Supporting Information

Highly Enantioselective Additions of Diethylzinc to Aldehydes using 2-Triflamidomethyl-2'-hydroxy-1,1'-binaphthyl

Seung-Wan Kang, Dong-Hyun Ko, Kyoung Hoon Kim, and Deok-Chan Ha*
Department of Chemistry, Korea University, Seoul 136-701, Korea

General

IR spectra were recorded on a Bomem MB-104 spectrophotometer. Optical rotations were measured with a Rudolph Research Autopol III polarimeter. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Germini $300(300 \mathrm{MHz})$ with TMS as an internal reference. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Germini $300(75 \mathrm{MHz})$ with TMS or CDCl_{3} as an internal reference. Elemental analyses were obtained from Sogang Organic Chemistry Research Center, Seoul. HRMS (FAB+) sprectra were recorded on JEOL JMS-AX505WA mass spectrometer. Chiral HPLC analysis was performed on a Jasco LC-1500 Series HPLC system with a UV detector. GC analysis was performed on a Hewlett Packard 5890 series II plus GAS Chromatograph with a FID detector.
All reactions were carried out in oven-dried glassware under an argon atmosphere. Toluene $\left(\mathrm{CaH}_{2}\right)$, THF (Na , benzophenone) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CaH}_{2}\right)$ were dried by distillation before use. Diethylzinc was purchased from Aldrich.
(R)-2-Carbamoyl-2'-hydroxy-1,1'-binaphthyl (8) : A mixture of ester $\boldsymbol{7}^{1}$ (500 mg , $1.09 \mathrm{mmol})$ and $\mathrm{NaCN}(5.3 \mathrm{mg}, 0.11 \mathrm{mmol})$ in 4 ml of $7 \mathrm{~N} \mathrm{NH}_{3}$ in methanol was heated to $70-80^{\circ} \mathrm{C}$ in a sealed pressure tube for 48 h . The solvent was removed in vacuo, and the residue was dissolved in 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $20 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml} \times 3)$. The combined organic layers were washed with brine ($30 \mathrm{ml} \times 2$), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (30:1) to give the amide $\mathbf{8}(318 \mathrm{mg}, 94 \%$ yield) as a white solid.

$[\alpha]_{\mathrm{D}}{ }^{25}=-22.7(\mathrm{c}=1.62, \mathrm{THF})$.
IR (KBr) v 3444(br), $1652 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 6.84(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=9$
$\mathrm{Hz}, 1 \mathrm{H}), 7.49$ (ddd, $J=8,7,2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.89(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 117.25,118.26,122.64,124.34,125.14,126.27$, $126.39,126.58,126.61,127.67,127.89,127.94,128.05,129.41,131.73,132.29,133.63$, 134.04, 135.61, 152.52, 170.34.

HRMS (FAB+): Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}_{2}$: $314.1181[\mathrm{M}+\mathrm{H}]^{+}$. Found: 314.1178. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 80.49; H, 4.82; N, 4.47. Found: C, 80.45; H, 4.70; N, 4.30.
(R)-2-Aminomethyl-2'-hydroxy-1,1'-binaphthyl (9) : To a solution of amide $\mathbf{8}$ (300 $\mathrm{mg}, 0.96 \mathrm{mmol})$ in THF (10 ml) was added $\mathrm{LiAlH}_{4}(145 \mathrm{mg}, 3.83 \mathrm{mmol})$ in small portions at room temperature and the mixture was heated at reflux for 24 h . The mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$. The resulting mixture was filtered through Celite pad which was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml} \times 3)$, and the combined organic layers were washed with brine ($30 \mathrm{ml} \times$ 2), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(10: 1)$ to give the amine $9(138 \mathrm{mg}$, 48% yield) as a white solid.

$[\alpha]_{\mathrm{D}}{ }^{25}=-31.94(\mathrm{c}=1.33, \mathrm{EtOH})$.
IR (KBr) v 3439 (br) cm^{-1}.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.63(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}$, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{ddd}, J=8,7,2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.01$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 45.17,117.39,118.76,120.38,123.73,125.29,126.80$, 127.11, 127.39, 127.55, 127.67, 129.03, 129.11, 129.46, 129.84, 130.77, 134.66, 134.85, 135.80, 137.64, 155.40.

