Supporting information

A Facile Synthesis of Carbon-Coated Silicon/Graphite Spherical Composites for High-Performance Lithium-Ion Batteries

So Yeun Kim,^a Jaewoo Lee,^a Bo-Hye Kim,^b Young-Jun Kim,^a Kap Seung Yang,^{c,*} and Min-Sik Park^{a,d,*}

^a Advanced Batteries Research Center, Korea Electronic Technology Institute, 68 Yatap-dong, Bundang-gu, Seongnam 463-816, Republic of Korea

^b Division of Science Education, Daegu University, 201 Daegudae-ro, Gyeongsan-si, Gyeongbuk-do 712-714, Republic of Korea

^c Department of Polymer Engineering, Graduate School & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic

^d Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea

Corresponding Authors

*E-mail: <u>ksyang@chonnam.ac.kr</u> (K.S. Yang), <u>mspark@khu.ac.kr</u> (M.-S. Park)

Figure S1. Flow charts for the preparation of the various Si-C-G composites.

Figure S2. Field-emission scanning electron spectroscopy (FESEM) images for (a) silicon nanoparticles and (b) pristine natural graphite.

Figure S3. (a) Particle size distribution for Si-C-G-15 composite and (b) N_2 adsorption (open symbols) and desorption (solid symbols) isotherm of Si-C-G composite. The surface areas (S_{BET}) are denoted inside.

Figure S4. Thermogravimetric analysis curve of C-G composites.

Figure S5. Thermogravimetric analysis curve of Si-C-G composites and de-convoluted peaks. (a) Si-C-G-10, (b) Si-C-G-15 and (c) Si-C-G-20.

	Natural graphite (wt. %)	Amorphous carbon (wt. %)	Silicon (wt. %)
Si-C-G-10	63	25	12
Si-C-G-15	63	20	17
Si-C-G-20	62	17	21

Table S1. Thermogravimetric analysis of Si-C-G composites at the rate 5 $^{\circ}$ C min⁻¹ in air.

Table S2. Summary of electrochemical properties of Si-C-G-10, Si-C-G-15, and Si-C-G-20 obtained

at the first cycles.

	Charge capacity $(mA g^{-1})$	Discharge capacity (mA g ⁻¹)	Initial coulombic efficiency (%)	
Si-C-G-10	737	606	82.2	
Si-C-G-15	885	712	80.5	
Si-C-G-20	1009	805	79.8	

Figure S6. Electrochemical performance of Si-C-G-10, Si-C-G-15, and Si-C-G-20. (a) A comparison of initial coulombic efficiencies for the Si-C-G-10, Si-C-G-15, and Si-C-G-20 composite electrodes at the first cycle. (b) Differential capacity plots of galvanostatic voltage profiles during first (solid line) and second cycle (dash line).

cui	urrent density of 0.1C.											
		0.1C	0.2C	0.5C	1C	2C	5C	Retention (%)				
	Si-C-G-10	637	626	617	608	596	569	89.3				
	Si-C-G-15	745	707	688	674	656	631	84.8				
	Si-C-G-20	816	772	746	723	697	661	81.1				

Table S3. Specific capacity of the proposed Si-C-G composites obtained at different current densities. Retention refers to the capacity at a current density of 5.0 C as compared with that at a current density of 0.1 C