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Figure S1. TEM micrographs and the corresponding SAED patterns of CoBTC-DMF 

(a) and CoBTC-DMF/EtOH (b). The uniform-contrast TEM images of CoBTC-DMF 

and CoBTC-DMF/EtOH clearly demonstrate their solid and dense nature without 

discernible porosities. 
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Figure S2. XPRD patterns of Co2(BTC)Cl(DEF)3. 

 

 

 

 

Figure S3. (a) XPRD patterns of CoBTC-DMF and CoBTC-DMF/EtOH. The two 

samples show peaks located at nearly the same angles, and the peaks are sharp and 

strong, suggesting a relatively high crystallinity. (b) FT-IR spectra of CoBTC-DMF 
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and CoBTC-DMF/EtOH. The peaks in the regions of 1608-1532 cm
-1

 can be assigned 

to the asymmetric stretching vibrations of the carboxylate groups, while the peaks in 

the regions of 1434-1378 cm
-1

 can be assigned to the symmetric stretching vibrations 

of the carboxylate groups. The absence of the sharp absorption band from the 

vibrations of hydroxide (~3600 cm
-1

) indicate that EtOH molecules are not 

incorporated in CoBTC-DMF/EtOH. (c) TGA curves of CoBTC-DMF and 

CoBTC-DMF/EtOH under nitrogen atmosphere. It can be observed that the thermal 

behaviors of CoBTC-DMF and CoBTC-DMF/EtOH are much different from 

CoBTC-EtOH. Specifically, the weight loss between 151 and 211 °C can be assigned 

to the removal of H2O and DMF molecules adsorbed to the surface and those 

occluded inside the pores, while the weight loss between 243 and 336 °C can be 

assigned to the removal of coordinated DMF molecules. The gasification of the BTC 

ligands begins at 409 °C and after the complete break-down of BTC ligands at ca. 553 

°C, the remanent materials are then converted to Co3O4. (d) High-resolution Co 2p 

XPS spectra of CoBTC-DMF and CoBTC-DMF/EtOH, from which the existence of 

Co
2+

 are also demenstrated. 
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Figure S4. XPS surveys of CoBTC-EtOH (a), CoBTC-DMF (b), and 

CoBTC-DMF/EtOH (c). The expected N element is detected in CoBTC-DMF and 

CoBTC-DMF/EtOH, suggesing the exsistence of coordinated DMF in them. 
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Figure S5. Nitrogen adsorption-desorption isotherms of CoBTC-DMF (a) and 

CoBTC-DMF/EtOH (b). The BET areas of CoBTC-DMF and CoBTC-DMF/EtOH 

are 1.01 and 1.15 m
2
/g, respectively, which indicate that the two samples have a 

negligible porosity. 
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Figure S6. EIS spectra of the CoBTC-EtOH, CoBTC-DMF, and CoBTC-DMF/EtOH 

electrodes at the 100th cycle. It is clearly observed that the Rct for the CoBTC-EtOH, 

CoBTC-DMF, and CoBTC-DMF/EtOH electrodes at the 100th cycle are significantly 

small (<40 Ω), which illustrate the superior cycling performances of the three anodes 

as well as imply a limited growth of SEI layer and fast solid-state Li
+
 diffusion rate in 

these electrodes during cycling processes. 
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Figure S7. Ex-situ TEM image of the CoBTC-EtOH electrode at the fully lithiated 

state after rate test. The microsphere morphology of CoBTC-EtOH is largely retained 

after repetitive cycling. 

 

 

 

 

Figure S8. XPRD patterns of the charged CoBTC-EtOH, the patterns of the pristine 

CoBTC-EtOH were also presented. The diffraction peak at 2θ= 10.4° is detected for 

the charged sample, suggesting a similar crystal structure after one galvanostatic 

charge/discharge cycling.  
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Figure S9. Galvanostatic charge-discharge profiles for CoBTC-EtOH (a), 

CoBTC-DMF (b), and CoBTC-DMF/EtOH (c) at a current density of 100 mA g
-1

. 