HRMS (FAB+): Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}$: $300.1388[\mathrm{M}+\mathrm{H}]^{+}$. Found: 300.1388.

Synthesis of sulfonamide (10a-c): general procedure

To a solution of amine 9 ($130 \mathrm{mg}, 0.43 \mathrm{mmol}$) in THF (8 ml) at $-78^{\circ} \mathrm{C}$ was added n BuLi (0.54 ml of 1.6 M solution in hexane, 0.87 mmol). After 30 min of stirring at -78 ${ }^{\circ} \mathrm{C}$, the mixture was added with the corresponding sulfonic anhydride or sulfonyl chloride (0.87 mmol), stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , and then allowed to warm to room temperature. The mixture was quenched with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{ml})$, and extracted with ethyl acetate ($30 \mathrm{ml} \times 2$). The combined organic layers were washed with brine (30 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude bissulfonated residue was used directly in the next step.
The crude product was dissolved in THF (10 ml) and a solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(219 \mathrm{mg}$, $5.21 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ was added. The mixture was stirred at room temperature for 12 h . The reaction mixture was quenched with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{ml})$ and the mixture was extracted with ethyl acetate $(30 \mathrm{ml} \times 3)$. The combined organic layers were washed with washed with brine ($30 \mathrm{ml} \times 2$), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel eluted with ethyl acetate/hexane (1:5) to give the sulfonamide $\mathbf{1 0}$ as a white solid.

(R)-2-Triflouromethanesulfonylamidomethyl-2'-hydroxy-1,1'-binaphthyl (10a)

yield: 89%
$[\alpha]_{\mathrm{D}}{ }^{25}=-5.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
IR $\left(\mathrm{CHCl}_{3}\right) \vee 3511(\mathrm{br}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.10(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (br, 2H), $6.86(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.51(\mathrm{td}, J=8,1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J$ $=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 46.90,116.34,119.46\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=320 \mathrm{~Hz}\right), 117.63,124.05$, 124.14, 125.99, 126.94, 127.04, 127.37, 127.45, 128.32, 128.44, 129.27, 130.02, 130.76,
131.49, 132.84, 133.34, 133.48, 133.74, 150.54.

HRMS (FAB+): Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}: 431.0803$ [M] ${ }^{+}$. Found: 431.0807. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 61.25 ; \mathrm{H}, 3.74 ; \mathrm{N}, 3.25 ; \mathrm{O}, 11.13, \mathrm{~S}, 7.43$. Found: C, 61.28, H, 3.91; N, 2.97; S, 7.47.
(R)-2-Methanesulfonylamidomethyl-2'-hydroxy-1,1'-binaphthyl (10b)

yield: 74\%
$[\alpha]_{D}{ }^{25}=-12.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
IR $\left(\mathrm{CHCl}_{3}\right)$ v 3329 (br) cm^{-1}.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.49(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{dd}, J=13,3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=13$, $6 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{br}, 1 \mathrm{H}), 5.58(\mathrm{br}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.49$ $(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.93 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 39.40,45.82,116.54,117.80,123.75,124.20,125.92$, 126.50, 126.94, 127.05, 127.12, 128.13, 128.19, 128.95, 129.35, 130.28, 131.33, 132.90, 133.42, 133.64, 134.17, 150.95.

HRMS (FAB+): Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}: 377.1086[\mathrm{M}]^{+}$. Found: 377.1081. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}$: C, $70.00 ; \mathrm{H}, 5.07$; N, 3.71; S, 8.50. Found: C, 70.03 ; H, 5.27; N, 3.51; S, 8.16.

