0 L) was added phosphorus oxychloride ($277 \mathrm{~mL}, 2.96 \mathrm{~mol}$), followed by addition of DMF ($36 \mathrm{~mL}, 0.46 \mathrm{~mol}$). The mixture was heated to $50^{\circ} \mathrm{C}$ for 2 hours. The mixture was chilled to $0^{\circ} \mathrm{C}$ and theprecipitate filtered. The precipitate was washed with chilled acetonitrile (500 mL) until the filtrate wash was devoid of color. The crude precipitate $\mathbf{1 0}$ was dissolved in acetonitrile (1.5 L). To the slurry was charged dropwise a solution of p-anisidine ($286 \mathrm{~g}, 2.32 \mathrm{~mol}$) in anhydrous acetonitrile (500 mL). The mixture was heated to $65^{\circ} \mathrm{C}$ for 8 h . The mixture was cooled to ambient temperature and carefully quenched with $2 \mathrm{~N} \mathrm{NaOH}(\sim 2 \mathrm{~L})$ while keeping the temperature below $30^{\circ} \mathrm{C}$. The organic phase was separated and washed with brine. The combined aqueous phases were extracted with EtOAc (2 L) and the organic phase was washed with brine. All the organic phases were combined and the solvent removed in vacuo. The residue was dried using a heptane azeotrope and the crude diluted with 1 L of warm heptane and seeded. The solution was chilled in a freezer for 16 hours. The solid was collected by filtration and washed with 500 mL of heptane affording 620 g of title compound. The mother liquor was filtered through a plug of silica gel eluting with heptane then 9:1 heptane/EtOAc affording an additional 130 g of title compound.

The combined products afforded $\mathbf{1 3 g}$ (750 g, 87%) as a bright red solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.35-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.55$ $-1.63(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.61(\mathrm{~m}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.62(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 9.25(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 11.12$ (br s, 1H); MS (CI) m/z 373.1 $\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 64.49; H, 7.58; N, 15.04. Found: C, 64.29; H, 7.44; N, 14.58 .

3-(4-Methoxy-phenyl)-5-methyl-7-(1-propyl-butylamino)-1,3-dihydro-imidazo[4,5-b]pyridin-2-one (15g). To the solution of sodium hydrosulfite ($1360 \mathrm{~g}, 6.64 \mathrm{~mol}$) in water (7.0 L) was slowly added $10 \mathrm{~N} \mathrm{NaOH}(664 \mathrm{~mL})$. A solution of $\mathbf{1 3 g}(620 \mathrm{~g}, 1.66 \mathrm{~mol})$ in THF (4 L) was added in portions. A slight exotherm occurs during the addition, bringing the reaction temperature to $35-40^{\circ} \mathrm{C}$. The reaction was stirred at ambient temperature for 2 hours. The organic phase was separated and the solvent removed in vacuo affording a dark tan gum. The aqueous phase was extracted with

DCM (2 L) and the aqueous phase was removed. The crude gum isolated from above was diluted
with $\operatorname{DCM}(2 \mathrm{~L})$ and combined with the DCM extracts. The mixture was chilled to $10^{\circ} \mathrm{C}, 5 \mathrm{~N}$ $\mathrm{NaOH}(2.6 \mathrm{~L}, 13.28 \mathrm{~mol})$ was added, and the mixture was vigorously agitated. A solution of triphosgene ($163 \mathrm{~g}, 0.55 \mathrm{~mol})$ in dichloromethane (400 mL) was carefully added drop wise over 1 hour, while maintaining a reaction temperature below $25^{\circ} \mathrm{C}$. Upon completion of the addition, the reaction was stirred for 14 h , gradually warming to ambient temperature. The mixture was diluted with EtOAc (6 L) and brine (4 L), and the pH value was adjusted to ~ 6 with $6 \mathrm{~N} \mathrm{HCl}(500 \mathrm{~mL})$. The aqueous phase was removed and the organic phase washed with brine. The solvent was removed in vacuo and the crude oil diluted with 1 L of EtOAc. The solution was filtered over celite and approximately half of the solvent was removed. Hexane (1.5 L) was added, and the mixture was allowed to sit at ambient temperature for 14 hours. The precipitate was collected by filtration, washed with 1:4 EtOAc/hexane (500 mL) and dried in vacuo at $50^{\circ} \mathrm{C}$ to afford 295 g of the title compound. The filtrate was chromatographed with 1:4 EtOAc
hexanes affording an additional 75 g of title product. The combined $\mathbf{1 5 g}$ ($370 \mathrm{~g}, 60 \%$) was an off-white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.79-0.89$ (m, 6H), 1.19-1.33 (m, 8H), 2.37 (s, 3H), 3.37$3.43(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 11.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;$ MS (CI) $m / z 369.1\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 68.45; H, 7.66; N, 15.20. Found: C, 68.18; H, 7.30; N,15.05.

