Supporting Information for

Selective Homo- and Heterodehydrocouplings of Phosphines Catalyzed by Rhodium **Phosphido Complexes**

Li-Biao Han and T. Don Tilley

Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460

Data for new compounds:

Complex 3a (See Copies of NMR Charts 1 and 2)

The NMR spectroscopies of **3a** at room temperature in benzene are complicated and not easily assignable (NMR Charts 1 and 2). The proposed structure is consistent with the elemental analysis, and the NMR data is consistent with that of crystallographically characterized 3b, which was unambiguously shown to be a dimer.

Brown solid, mp 238 °C (dec). Calcd for C₄₀H₇₆P₆Rh₂: C, 50.64; H, 8.07. Found: C, 50.99; H, 8.26.

'H NMR (C₆D₆, 400 MHz) δ 8.03-8.19 (m, 4 H), 7.06-7.18 (m, 6 H), 3.15-4.95 (m, 2 H, P-H), 2.21-2.32 (m, 2 H, CH₂P), 2.02-2.18 (m, 2 H, CH₂P), 1.85-1.97 (m, 4 H, CH₂P), 0.38-1.49 (m, 28 H, i-Pr). ³¹P NMR (C₆D₆, 162 MHz) δ 82.3-86.0 (multiple sets of doublets, dppe), -120.6 --118.3 (m, PH), -126.5 - -124.0 (m, PH). H Mes

Complex 3b (See Copies of NMR Charts 3 and 4)

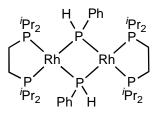
Orange solid: mp 245 °C (dec). Calcd for C₄₆H₈₈P₆Rh₂: C, 53.49; H, 8.59. Found: C, 53.71; H, 8.79.

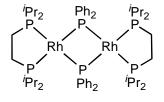
¹H NMR (C₆D₆, 400 MHz) δ 6.99 (s, 2 H, C₆H₂Me₃), 6.84 (s, 2 H, C₆H₂Me₃), 4.63 (s, 6 H, C₆H₂Me₃), 3.24-3.91 (m, 2 H, PH), 2.83 (s, 6

Н H, $\overline{C}_6H_2Me_3$), 2.31 (s, 6 H, $C_6\overline{H_2Me_3}$), 1.71-1.88 (m, 8 H, CH_2), 1.63 (dd, 12 H, J = 7.2, 13.2 Hz, $CH\underline{Me_2}$, 1.17 (dd, 12 H, J = 6.8, 14.0 Hz, $CH\underline{Me_2}$), 0.79-0.91 (m,), 0.82 (t-like, 12 H, J = 7.6 Hz, $CH\underline{Me_2}$), 0.71-0.82 (m 4 H CHMe₂), 0.46 (dd, 12 H, J = 7.2, 15.6 Hz, $CHMe_2$). ³¹P NMR $CH\underline{Me}_{2}$), 0.71-0.82 (m, 4 H, <u>CH</u>Me₂), 0.46 (dd, 12 H, J = 7.2, 15.6 Hz, CH<u>Me</u>₂). $(C_6\overline{D_6}, 162 \text{ MHz}) \delta 81.3-83.6 \text{ (multiple sets of doublets, dppe), -253.8 - -251.0 (m, PH).$

Complex 3c-PhMe (See Copies of NMR Charts 5 and 6)

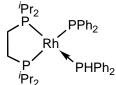
Red solid; mp 198 °C (dec). Calcd for C₅₉H₉₂P₆Rh₂: C, 59.40; H, 7.77. Found: C, 59.29; H, 7.50.


¹H NMR (C₆D₆, 400 MHz) δ 8.38-8.47(m, 8 H, Ph), 6.95-7.18(m, 12 H, Ph), 1.62 (bs, 8 H, CH₂), 0.87-1.11 (m, 56 H, i-Pr). ³¹P NMR (C₆D₆, 162 MHz) δ 71.4-75.6 (multiple sets of doublets, dppe), -112.4 - -108.1 (m, μ -PPh₂).


Complex 4 (See Copies of NMR Charts 7 and 8)

Red solid; mp 151 °C (dec). Calcd for C₃₈H₅₃P₄Rh: C, 61.96; H, 7.25. Found: C, 62.02; H, 7.32.

¹H NMR (C_6D_6 , 400 MHz) δ 7.99 (bs, 4 H, Ph), 7.43 (bs, 4 H), 6.89-7.02 (m, 12 H), 6.00 (bs, 1 H, P-H), 2.77 (bs, 4 H, CH₂), 0.84-1.35 (m, 28 H, i-Pr).