(R)-2-(4-Toluenesulfonyl)amidomethyl-2'-hydroxy-1,1'-binaphthyl (10c)

yield: 81%
$[\alpha]_{\mathrm{D}}{ }^{25}=-4.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
IR $\left(\mathrm{CHCl}_{3}\right) \vee 3382(\mathrm{br}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.32(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dd}, J=13,3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=13$, $6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{br}, 1 \mathrm{H}), 5.66(\mathrm{br}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.10-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.37(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.76 (d, $J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8 \mathrm{~Hz}$, 1 H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.44,45.81,116.43,117.75,123.62,124.14,125.94$, $126.48,126.82,126.91,127.02,127.34,128.13,128.18,128.93,129.40,129.51,130.03$, $130.95,132.84,133.45,133.60,134.40,135.72,143.18,150.90$.
HRMS (FAB+): Calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}: 453.1399[\mathrm{M}]^{+}$. Found: 453.1400. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 74.15 ; \mathrm{H}, 5.11 ; \mathrm{N}, 3.09 ; \mathrm{S}, 7.07$. Found: C, $74.34 ; \mathrm{H}, 5.33 ; \mathrm{N}, 2.87$; S, 7.06.

(\boldsymbol{R})-2-Triflouromethanesulfonylamino-2'-methoxy-1,1'-binaphthyl (12)

To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 1}^{2}(150 \mathrm{mg}, 0.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added triflic anhydride ($0.17 \mathrm{ml}, 1.00 \mathrm{mmol}$). The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. The reaction was quenched with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{ml})$ and the mixture was extracted with ethyl acetate ($30 \mathrm{ml} \times 2$). The combined organic layers were washed with $\mathrm{NaHCO}_{3}(20$ $\mathrm{ml})$ and brine (20 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel eluted with ethyl acetate/hexane (1:8) to give the triflamide $\mathbf{1 2}$ ($198 \mathrm{mg}, 92 \%$ yield) as a white solid.

$[\alpha]_{D}{ }^{25}=-92.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
IR $\left(\mathrm{CHCl}_{3}\right) \vee 3285(\mathrm{NH}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.82(\mathrm{~s}, 3 \mathrm{H}), 6.63(\mathrm{br}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ $(\mathrm{d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.89-7.94(\mathrm{~m}, 3 \mathrm{H}), 8.01(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}$, $J=9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 56.20,112.95,115.33,119.34\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=320 \mathrm{~Hz}\right), 120.20$, $124.20,124.44,125.46,125.95,126.27,126.94,127.44,128.10,128.27,129.13,129.51$, 131.04, 131.59, 131.88, 132.92, 133.38, 154.71.

HRMS (FAB+): Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}: 431.0803$ [M] ${ }^{+}$. Found: 431.0801. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}$: C, 61.25; H, 3.74; N, 3.25; S, 7.43. Found: C, 61.27; H, 3.66; N, 3.15; S, 7.36.

A solution of $\mathbf{1 2}(198 \mathrm{mg}, 0.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was treated with BBr_{3} (1.38 ml of 1.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.38 \mathrm{mmol}$). After the addition, the solution was stirred for 2 h , and then allowed to warm to room temperature. To the reaction mixture was added $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ and with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{ml})$. The mixture was extracted with ethyl acetate $(30 \mathrm{ml} \times 2)$ and combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and brine (20 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel eluted with ethyl acetate/hexane (1:5) to give the product $\mathbf{1 3}$ ($132 \mathrm{mg}, 69 \%$ yield) as a white solid.

$[\alpha]_{\mathrm{D}}{ }^{25}=+43.4\left(\mathrm{c}=1.12, \mathrm{CHCl}_{3}\right)$.
IR $\left(\mathrm{CHCl}_{3}\right) \vee 3511(\mathrm{OH}), 3323(\mathrm{NH}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.97$ (br, 1H), 6.53 (br, 1H), $6.96(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29-7.43 (m, 4H), 7.53 (ddd, $J=8,7,2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.97(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=9$ $\mathrm{Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 111.93,117.86,119.32\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=320 \mathrm{~Hz}\right), 120.03,122.54$, $123.61,124.21,125.75,126.57,127.69,127.81,128.30,128.55,129.28,130.64,131.71$, 132.01, 132.11, 132.72, 132.86, 151.70.

HRMS (FAB+): Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}: 417.0646[\mathrm{M}]^{+}$. Found: 417.0637.