1-(4-Methoxy-phenyl)-7-methyl-5-(1-propyl-butyl)-4,5-dihydro-1H,3H-1,2a,5,8-tetraaza-acenaphthylen-2-one ($\mathbf{1 6 g}$). To a solution of $\mathbf{1 5 g}(370 \mathrm{~g}, 1.00 \mathrm{~mol})$ and tetrabutylammonium bromide ($64 \mathrm{~g}, 0.20 \mathrm{~mol}$) in dichloromethane (1.6 L) was added 50% aqueous $\mathrm{NaOH}(1600 \mathrm{~g}$, 20 mol). 1,2-dibromoethane ($431 \mathrm{~mL}, 5 \mathrm{~mol}$) was added portion wise with vigorous stirrring. The mixture was heated to reflux for 2 hr and then cooled to ambient temperature. The mixture was diluted with ice water (1200 mL), and the aqueous phase was removed. The organic phase was washed with water (2X), brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and the solvent removed in vacuo. The crude product was
chromatographed on silica gel by eluting with 1:6 to 1:2 EtOAc/toluene to yield $\mathbf{1 6 g}(276 \mathrm{~g}$, 70%) as an off-white powder: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.25-1.38(\mathrm{~m}, 4 \mathrm{H})$, $1.51-1.62(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{t}, J=4.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.71-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{t}$, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 2H), 7.60 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$; MS (CI) $m / z 395.1$ $\left(\mathrm{MH}^{+}\right)$. HRMS (FAB) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}\left(\mathrm{MNa}^{+}\right) 417.2266$, found 417.2277. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 70.02; H, 7.66; N, 14.20. Found: C, 70.33; H, 7.83; N, 14.27.

1-(4-Methoxy-phenyl)-7-methyl-5-(1-propyl-

 butyl)-4,5-dihydro-1H,3H-1,2a,5,8-tetraaza-acenaphthylen-2-one hydrochloride. To a solution of $\mathbf{1 6 g}$ free base ($43 \mathrm{~g}, 110 \mathrm{mmol}$) in EtOAc (100 mL) and MTBE (100 mL), $\mathrm{HCl} /$ diethyl ether ($2.0 \mathrm{M}, 60 \mathrm{~mL}, 120 \mathrm{mmol}$) was added carefully, and a thick precipitate appeared. Diethyl ether was removed in vacuo, and the slurry was then heated to reflux for 1 hour. The mixture was cooled to ambient temperature and filtered. The filter cake was washed with EtOAc and dried to afford the title compound (40 g ,$85 \%)$ as an off-white, fine-granular solid: mp 176.4-177.6 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.23-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.63(\mathrm{~m}$, $4 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ (s, 3H), 3.82-3.90 (m, 1H), $4.01(\mathrm{t}, J=5.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) ; \mathrm{MS}(\mathrm{CI}) m / z 395.1\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\left(\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}$, 61.53; H, 7.41; N, 12.48. Found: C, 61.16; H, 7.47; N, 12.19.