NMR (C₆D₆, 162 MHz) δ 79.8-81.5 (multiple sets of doublets, dppe), 74.3-77.5 (multiple sets of

Rh

Mes

doublets, dppe), 13.7-16.7 (multiple sets of doublets, PHPh₂), -47.2 - -46.3 (m, PPh₂).

Ph

Ρh

′Pr₂

SPh

Rh

Complex 6 (See Copies of NMR Charts 9 and 10)

Orange solid; mp 155 °C (dec). Calcd for $C_{40}H_{74}P_4Rh_2S_2$: C, 50.63; H, 7.86. Found: C, 50.94; H, 7.81. ¹H NMR (C_6D_6 , 400 MHz) δ 8.29-8.30 (m, 4 H, Ph), 6.92-7.11 (m, 6 H, Ph), 1.72-1.90 (m, 4 H, CH₂), 1.32-1.33 (m, 12 H, i-Pr), 0.94-1.03 (m, 16 H, i-Pr). ³¹P NMR (C_6D_6 , 162 MHz) δ 88.3 (d, J_{PRh} = 173.0 Hz).

Complex 7b (See Copies of NMR Charts 11 and 12)

Yellow solid; mp 128 ^oC (dec). Calcd for C₃₂H₄₈P₃RhS: C, 58.18; H, 7.32; S, 4.85. Found: C, 58.30; H, 7.45; S, 4.68.

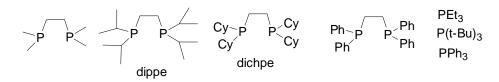
¹H NMR (C₆D₆, 400 MHz) δ 7.80-7.91 (m, 6 H), 6.79-7.02 (m, 9 H), 5.98 (d, 1 P PHPh₂ H, *J* = 10.8 Hz), 2.28-2.42 (m, 2 H, CH₂), 1.61-1.80 (m, 2 H, CH₂), 0.84-1.37 ^{*i*Pr₂} (m, 28 H, i-Pr). ³¹P NMR (C₆D₆, 162 MHz) δ 89.7 (ddd, -CH₂<u>P</u>Pr₂ *cis* to PPh₂H, *J*_{PP} = 24.7, 35.9 Hz, *J*_{PRh} = 152.7 Hz), 81.2 (ddd, -CH₂<u>P</u>Pr₂ *trans* to PPh₂H, *J*_{PP} = 24.7, 351.5 Hz, *J*_{PRh} = 145.6 Hz), 1.2 (ddd, PPh₂H, *J*_{PP} = 35.9, 356.5 Hz, *J*_{PRh} = 131.5 Hz).

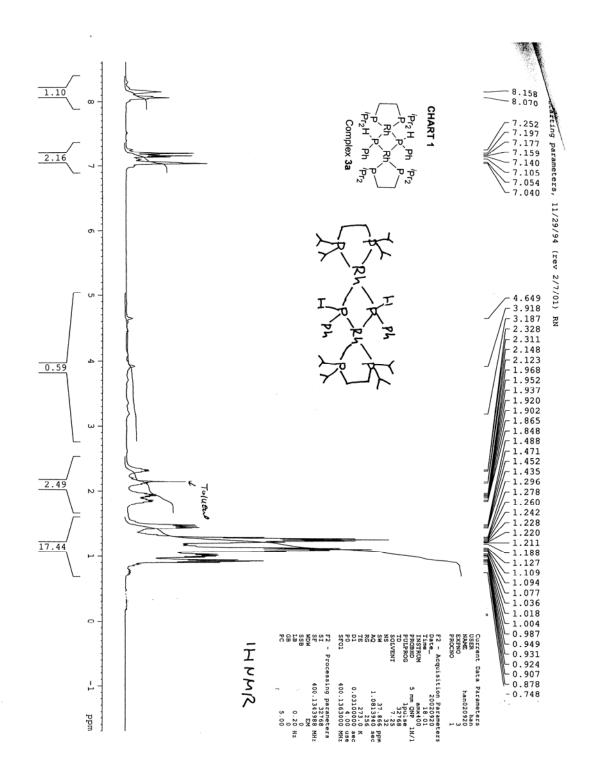
Rhodium-catalyzed Dehydrocoupling of phosphines