From the 2nd to 50th cycle, the feature at ~2V vs. Li/Li
+
 becomes more and more 

evident, and then become nearly unchanged after 50 cycles. Moreover, the discharge 
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and charge profiles for CoBTC-EtOH, CoBTC-DMF, and CoBTC-DMF/EtOH are 

similar after a significant number of cycles, indicating that similar redox reactions are 

occurring during the charging/discharging processes. 

 

 

Figure S10. Cyclic voltammetry curve for CoBTC-EtOH after 100 cycles at a scan 

rate of 0.2 mV s
-1

 . Two broad cathodic peaks are observed at ~0.78 V and ~2.12 V, 

while three anodic peaks are observed at ~1.22 V, ~1.80 V, and ~2.38V. The broad 

nature of the redox peaks is probably indicative of gradual multi-step Li
+
 

insertion/deinsertion process. The cathodic peaks centered at 0.78 V and the anodic 

peaks at 1.22 V, and 1.80 V should be derived from the peaks at ~0.56 V, ~1.08V 

(cathodic peaks) and 1.77, 1.30 V (anodic peaks) from the 2nd CV cycle, and the 

positive shift of these redox peaks might be related to some activation processes for 

the Li-ion insertion. The new pair of peaks at ~2.12 V and ~2.38 V might be related 

with a new redox process after a significant number of charge-discharge cycles, which 

conincide well with the 100th galvanostatic charge-discharge profile in Figure S9a. 
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Figure S11. 
1
H MAS NMR spectra of the pristine and fully-discharged CoBTC-EtOH 

electrodes. The 
1
H signal from PVDF binder (2.7 ppm) is covered by the signal from 

CoBTC-EtOH, the 
1
H signals located at 6.91, 4.29, and 1.91 ppm can be assigned to 

the three kinds of tertiary 
1
H in the benzene rings of CoBTC-EtOH. It is clearly 

observed that after Li
+
 insertion to 0.01 V, the shape of the 

1
H spectrum presents 

obvious variation, and the signal located at 1.91 ppm is shifted to 2.19 ppm, indicating 

that that Li-ions are incorporated with the benzene rings (H atoms are only exsited in 

the benzene rings). 
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Table S1. Metal organic frameworks or coordiantion polymers as anode materials in 

Li-ion battery 

MOFs Voltage 

window 

(V vs. 

Li/Li
+
) 

Rate (C or 

mA g
-1
) 

Capacity 

retention 

( mAh g
-1
) 

Cycle 

number 

Refs. 

Zn4O(1,3,5-benzenet

ribenzoates) 

0.05-1.6 50 105 50 [S1] 

Li terephthalate 0.7-3.0 1C 234 50 [S2] 

Zn3(HCOO)6 0.005-3.0 60 560 60 [S3] 

Li/Ni-1,4,5,8-naphth

alenetetracarboxylat

es 

0.01-3.0 100 475 80 [S4] 

Mn(tfbdc)(4,4’-bpy)

(H2O)2) 

0.01-2.5 50 390 50 [S5] 

Co2(OH)2BDC 0.005-3.0 50 650 100 [S6] 

[Li6(pda)3]·2EtOH 0.2-2.0 30 160 50 [S7] 

[Cu2(C8H4O4)4]n 0.01-2.5 24 227 50 [S8] 

2,6-Naph-(COOLi)2 0.5-2.0 1C ca. 210 10 [S9] 

Ni-Me4bpz 0.01-3.0 50 120 100 [S10] 

Zn(IM)1.5(abIM)0.5 0.01-3.0 100, 400 190, ca. 75 200, 200 [S11] 

Asp-Cu 0.01-3.0 50 233 100 [S12] 

Mn-BTC 0.01-2.0 103, 1030 694, 400 100, 100 [S13] 

Co 

2,5-furandicarboxyla

te 

 

0.01-3.0 

 

100, 1250 

 

549.8, 513.4 

 

95, 499 

 

[S14] 

Mn 

2,5-thiophenedicarb

oxylate 

 

0.01-3.0 

 

400 

 

647.5 

 

250 

 

[S15] 

Cu-BTC  0.05-3.0 96, 383 740, 474 50, 50 [S16] 

This work  0.01-3.0 100, 2000 856, 473 100, 500  
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