General Procedure for the Addition of Et2Zn to aldehyde

To a solution of chiral ligand $\mathbf{1 0 a}(6.5 \mathrm{mg}, 0.015 \mathrm{mmol})$ in dichloromethane (2 ml) was added $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(17.7 \mathrm{ml}, 0.60 \mathrm{mmol})$ at room temperature. After stirring of the mixture for 15 min , aldehyde $(0.50 \mathrm{mmol})$ was added into the reaction solution and reaction mixture was cooled to $-25^{\circ} \mathrm{C}$. Diethylzinc $(1.0 \mathrm{M}$ solution in hexane, $0.9 \mathrm{ml}, 0.90$ mmol) was added into the solution and the reaction mixture was stirred for 2 h at $-25^{\circ} \mathrm{C}$. The reaction was quenched by the addition of 1 N HCl solution $(10 \mathrm{ml})$ and the mixture was extracted with ethyl acetate ($30 \mathrm{ml} \times 2$). The combined organic extracts were washed with brine ($30 \mathrm{ml} \times 2$), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel with eluted with ethyl acetate/hexanes ($1: 8$) to give the alcohol product.
Conditions for the determination of enantiomeric excess are listed below. All alcohols
were compared with racemic samples which prepared via Grignard reaction.

1-Phenyl-1-propanol

$[\alpha]_{\mathrm{D}}{ }^{25}=+42.4\left(\mathrm{c}=2.50, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $^{3}[\alpha]_{\mathrm{D}}{ }^{22}=-47.6\left(\mathrm{c}=6.11, \mathrm{CHCl}_{3}\right)$ for 98% ee (S) \}; 99% ee by HPLC analysis (Chiralcel OD column, hexane:2-propanol $=98: 2,1$ $\mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=11.99 \mathrm{~min}$ for (R) and $t_{\mathrm{R}}=14.83 \mathrm{~min}$ for (S).

1-(4'-Methoxyphenyl)-1-propanol

$[\alpha]_{\mathrm{D}}{ }^{25}=+30.41\left(\mathrm{c}=3.57, \mathrm{C}_{6} \mathrm{H}_{6}\right)\left\{\mathrm{lit}^{3}{ }^{3}[\alpha]_{\mathrm{D}}{ }^{22}=-32.1\left(\mathrm{c}=1.25, \mathrm{C}_{6} \mathrm{H}_{6}\right)\right.$ for 93% ee $\left.(S)\right\}$; 91% ee by HPLC analysis (Chiralcel OD column, hexane:2-propanol $=97: 3,1 \mathrm{ml} / \mathrm{min}$, 254 nm UV detector), $t_{\mathrm{R}}=12.20 \mathrm{~min}$ for (R) and $t_{\mathrm{R}}=14.74 \mathrm{~min}$ for (S).

1-(2'-Chlorophenyl)-1-propanol

$[\alpha]_{\mathrm{D}}{ }^{25}=+52.31\left(\mathrm{c}=3.46, \mathrm{CHCl}_{3}\right)\left\{\mathrm{lit}^{5}{ }^{5}[\alpha]_{\mathrm{D}}=+37.1\left(\mathrm{c}=4, \mathrm{CHCl}_{3}\right)\right.$ for 79% ee $\left.(S)\right\}$; 96\% ee by HPLC analysis (Chiralcel OB-H column, hexane:2-propanol $=99: 1,1$ $\mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=10.16 \mathrm{~min}$ for (R) and $t_{\mathrm{R}}=8.63 \mathrm{~min}$ for (S).

1-(3'-Chlorophenyl)-1-propanol

$[\alpha]_{\mathrm{D}}{ }^{25}=+29.27\left(\mathrm{c}=3.17, \mathrm{C}_{6} \mathrm{H}_{6}\right)\left\{\right.$ lit. ${ }^{4}[\alpha]_{\mathrm{D}}{ }^{20}=+26.6\left(\mathrm{c}=2.36, \mathrm{C}_{6} \mathrm{H}_{6}\right)$ for 97% ee $\left.(R)\right\}$; 99% ee by HPLC analysis (Chiralcel OD column, hexane:2-propanol $=99: 1,0.5 \mathrm{ml} / \mathrm{min}$, 254 nm UV detector), $t_{\mathrm{R}}=41.58 \mathrm{~min}$ for (R) and $t_{\mathrm{R}}=36.90 \mathrm{~min}$ for (S).