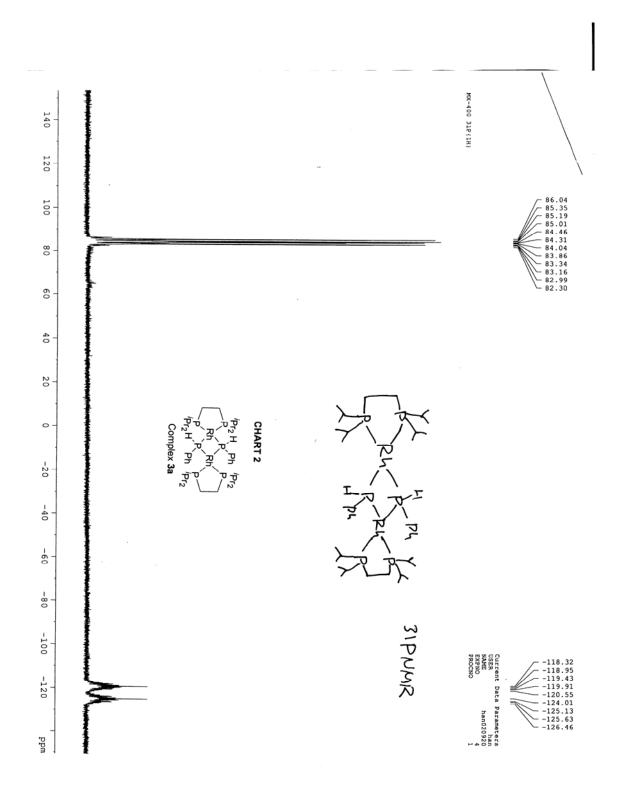
(1) Dehydrocoupling of PhPH₂ was carried out under various reaction conditions as summarized below. For concentrations in the range of 0.18 M to 1.00 M, reactions proceed similarly. On the other hand, the addition of dippe gave a better yield of the coupling products. Though heating the mixture at 70 °C gave a better conversion of PhPH₂, other products were also formed as confirmed by ³¹P NMR and the selectivity to (PPhH)₂ was only 36%. The reaction proceeds faster in THF to give a complicated mixture of dehydrocoupling products in which (PPhH)₂ was formed with a selectivity of 30%. Catalysts generated *in situ*, by addition of dippe or dchpe to 1, behaved similarly to those based on the isolated phosphine complexes. As shown below, other catalysts obtained by addition of a phosphine to 1 did not show catalytic activity (20 °C, overnight). A typical ³¹P NMR spectrum of a dehydrocoupling reaction mixture (5 mol% cat. 1, 1.0 M, 20 h) is attached (NMR Chart 13). The product (PPhH)₂ was identified by comparing its spectra with those reported in the literature (Xin, S.; Woo, H. G.; Harrod, J. F.; Samuel, E.; Lebuis A.-M. *J. Am. Chem. Soc.* 1997, *119*, 5307).

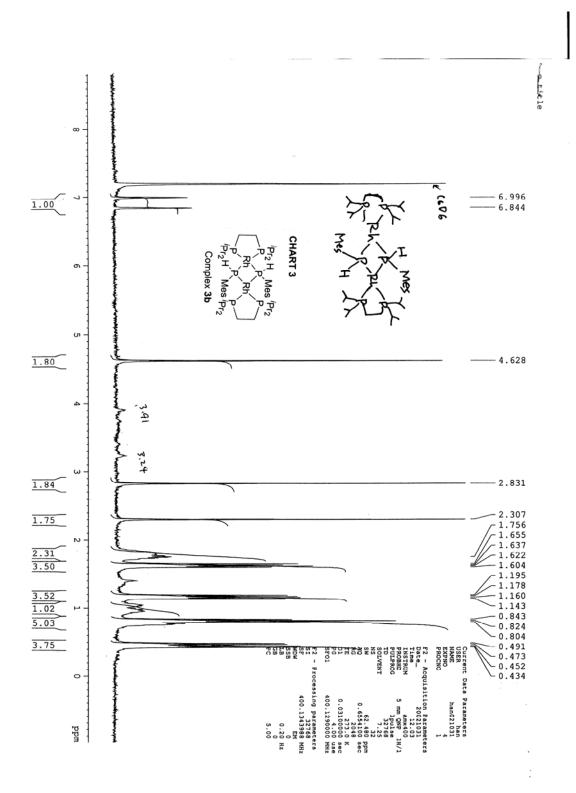
(2) Dehydrocoupling products from other phosphines.