1-(2,4-Dichloro-phenyl)-7-methyl-5-(1-propyl-

butyl)-4,5-dihydro-1H,3H-1,2a,5,8-tetraaza-acenaphthylen-2-one (16a). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.25-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.52$ $-1.62(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{t}, J=4.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.72-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.90-4.11(\mathrm{~m}, 2 \mathrm{H}), 6.26$ (s, 1H), 7.26-7.57 (m, 3H); MS (CI) m/z 433.00 $\left(\mathrm{MH}^{+}\right)$; HRMS (FAB) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{27}{ }^{35} \mathrm{Cl}^{35} \mathrm{Cl} \mathrm{N}_{4} \mathrm{O} / \mathrm{C}_{22} \mathrm{H}_{27}{ }^{35} \mathrm{Cl}^{37} \mathrm{ClN}_{4} \mathrm{O}\left(\mathrm{MH}^{+}\right)$ 433.1562/435.1532, found 433.1558/435.1528.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}$: C, 60.97; H , 6.05; N, 12.93. Found: C, 61.18; H, 5.94; N, 12.68.

1-(2-Bromo-4-isopropyl-phenyl)-7-methyl-5-(1-propyl-butyl)-4,5-dihydro-1H,3H-1,2a,5,8-
tetraaza-acenaphthylen-2-one (16b). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.26(\mathrm{~d}, J=$ 6.9 Hz, 6H), 1.27-1.35 (m, 4H), 1.52-1.61 (m, 4H), 2.41 (s, 3H), 2.94 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.40(\mathrm{t}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.89-$ $4.11(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.58(\mathrm{~m}, 3 \mathrm{H})$; MS (CI) $m / z 485.10\left(\mathrm{MH}^{+}\right) ;$HRMS (FAB) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{34}{ }^{79} \mathrm{BrN}_{4} \mathrm{O} / \mathrm{C}_{25} \mathrm{H}_{34}{ }^{81} \mathrm{BrN}_{4} \mathrm{O}\left(\mathrm{MH}^{+}\right)$ 485.1916/487.1896, found 485.1922/487.1902. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{BrN}_{4} \mathrm{O}$: C, 61.85; H, 6.85; N, 11.54. Found: C, 61.74; H, 6.88; N, 11.69. 1-(4-Chloro-phenyl)-7-methyl-5-(1-propyl-butyl)-4,5-dihydro-1H,3H-1,2a,5,8-tetraaza-acenaphthylen-2-one (16c). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.17-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.43$ $-1.57(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{t}, J=5.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.63-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.20(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 399.0\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\left(\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{ClN}_{4} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}, 63.38 ; \mathrm{H}$, 7.01; N, 13.44. Found: C, 63.49; H, 6.94; N, 13.08 .

1-(4-Methanesulfonyl-phenyl)-7-methyl-5-(1-propyl-butyl)-4,5-dihydro-1H,3H-1,2a,5,8-tetraaza-acenaphthylen-2-one (16e). ${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.24-1.38$ (m, 4H), 1.49-1.60(m, 4H), $2.47(\mathrm{~s}, 3 \mathrm{H}), 2.99$ $(\mathrm{s}, 3 \mathrm{H}), 3.40(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-3.79(\mathrm{~m}$, $1 \mathrm{H}), 4.00(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 7.69$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$ 443.2111 , found 443.2115 .

1-(4-Methoxycarbonyl-phenyl)-7-methyl-5-(1-propyl-butyl)-4,5-dihydro-1H,3H-1,2a,5,8-tetraaza-acenaphthylen-2-one (16f). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.23-1.36$ $(\mathrm{m}, 2 \mathrm{H}), 1.52-1.65(\mathrm{~m}, 6 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{t}$, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.71-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$, $4.00(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=$ 8.7 Hz, 2H), 8.16 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$; MS (CI) $m / z 423.0\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3} \bullet\right.$ EtOAc): C, 65.86; H, 7.50; N, 10.97. Found: C, 66.11; H, 7.23; N, 11.06.

1-(5-Chloro-pyridin-2-yl)-7-methyl-5-(1-propyl-butyl)-4,5-dihydro-1H,3H-1,2a,5,8-tetraaza-acenaphthylen-2-one (16k). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.25-1.38$ $(\mathrm{m}, 4 \mathrm{H}), 1.50-1.62(\mathrm{~m}, 4 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{t}$, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=$ $5.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.82(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS}(\mathrm{CI}) m / z 400.0\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClN}_{5} \mathrm{O}: \mathrm{C}, 63.07 ; \mathrm{H}, 6.55$; N , 17.51. Found: C, 63.23; H, 6.53; N, 17.21.