1-(4'-Chlorophenyl)-1-propanol

$[\alpha]_{\mathrm{D}}{ }^{25}=+27.32\left(\mathrm{c}=2.91, \mathrm{C}_{6} \mathrm{H}_{6}\right)\left\{\right.$ lit. ${ }^{3}[\alpha]_{\mathrm{D}}{ }^{22}=-23.5\left(\mathrm{c}=0.82, \mathrm{C}_{6} \mathrm{H}_{6}\right)$ for 93% ee $\left.(S)\right\}$;
98% ee by HPLC analysis (Chiralcel OD column, hexane:2-propanol $=99: 1,0.5 \mathrm{ml} / \mathrm{min}$, 254 nm UV detector), $t_{\mathrm{R}}=38.57 \mathrm{~min}$ for (R) and $t_{\mathrm{R}}=35.21 \mathrm{~min}$ for (S).

1-(2'-Tolyl)-1-propanol

$[\alpha]_{\mathrm{D}}{ }^{25}=+64.10\left(\mathrm{c}=2.12, \mathrm{C}_{6} \mathrm{H}_{6}\right)\left\{\right.$ lit. $^{7}[\alpha]_{\mathrm{D}}{ }^{\mathrm{RT}}=+58.5\left(\mathrm{c}=2.0, \mathrm{C}_{6} \mathrm{H}_{6}\right)$ for 99% ee $\left.(R)\right\}$ 96% ee by HPLC analysis (Chiralpak AD-H column, hexane:2-propanol $=99: 1$, $1 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector $), t_{\mathrm{R}}=15.57 \mathrm{~min}$ for (R) and $t_{\mathrm{R}}=18.75 \mathrm{~min}$ for (S).

1-(4'-Toly)-1-propanol

$[\alpha]_{\mathrm{D}}{ }^{25}=+41.62\left(\mathrm{c}=2.53, \mathrm{C}_{6} \mathrm{H}_{6}\right)\left\{\mathrm{lit.}^{4}[\alpha]_{\mathrm{D}}{ }^{20}=+39.3\left(\mathrm{c}=3.65, \mathrm{C}_{6} \mathrm{H}_{6}\right)\right.$ for 95.7% ee $(R)\} 99 \%$ ee by HPLC analysis (Chiralpak AD-H column, hexane:2-propanol $=98: 2$, $1 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=12.79 \mathrm{~min}$ for (R) and $t_{\mathrm{R}}=14.74 \mathrm{~min}$ for (S).

1-(1'-Napthyl)-1-propanol

$[\alpha]_{\mathrm{D}}{ }^{25}=+51.10\left(\mathrm{c}=4.10, \mathrm{CHCl}_{3}\right)\left\{\mathrm{lit}^{4}[\alpha]_{\mathrm{D}}{ }^{20}=+52.6\left(\mathrm{c}=2.55, \mathrm{CHCl}_{3}\right)\right.$ for 93.5% ee (R) \}; 98% ee by HPLC analysis (Chiralcel OD column, hexane:2-propanol $=9: 1,1$ $\mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=13.69 \mathrm{~min}$ for (R) and $t_{\mathrm{R}}=7.74 \mathrm{~min}$ for (S).

1-(2'-Napthyl)-1-propanol

$[\alpha]_{\mathrm{D}}{ }^{25}=+28.83\left(\mathrm{c}=4.11, \mathrm{C}_{6} \mathrm{H}_{6}\right)\left\{\right.$ lit. ${ }^{4}[\alpha]_{\mathrm{D}}{ }^{20}=+27.5\left(\mathrm{c}=3.80, \mathrm{C}_{6} \mathrm{H}_{6}\right)$ for 96.1% ee (R) \}; 98% ee by HPLC analysis (Chiralcel OD column, hexane:2-propanol $=95: 5,1$ $\mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector $), t_{\mathrm{R}}=16.45 \mathrm{~min}$ for (R) and $t_{\mathrm{R}}=14.63 \mathrm{~min}$ for (S).