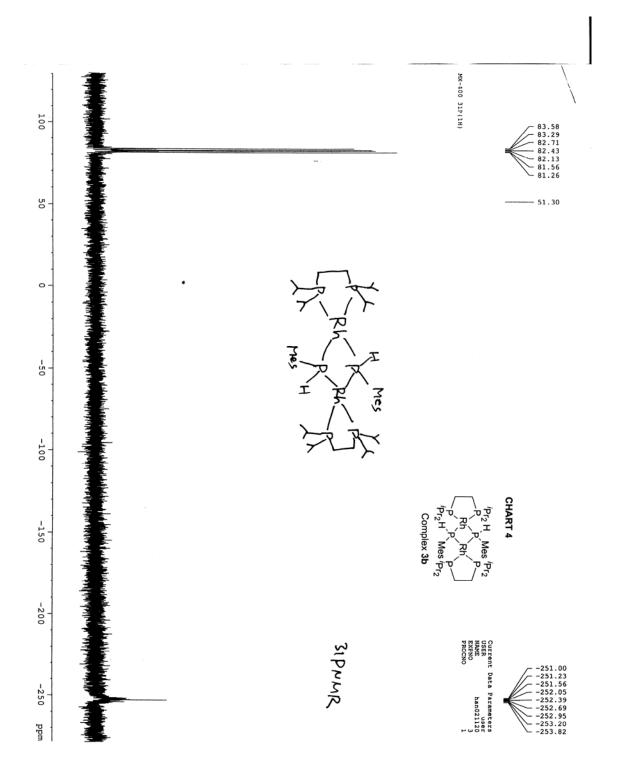
(2-EtC₆H₄PH)₂: a mixture of *meso,rac* isomers; ratio (31 P NMR chemical shift): 53 (-76.0 ppm), 47 (-83.5 ppm); HRMS calcd for C₁₆H₂₀P₂, m/z 274.1040. Found: 274.1045. (2-i-PrC₆H₄PH)₂: a mixture of *meso,rac* isomers; ratio (31 P NMR chemical shift): 57 (-72.6


- (2-i-PrC₆H₄PH)₂: a mixture of *meso,rac* isomers; ratio (³¹P NMR chemical shift): 57 (-72.6 ppm), 43 (-80.4 ppm); HRMS calcd for C₁₈H₂₄P₂, m/z 302.1353. Found: 302.1359.
- $(MesPH)_2$: a mixture of *meso,rac* isomers; ratio (³¹P NMR chemical shift): 62 (-111.9 ppm), 38 (-119.2 ppm); HRMS calcd for C₁₈H₂₄P₂, m/z 302.1353. Found: 302.1348. (MesPH)₂: a mixture of *meso,rac* isomers; ratio (³¹P NMR chemical shift): 59 (-113.3 ppm), 41
- (MesPH)₂: a mixture of *meso,rac* isomers; ratio (³¹P NMR chemical shift): 59 (-113.3 ppm), 41 (-118.0 ppm); HRMS calcd for C₃₀H₄₈P₂, m/z 470.3231. Found: 470.3238. (Ph₂P)₂: This is a know compound, Bohm, V. P. W.; Brookhart, M. *Angew. Chem. Int. Ed.* 2001,
- (Ph₂P)₂: This is a know compound, Bohm, V. P. W.; Brookhart, M. Angew. Chem. Int. Ed. 2001, 40, 4694.


Ph₂**PSPh**: ³¹P NMR chemical shift: -41.7; HRMS calcd for C₁₈H₁₅PS, m/z 294.0632. Found: 294.0627. This is a know compound: (a) Peake, S.C.; Schmutzler, R. *J. Chem. Soc. A*, **1970**,1049-1054. (b) Hall, C. D.; Tweedy, B. R.; Kayhanian, R.; Lloyd, J. R. *J. Chem. Soc. Perkin Trans.* **2 1992**, 775.


Optimization of the reaction condition


	Ph−PH ₂ $\xrightarrow{\text{ca. 5 mol% 1}}$ Ph C ₆ D ₆ , rt, x h	$-P-P-Ph + H_2$
concentration	[1.00 M] 3h, 20% ; 20 h, 36%	20 h, 30 % % ; 20 h, 34% hv. of PhPH ₂ (36% sel. to (PPhH) ₂]
additive —>	[1.00 M] /1.0 equiv. dippe	20 h, 51%
solvent {	[1.00 M] /1.0 equiv. dippe THF	20 h, 80 % conv. of $PhPH_2$ (30% sel. to (PPhH) ₂)
	[1.00 M] /1.0 equiv. dippe hexane	20 h, 36 %
	[1.00 M] /1.0 equiv. dippe CH ₂ Cl ₂	20 h, 20%
in situ generated cat.	Rh(cod)Bn/1.0 equiv. dippe/[1.00 M]	20 h, 31%
	Rh(cod)Bn/2.0 equiv. dippe/[1.00 M]	20 h, 52%
	Rh(cod)Bn/1.0 equiv. dchpe/[1.00 M]	20 h, 32%


No coupling with $\underline{Rh(cod)Bz}$, Rh(cod)Bz/2 or 4 equiv. PEt_3 , Rh(cod)Bz/2 or 4 equiv. $P(t-Bu)_3$, Rh(cod)Bz/2 equiv. dmpe, Rh(cod)Bz/2 equiv. dppe, $[Rh(cod)Cl]_2$, $[Rh(cod)Cl]_2/2equiv. dippe$