1-(6-Methoxy-pyridin-3-yl)-7-methyl-5-(1-propyl-butyl)-4,5-dihydro-1H,3H-1,2a,5,8-tetraaza-acenaphthylen-2-one (161). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.25-1.38$ (m, 4H), $1.51-1.66(\mathrm{~m}, 4 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{t}$, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.70-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$, $4.01(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.57$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS}(\mathrm{Cl}) m / z 396.1\left(\mathrm{MH}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 66.81; H, 7.39; N, 17.71. Found: C, 66.67; H, 7.11; N, 17.45.

1-(4-Methoxy-phenyl)-7-methyl-4,5-dihydro-1H,3H-1,2a,5,8-tetraaza-acenaphthylen-2-one (17a). A solution of $\mathbf{1 6 g}(4.72 \mathrm{~g}, 12 \mathrm{mmol})$ in conc. sulfuric acid $(15 \mathrm{~mL})$ was heated at $65^{\circ} \mathrm{C}$ for 10 h , the reaction mixture was cooled down to ambient temperature and was poured on ice. Solid KOH was added until the solution became neutral, and then NaHCO_{3} was added until the pH value reached 9. EtOAc was added, and the solids were removed by filtration. The biphasic
mixture was separated in a separation funnel, and the aqueous phase was extracted three more times with EtOAc. Combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and purified by column chromatography with silica gel (1: 1 hexanes/acetone) to obtain the desired product (17a, $1.76 \mathrm{~g}, 50 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $2.42(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, 4.03-4.09 (m, 2H), $4.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H})$, $7.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2H); MS (CI) $m / z 297.10\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 64.85 ; \mathrm{H}, 5.44 ; \mathrm{N}, 18.91$. Found: C, 64.66; H, 5.71; N, 18.63.

5-(1-Ethyl-propyl)-1-(4-methoxy-phenyl)-7-

 methyl-4,5-dihydro- $\mathbf{1 H}, \mathbf{3 H}-1,2 a, 5,8$-tetraaza-acenaphthylen-2-one (17d). To a solution of $\mathbf{1 7 a}(1.22 \mathrm{~g}, 4.1 \mathrm{mmol})$ in anhydrous DMF (10 mL) was added t -BuOK ($1.23 \mathrm{~g}, 11 \mathrm{mmol}$), and the reaction mixture was stirred at ambient temperature for 5 min . 3-Bromopentane (1.24 g , 8.2 mmol) was added slowly in several portions, and the reaction mixture was stirred at rt for 5 h . The reaction was quenched with water, and EtOAc was added. The organic phase was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated,and purified by column chromatography with silica gel (2: 1 hexanes/EtOAc) to obtain the desired product (17d, $795 \mathrm{mg}, 53 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{t}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.53-1.65$ (m, 4H), $2.43(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.49-3.58(m, 1H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{t}, J=5.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ; \mathrm{MS}(\mathrm{Cl}) m / z 367.10$ $\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 68.83; H, 7.15; N, 15.29. Found: C, 68.59; H, 7.33; N, 15.25.

5-Isopropyl-1-(4-methoxy-phenyl)-7-methyl-

4,5-dihydro- $\mathbf{1 H}, \mathbf{3 H}-1,2 a, 5,8$-tetraaza-

 acenaphthylen-2-one (17b). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.27(\mathrm{t}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{t}, J$ $=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{t}, J=5.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.04-4.11(\mathrm{~m}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H})$; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$339.1815, found 339.1818.5-Butyl-1-(4-methoxy-phenyl)-7-methyl-4,5-dihydro-1H,3H-1,2a,5,8-tetraaza-acenaphthylen-2-one (17c). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $0.98(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.61-$ $1.73(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{t}, J=7.5 \mathrm{~Hz}$,
$2 \mathrm{H}), 3.49(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.05$ $(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$353.1972, found 353.1981.