3-Nonanol

$[\alpha]_{\mathrm{D}}{ }^{25}=-7.50\left(\mathrm{c}=0.56, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $^{3}[\alpha]_{\mathrm{D}}{ }^{22}=+5.1\left(\mathrm{c}=1.31, \mathrm{CHCl}_{3}\right)$ for $\left.61 \% \mathrm{ee}(S)\right\}$; 98% ee by GC analysis of the corresponding acetate derivative. (Chiraldex G-TA column, 50 to $100^{\circ} \mathrm{C}$ at $\left.1^{\circ} \mathrm{C} / \mathrm{min}, \mathrm{N}_{2}, 1 \mathrm{ml} / \mathrm{min}\right) t_{\mathrm{R}}=28.90 \mathrm{~min}$ for (R) and $t_{\mathrm{R}}=25.25$ min for (S).

1-Cyclohexyl-1-propanol

$[\alpha]_{\mathrm{D}}{ }^{25}=+30.64\left(\mathrm{c}=0.47, \mathrm{CHCl}_{3}\right)\left\{\mathrm{lit.}^{4}[\alpha]_{\mathrm{D}}{ }^{20}=+6.35\left(\mathrm{c}=3.0, \mathrm{CHCl}_{3}\right)\right.$ for $94.8 \% \mathrm{ee}$ $(R)\} ; 99 \%$ ee by GC analysis of the corresponding acetate derivative. (Chiraldex G-TA column, 50 to $100{ }^{\circ} \mathrm{C}$ at $\left.5{ }^{\circ} \mathrm{C} / \mathrm{min}, \mathrm{N}_{2}, 1 \mathrm{ml} / \mathrm{min}\right) t_{\mathrm{R}}=15.03 \mathrm{~min}$ for (R) and $t_{\mathrm{R}}=14.61$ min for (S).

(E)-1- Phenyl-1-penten-3-ol
$[\alpha]_{\mathrm{D}}{ }^{25}=+14.74\left(\mathrm{c}=3.46, \mathrm{CHCl}_{3}\right)\left\{\mathrm{lit.}^{3}[\alpha]_{\mathrm{D}}{ }^{22}=-5.7\left(\mathrm{c}=100, \mathrm{CHCl}_{3}\right)\right.$ for $\left.96 \% \mathrm{ee}(S)\right\}$; 96% ee by HPLC analysis (Chiralcel OD column, hexane:2-propanol $=95: 5,1 \mathrm{ml} / \mathrm{min}$, 254 nm UV detector), $t_{\mathrm{R}}=11.76 \mathrm{~min}$ for (R) and $t_{\mathrm{R}}=20.15 \mathrm{~min}$ for (S).

1-Phenyl-1-pentyn-3-ol

$[\alpha]_{\mathrm{D}}{ }^{25}=+6.32\left(\mathrm{c}=3.72, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. ${ }^{6}[\alpha]_{\mathrm{D}}{ }^{\mathrm{RT}}=-59.32$ (neat) for 99% ee $\left.(S)\right\} ; 89 \%$ ee by HPLC analysis (Chiralcel OD column, hexane:2-propanol $=95: 5,1 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=8.83 \mathrm{~min}$ for (R) and $t_{\mathrm{R}}=23.71 \mathrm{~min}$ for (S).

References

(1) Ohta, T.; Ito, M.; Inagaki, K.; Takaya, H. Tetrahedron Lett. 1993, 34, 1615-1616.
(2) (a) Hattori, T.; Hotta, H.; Suzuki, T.; Miyano, S. Bull. Chem. Soc. Jpn. 1993, 66, 613-622. (b) Hattoro, T.; Shijo, M.; Sakamoto, J.; Kumagai, S.; Nakajima, A.; Miyano, S. J. Chem. Res. (M) 1995, 124-134.
(3) Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 60716072.
(4) Dai, W.-M.; Zhu, H.-J.; Hao, X.-J. Tetrahedron: Asymmetry 2000, 11, 2315-2337.
(5) Vyskočil, Š.; Jaracz, S.; Smrčina, M.; Štícha, M.; Hanuš, V.; Polášek, M.; Kočovský, P. J. Org. Chem. 1998, 63, 7727-7737.
(6) Seebach, D.; Beck, A. K.; Schmidt, B.; Wang, Y. M. Tetrahedron 1994, 50, 43634384.
(7) Cardellicchio, C.; Ciccarella, G.; Naso, F.; Tortorella, P. Tetrahedron 1999, 55, 14685-14692.

