Semiconductive Coordination Networks from

2,3,6,7,10,11-Hexakis(alkylthio)triphenylenes and Bismuth(III) Halides: Synthesis, Structure-Property Relations and Solution Processing
Kunhao Li, Zhengtao Xu, ${ }^{*}$ Hanhui Xu, and Jacqueline M. Ryan
Department of Chemistry, the George Washington University, 725 21st Street NW, Washington, DC 20052.

Zxu@gwu.edu
*Author to whom correspondence should be addressed.

Supporting Information

Figure S1. Room-temperature X-ray diffraction patterns $(\mathrm{CuK} \alpha, \lambda=1.5418 \AA)$ for HMTT $\cdot \operatorname{BiBr}_{3}$ (2). Top: observed from a powder sample. Middle: $\left(^{*}\right)$ calculated pattern with orientation preference set at $\left(\begin{array}{lll}0 & -1 & 1\end{array}\right) 0.4$ and (1) 000$)$ 1.0. Bottom: $\left({ }^{* *}\right)$ calculated pattern without orientation preference.

Figure S2. Room-temperature X-ray diffraction patterns $(\mathrm{CuK} \alpha, \lambda=1.5418 \AA)$ for HMTT $\cdot 2 \mathrm{BiBr}_{3}(\mathbf{3})$. Top: observed from a powder sample. Bottom: calculated from the single crystal structure.

Figure S3. Room-temperature X-ray diffraction patterns ($\mathrm{Cu} \mathrm{K} \alpha, \lambda=1.5418 \AA$) for HETT $\cdot 2 \mathrm{BiBr}_{3}$ (4). Top: observed from a powder sample. Bottom: calculated from the single crystal structure.

Figure S4. Room-temperature X-ray diffraction patterns $(\mathrm{CuK} \alpha, \lambda=1.5418 \AA)$ for HiPTT $\cdot 2 \mathrm{BiBr}_{3} \cdot \mathrm{C}_{7} \mathrm{H}_{8}(\mathbf{5})$. Top: observed from a powder sample. Middle: $(*)$ calculated pattern with orientation preference set at $\left(\begin{array}{lll}0 & 0\end{array}\right) 0.5$ and $\left(\begin{array}{lll}0 & 1 & 1\end{array}\right) 1.2$. Bottom: (**) calculated pattern without orientation preference.

Figure S5. Interdigitation of the hybrid chains in the crystal structure of $\mathrm{HMTT} \cdot \mathrm{BiCl}_{3}(\mathbf{1})$ along the $\left[\begin{array}{ll}0 & 1 \\ -1\end{array}\right]$ plane. Large red sphere: Bi ; medium green: Cl ; medium yellow: S ; small white: C .

Figure S6. A column of HMTT molecules in the crystal structure of HMTT. Large yellow sphere: S; small white: C.

Figure S7. Overview of the crystal structure of HMTT $\cdot \mathrm{BiCl}_{3}(\mathbf{1})$ (along the a axis). Large red sphere: Bi ; medium green: Cl ; medium yellow: S ; small white: C .

Figure S8. Interdigitated hybrid chains in $\mathrm{HMTT} \cdot \operatorname{BiBr}_{3}(\mathbf{2})$ along the $\left[\begin{array}{lll}0 & 1 & -1\end{array}\right]$ plane. Large red sphere: Bi ; small green: Br ; small yellow: S .

Figure S9. Overview of the crystal structure of $\mathrm{HMTT} \cdot \mathrm{BiBr}_{3}(\mathbf{2})$ along the a axis. Large red sphere: Bi ; medium green: Br ; medium yellow: S ; small white: C .

Figure S10. View of 2D network in $\mathrm{HMTT} \cdot 2 \mathrm{BiBr}_{3}(\mathbf{3})$ along the a axis. a) A single 2-D network. b) Two networks interacting through $\pi-\pi$ stacking of the HMTT molecules. Large red sphere: Bi; medium green: Br; medium yellow: S; small white: C.

Figure S11. Two neighboring coordination networks in the crystal structure of HETT•2BiBr 3 (4). Large red sphere: Bi ; medium green: Br ; medium yellow: S ; small white: C . The red dotted lines delineate the closest intermolecular $\mathrm{C} \cdots \mathrm{C}$ contacts ($3.82 \AA$).

Figure S12. Packing of the isolated (0D) coordination units (each containing two HiPTT molecules, two BiBr_{3} and one $\mathrm{Bi}_{2} \mathrm{Br}_{6}$ fragments) along the $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ plane in HiPTT•2 $\mathrm{BiBr}_{3} \cdot \mathrm{C}_{7} \mathrm{H}_{8}(\mathbf{5})$. Large gray spheres: Bi ; small white: Br ; small black: S ; isolated hexagons: crystallographically located atoms from the toluene molecules.

Figure S13. Room-temperature optical absorption spectra for solid samples of BiCl_{3} (band gap: 3.366 eV) and BiBr_{3} (band gaps: 2.662 eV).

Figure S14. X-ray diffraction patterns ($\mathrm{Cu} \mathrm{K} \alpha, \lambda=1.5418 \AA$) of p-HMTT $\cdot \mathrm{BiBr}_{3}$ (2): (a) observed (at room temperature) for a solution-deposited sample; (b) calculated from the single crystal structure with an orientation preference of 0.4 for [$[0-11]$: meaning 60% more crystallites are oriented along [$0-11$] when compared to the randomly oriented state(JADE, Materials Data, Inc); (c) calculated from the single crystal structure with random orientation of crystallites.

Figure S15. View of the quasi-1D coordination chain in the crystal structure of HETT-2 BiBr_{3} (4) (along the chain direction). Large red sphere: Bi ; small green: Br ; small orange: S.

Figure S16. Packing of the quasi-1D coordination chains in the crystal structure of HETT•2 BiBr_{3} (4) (along the chain direction). Large red sphere: Bi ; small green: Br ; small orange: S.