5-(1-Methoxymethyl-propyl)-1-(4-methoxy-

 phenyl)-7-methyl-4,5-dihydro-1H,3H-1,2a,5,8-tetraaza-acenaphthylen-2-one (17e). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.64-1.75$ $(\mathrm{m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.55(\mathrm{~m}$, $5 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.88-3.96(\mathrm{~m}, 1 \mathrm{H}), 4.03-4.09$ $(\mathrm{m}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.59(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H})$; HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) 383.2078$, found 383.2084.
5-(1-Ethyl-propyl)-7-methyl-1-(4-

trifluoromethyl-phenyl)-4,5-dihydro-1H,3H-1,2a,5,8-tetraaza-acenaphthylen-2-one (18b). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.57$ $-1.69(\mathrm{~m}, 4 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{t}, J=5.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.51-3.60(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.31(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;$ HRMS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}\left(\mathrm{MH}^{+}\right)$405.1897, found 405.1897 .

5-(1-Ethyl-propyl)-1-(4-methoxy-2-methyl-phenyl)-7-methyl-4,5-dihydro-1H,3H-1,2a,5,8-tetraaza-acenaphthylen-2-one (18c). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.59-1.68$ $(\mathrm{m}, 4 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{t}, J=$ $5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.50-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, 3.95-4.07 (m, 2H), 6.25 ($\mathrm{s}, 1 \mathrm{H}), 6.81-6.88(\mathrm{~m}$, $2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) ; \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right) 381.2285$, found 381.2285.

1-(4-Chloro-phenyl)-5-(1-methoxymethyl-

 propyl)-7-methyl-4,5-dihydro-1H,3H-1,2a,5,8-tetraaza-acenaphthylen-2-one trifluoroacetate (19a). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.64-1.77(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}$, $3 \mathrm{H}), 3.55(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=4.8 \mathrm{~Hz}$, 2H), 3.92-3.99 (m, 2H), 4.09-4.16 (m, 1H), 6.37 (s, 1H), 7.35-7.46(m, 4H); MS (CI) $m / z 387.1$ $\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{Cl} \mathrm{N} \mathrm{N}_{4} \mathrm{O}_{2} \bullet\right.$ TFA $)$: C, 52.75; H, 4.83; N, 11.19. Found: C, 52.63; H, 4.68; N, 10.96.
Biology

In vitro Binding and Functional Studies.
Radioligand binding assays and functional
inhibition of CRF-induced cAMP production were performed in $\mathrm{L}^{-C R F} 1$ cell membranes. Equilibrium binding of unlabeled ligands was measured in duplicate by inhibition of radioligand binding ($\left[{ }^{125}\right]$ sauvagine) to LtK^{-} cells expressing the human CRF_{1} receptor. Assay buffer ($30 \mu \mathrm{l}$ DPBS, $1.5 \mathrm{mM} \mathrm{KH} \mathrm{KO}_{4}$, $\left.8.1 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 2.7 \mathrm{mM} \mathrm{KCl}, 138 \mathrm{mM} \mathrm{NaCl}\right)$ supplemented with $10 \mathrm{mM} \mathrm{MgCl}_{2}, 2 \mathrm{mM}$ ethylene glycol-bis[β-aminoethyl]-N,N,N',N'-tetraacetic acid, pH 7.4$), 20 \mu 1$ unlabeled ligand, $50 \mu \mathrm{~L}$ radioligand and $100 \mu \mathrm{~L} \mathrm{L-CRF} 1$ cell membranes were sequentially added to low protein-binding 96 well plates (Corning \#3605). The final concentration of radioligand was approximately 90 pM for $\left[{ }^{125} \Gamma\right]$ sauvagine with a total of $5 \mu \mathrm{~g}$ of membrane. Unlabeled compounds were serially diluted for final concentrations of 10 pM to 1 $\mu \mathrm{M}$. Following a two-hour incubation at room temperature, bound and free radioligand were separated by rapid vacuum filtration. In all assays total radioligand bound to the filter (total binding) was less than 20% of the total amount of radioligand added. Non-specific binding was determined in the presence of an excess of the
unlabeled analogue of the radioligand. Bound and non-specific radioactivity was monitored using a Packard Cobra II gamma counter (78\% efficiency) and analyzed using the non-linear curve-fitting algorithm software Prism ${ }^{\mathrm{TM}}$ (GraphPad Inc., CA).

