Semiconductive Coordination Networks from 2,3,6,7,10,11-Hexakis(alkylthio)triphenylenes and Bismuth(III) Halides: Synthesis, Structure-Property Relations and Solution Processing

Kunhao Li, Zhengtao Xu,^{*} Hanhui Xu, and Jacqueline M. Ryan Department of Chemistry, the George Washington University, 725 21st Street NW, Washington, DC 20052.

zxu@gwu.edu

*Author to whom correspondence should be addressed.

Supporting Information

Figure S1. Room-temperature X-ray diffraction patterns (Cu K α , $\lambda = 1.5418$ Å) for HMTT·BiBr₃ (**2**). Top: observed from a powder sample. Middle: (*) calculated pattern with orientation preference set at (0 -1 1) 0.4 and (1 0 0) 1.0. Bottom: (**) calculated pattern without orientation preference.

Figure S2. Room-temperature X-ray diffraction patterns (Cu K α , $\lambda = 1.5418$ Å) for HMTT·2BiBr₃ (**3**). Top: observed from a powder sample. Bottom: calculated from the single crystal structure.

Figure S3. Room-temperature X-ray diffraction patterns (Cu K α , $\lambda = 1.5418$ Å) for HETT·2BiBr₃ (**4**). Top: observed from a powder sample. Bottom: calculated from the single crystal structure.

Figure S4. Room-temperature X-ray diffraction patterns (Cu K α , $\lambda = 1.5418$ Å) for HiPTT·2BiBr₃·C₇H₈ (**5**). Top: observed from a powder sample. Middle: (*) calculated pattern with orientation preference set at (4 0 0) 0.5 and (0 1 1) 1.2. Bottom: (**) calculated pattern without orientation preference.

Figure S5. Interdigitation of the hybrid chains in the crystal structure of HMTT·BiCl₃(1) along the $[0\ 1\ -1]$ plane. Large red sphere: Bi; medium green: Cl; medium yellow: S; small white: C.

Figure S6. A column of HMTT molecules in the crystal structure of HMTT. Large yellow sphere: S; small white: C.

Figure S7. Overview of the crystal structure of HMTT·BiCl₃ (1) (along the *a* axis). Large red sphere: Bi; medium green: Cl; medium yellow: S; small white: C.

Figure S8. Interdigitated hybrid chains in HMTT·BiBr₃ (**2**) along the [0 1 -1] plane. Large red sphere: Bi; small green: Br; small yellow: S.

Figure S9. Overview of the crystal structure of HMTT·BiBr₃($\mathbf{2}$) along the *a* axis. Large red sphere: Bi; medium green: Br; medium yellow: S; small white: C.

Figure S10. View of 2D network in HMTT·2BiBr₃(**3**) along the *a* axis. a) A single 2-D network. b) Two networks interacting through π - π stacking of the HMTT molecules. Large red sphere: Bi; medium green: Br; medium yellow: S; small white: C.

Figure S11. Two neighboring coordination networks in the crystal structure of $HETT \cdot 2BiBr_3(4)$. Large red sphere: Bi; medium green: Br; medium yellow: S; small white: C. The red dotted lines delineate the closest intermolecular C···C contacts (3.82 Å).

Figure S12. Packing of the isolated (0D) coordination units (each containing two HiPTT molecules, two BiBr₃ and one Bi₂Br₆ fragments) along the $[0 \ 0 \ 1]$ plane in HiPTT·2BiBr₃·C₇H₈ (**5**). Large gray spheres: Bi; small white: Br; small black: S; isolated hexagons: crystallographically located atoms from the toluene molecules.

Figure S13. Room-temperature optical absorption spectra for solid samples of BiCl₃ (band gap: 3.366 eV) and BiBr₃ (band gaps: 2.662 eV).

Figure S14. X-ray diffraction patterns (Cu K α , λ = 1.5418 Å) of *p*-HMTT·BiBr₃(**2**): (a) observed (at room temperature) for a solution-deposited sample; (b) calculated from the single crystal structure with an orientation preference of 0.4 for [0 -1 1]: meaning 60% more crystallites are oriented along [0 -1 1] when compared to the randomly oriented state(JADE, Materials Data, Inc); (c) calculated from the single crystal structure with random orientation of crystallites.

Figure S15. View of the quasi-1D coordination chain in the crystal structure of $HETT \cdot 2BiBr_3$ (4) (along the chain direction). Large red sphere: Bi; small green: Br; small orange: S.

Figure S16. Packing of the quasi-1D coordination chains in the crystal structure of HETT·2BiBr₃ (4) (along the chain direction). Large red sphere: Bi; small green: Br; small orange: S.