CRF-Stimulated cAMP Production in Cells

 Expressing Human CRF $_{1}$ Receptors. One day prior to assay $\mathrm{L}-\mathrm{hCRF}_{1}$ cells were transferred to 96-well tissue culture plates (100,000 cells / well in $200 \mu \mathrm{~L}$ medium). On the day of assay, the medium was removed and the cells washed with $200 \mu \mathrm{~L}$ DPBS. Following aspiration of DPBS, $75 \mu \mathrm{~L}$ cAMP assay buffer was added to each well (DMEM without phenol red, supplemented with 2 mM glutamine, 1 mM sodium pyruvate, 10 mM HEPES, $50 \mathrm{IU} / \mathrm{mL}$ penicillin, $50 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin and 1 mM IBMX). Corticotropinreleasing factor and non-peptides were then added in a volume of $25 \mu \mathrm{~L}$ cAMP assay buffer at various concentrations for inhibition, and the cells incubated for 30 minutes at $37^{\circ} \mathrm{C}$ in 5% CO_{2}. Total cAMP produced was measured by chemiluminescent immunoassay (Tropix,Bedford, MA) and measured on an Analyst ${ }^{\mathrm{TM}}$
(LJL Biosystems Inc., CA). All IC ${ }_{50}$ values were calculated using the non-linear curve-fitting algorithm software Prism $^{\text {TM }}$ as above.

CRF-Stimulated ACTH Release from

 Cultured Rat Anterior Pituitary Cells. For the inhibition of ACTH release from primary rat pituitary cell cultures, five whole pituitaries are collected from 7 week-old female SD rats. Pituitaries are washed six times with HEPES buffer ($2.5 \mathrm{~g} / \mathrm{L}$ BSA; $10 \mathrm{mg} / \mathrm{L}$Deoxyribonuclease I; $8.0 \mathrm{~g} / \mathrm{L} \mathrm{NaCl} ; 0.37 \mathrm{~g} / \mathrm{L}$ KCl; $100 \mathrm{mg} / \mathrm{L}$ Sodium Phosphate dibasic; 6.0 g / L HEPES; $2.0 \mathrm{~g} / \mathrm{L}$ Glucose) and minced. The tissue is then digested with 10 mL collagenase for 1.5 hours at $37^{\circ} \mathrm{C}$, with trituration every 30 minutes. The digest is then transferred to a 50 mL conical centrifuge tube and centrifuge at 1000 rpm for 4 minutes. The supernatant is discarded and the pellet resuspended in 10 mL neuraminidase solution and incubated for 9 minutes at $37^{\circ} \mathrm{C}$. The suspension is centrifuged at 1000 rpm for 5 minutes and the pellet washed once with 10 mL BBM-T medium ($11.49 \mathrm{~g} / \mathrm{L}$ Custom Media Mixture, Irvine Scientific, CA; $1.83 \mathrm{~g} \mathrm{NaCO}_{3} / \mathrm{L} ; 2.4 \mathrm{~g}$ HEPES/L; $2.0 \mathrm{~g} / \mathrm{L} \mathrm{BSA} ;$
$10.0 \mathrm{mg} / \mathrm{L}$ Transferrin; 50,000 I.U./L Penicillin and Streptomycin; $1 \mu \mathrm{~g} / \mathrm{L}$ Insulin; $0.1 \mu \mathrm{~g} / \mathrm{L}$ EGF; $0.4 \mu \mathrm{~g} / \mathrm{L} \mathrm{T} 3 ; 0.7 \mu \mathrm{~g} / \mathrm{L}$ PTH; $10 \mu \mathrm{~g} / \mathrm{L}$ Glucagon). The resulting pellet is finally resuspended in 3% FCS/BBM-T medium and cultured in 96-well tissue culture plates for 2-3 days at a density of 40,000 cells/well in a final volume of $200 \mu \mathrm{~L}$ medium. For the assay of antagonists, cells are washed once with BBM-T, test samples are added in various concentrations ($1 \mu \mathrm{M}$ to 1 pM) with $0.5 \mathrm{nM} \mathrm{r} / \mathrm{hCRF}$ in 200 mL BBM-T and incubated for 4 hours incubation at $37^{\circ} \mathrm{C}$. The medium is then aspirated and assessed for ACTH release using a standard RIA kit (MP

Biomedicals, NY). Again, all data was analyzed using the non-linear curve-fitting algorithm software Prism ${ }^{\text {TM }}$ as above.

In vivo CRF-Induced ACTH Release in Rats.

Three days prior to testing with compound, rats were anesthetized ($\mathrm{n}=6$ per group) with isoflurane and implanted with a femoral vein catheter (IITC \#26A; PE 10 silastic) in the right groin area. The catheter was secured in place with 4-0 suture. A gastric catheter was placed in
the stomach and sutured with a purse string suture (4-0 suture) to secure the cannula in place. The cannulae were fed subcutaneously to the dorsal section of the rat (behind the ears), where they exited and were sutured in place. All external incisions were closed using standard wound clips. On the day of testing, fed rats were weighed, and then connected to PE50 tubing via manosil tubing. They were then placed in opaque collection containers, with the PE50 tubing drawn through the top of the container, and habituated to the containers for 1 hour. Following a baseline blood draw, Compound $\mathbf{1 6 g}$ (3,10 or $30 \mathrm{mg} / \mathrm{kg}$) or vehicle ($2 \mathrm{~mL} / \mathrm{kg}$) was infused via the intragastric tube. Sixty minutes later, CRF ($0.3 \mathrm{nmol} / \mathrm{kg}$) or vehicle $(0.5 \mathrm{~mL} / \mathrm{kg})$ was injected i.v. The CRF vehicle was a 0.1% BSA, 10 mM acetic acid solution. Blood was drawn at 2, 10 and 30 minutes following the CRF injection and collected in EDTA-coated tubes and centrifuged at $2500 \mathrm{rpm}\left(4^{\circ} \mathrm{C}\right)$ for 20 minutes. Plasma was frozen $\left(-80^{\circ} \mathrm{C}\right)$ until the time of assay. The ACTH levels were determined in these samples using a standard ACTH RIA kit (MP Biomedicals, NY), with
sample ACTH values calculated from a logtransformed standard curve. ACTH values over time were analyzed using repeated measures, mixed design ANOVA. Peak (10 minute time point) ACTH values were analyzed using oneway ANOVA, with Fischer's PLSD as the posthoc method of testing dose group differences.

Rat Pharmacokinetics. Oral bioavailability studies were conducted in male Sprague-Dawley rats and test articles were administered to the rats by oral gavage and intravenous injection (10 $\mathrm{mg} / \mathrm{kg} ; \mathrm{N}=3 /$ time point) in water solution. The dosing solution was prepared in purified water and filtered through $0.2 \mu \mathrm{~m}$ Nylon filter prior to administration ($2 \mathrm{~mL} / \mathrm{Kg}$). Blood samples from
each dosing route were taken at pre-determined time points for pharmacokinetic analysis. All plasma samples were flash frozen in liquid nitrogen within 10 minutes of sampling and stored in $-76^{\circ} \mathrm{C}$ or below until analysis. The bioanalytical method applied for the measurement of test articles in plasma along with added internal standard consisted of precipitation with $200 \mu \mathrm{~L}$ of acetonitrile from $50 \mu \mathrm{~L}$ of
adminisation ($2 \mathrm{~mL} / \mathrm{Kg}$). Blood samples from
plasma, centrifugation and recovery of the supernatant, which was dried down in vacuum and then reconstituted in acetonitrile-water solutions before introduction into an LC-MS/MS system for analysis. The lower limit of quantification (LLOQ) for the analytical methods was $5 \mathrm{ng} / \mathrm{mL}$ of test article in plasma. All pharmacokinetic parameters were calculated from a non-compartmental model using WinNonlin program version 3.2.

Figure 4. X-Ray structure for $\mathbf{1 6 g}$.

