Supporting Information ### **Synthesis of Aryloxo Cyclopentadienyl Group 4 Dendrimers** Silvia Arévalo, Ernesto de Jesús, F. Javier de la Mata*, Juan C. Flores, Rafael Gómez*, Mª Pilar Gómez-Sal, Paula Ortega and Susana Vigo Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Spain ### **Experimental Section** ### Synthesis of $[Ti(C_5Me_5)Cl_2\{O[C_6H_3(OMe)(CH_2-CH=CH_2)]\}]$ (1) A solution of eugenol (0.40 g, 2.43 mmol), in $CH_2Cl_2(10 \text{ mL})$ was slowly added to a solution of [Ti(C_5Me_5)Cl₂Me] (0.65 g, 2.43 mmol) in $CH_2Cl_2(5 \text{ mL})$. The mixture was stirred overnight at room temperature. The solvent was removed at reduced pressure affording a red solid. The product was extracted with hexane at 0 0 C (5 mL). The resulting hexane solution was evaporated to dryness, giving **1** as a red solid (0.94 g, 93%). 1 H-NMR(CDCl₃): δ 6.90 (m, 1H, C₆H₃), 6.69-6.62 (m, 2H, C₆H₃), 5.87 (m, 1H, CH₂-CH=CH₂), 5.04 (m, 2H, CH₂-CH=CH₂), 3.80 (s, 3H, OMe), 3.33 (m, 2H, CH₂-CH=CH₂), 2.18 (s, 15H, C₅Me₅). 13 C-NMR(CDCl₃): δ 153.6 (1 C_{ipso} bonded to -OTi), 150.0 (1 C_{ipso} bonded to -OMe), 137.4 (1 CH₂-CH=CH₂), 135.7 (1 C_{ipso} bonded to -C₃H₅), 132.7 (1 C₅Me₅), 120.8, 120.3, 113.1 (1 C₆H₃), 115.8 (1 CH₂-CH=CH₂), 56.3 (OMe), 40.0 (1 CH₂-CH=CH₂), 12.7 (1 C₅Me₅). Anal. Calcd for C₂₀H₂₆Cl₂O₂Ti: C, 57.57; H, 6.24. Found: C, 57.09; H, 6.02. ### Synthesis of $[Ti(C_5Me_5)Cl_2\{O[C_6H_2(OMe)_2(CH_2-CH=CH_2)]\}]$ (2) A solution of 4-allyl-2,6-dimetoxyphenol (0.36 g, 1.85 mmol) in Et₂O (10 mL) was slowly added to a solution of [Ti(C_5Me_5)Cl₂Me] (0.50 g, 1.85 mmol) in Et₂O (5 mL). The mixture was stirred overnight at room temperature. A red solid precipitated. The solution was filtered off and the solid was dried under vacuum affording **2** as a red microcrystalline solid (0.66 g, 80%). Red crystals were obtained from a mixture Et₂O/hexane. ¹H-NMR(CDCl₃): δ 6.35 (s, 2H, C_6H_2), 5.95 (m, 1H, $C_7CH=CH_2$), 5.05 (m, 2H, $C_7CH=CH_2$), 3.78(s, 6H, OMe), 3.32 (m, 2H, $C_7CH=CH_2$), 2.15 (s, 15H, $C_7CH=CH_2$). ¹³C-NMR(CDCl₃): δ 151.3 ($C_7CH=CH_2$), 134.8) CH= CH_2), 106.1 (C₆ H_2), 56.7 (OMe), 40.5 (CH_2 -CH= CH_2), 12.6 (C₅ Me_5). Anal. Calcd for C₂₁ H_{28} Cl₂O₃Ti: C, 56.40; H, 6.31. Found: C, 56.79; H, 6.30. ### Synthesis of $[Ti(C_5Me_5)Cl_2\{O[C_6H_3(OMe)(CH_2CH_2CH_2SiEt_3)]\}]$ (3) A solution of [HO{C₆H₃(OMe)(CH₂CH₂CH₂SiEt₃)}] (0.40 g, 1.43 mmol) in CH₂Cl₂ (10 mL) was slowly added to a solution of [Ti(C₅Me₃)Cl₂Me] (0.38 g, 1.43 mmol) in CH₂Cl₂ (5 mL). The mixture was stirred overnight at room temperature. The solvent was removed at reduced pressure affording a red oil. The product was extracted with hexane at 0 $^{\circ}$ C (5 mL). The resulting hexane solution was evaporated to dryness, affording **3** as an oily red compound (0.68 g, 90%). H-NMR(CDCl₃): δ 6.89 (m, 1H, C₆H₃), 6.64 (m, 2H, C₆H₃), 3.81 (s, 3H, OMe). 2.56 (m, 2H, SiCH₂CH₂CH₂Ph), 2.19 (s, 15H, C₅Me₅), 1.58 (m, 2H, SiCH₂CH₂CH₂Ph), 0.90(t, 9H, SiCH₂CH₃), 0.51 (m, 8H, SiCH₂CH₃ and SiCH₂CH₂CH₂Ph overlapping). 13 C-NMR(CDCl₃): δ 152.3 (C_{ipso}bonded to -OTi), 149.8 (C_{ipso}bonded to -OMe), 138.5 (C_{ipso}bonded to -CH₂), 132.5 (C₅Me₅), 120.7, 120.1, 113.0 (C₆H₃), 56.4 (OMe), 40.0 (SiCH₂CH₂CH₂Ph), 26.0 (SiCH₂CH₂CH₂Ph), 12.8 (C₅Me₅), 11.1 (SiCH₂CH₂CH₂Ph), 7.5(SiCH₂CH₃), 3.3 (SiCH₂CH₃). Anal. Calcd for C₂₆H₄₂Cl₂O₂SiTi: C, 58.54; H, 7.94. Found: C, 58.25; H, 7.81. ### Synthesis of $[Ti(C_5Me_5)Cl_2\{O[C_6H_2(OMe)_2(CH_2CH_2CH_2SiEt_3)]\}]$ (4) A solution of {HO[C₆H₂(OMe)₂(CH₂CH₂CH₂CH₂SiEt₃)]} (0.40 g, 1.29 mmol) in CH₂Cl₂ (10 mL) was slowly added to a solution of [Ti(C₅Me₅)Cl₂Me] (0.35 g, 1.29 mmol) in CH₂Cl₂ (5 mL). The mixture was stirred overnight at room temperature. The solvent was removed at reduced pressure, affording a red solid. The product was washed with hexane (2x3 mL), to give **4** as a red microcrystaline solid (0.65 g, 90%). H-NMR(CDCl₃): δ 6.34 (s, 2H, C₆H₂), 3.79 (s, 6H, OMe). 2.54 (m, 2H, SiCH₂CH₂CH₂Ph), 2.15 (s, 15H, C₅Me₅), 1.56 (m, 2H, SiCH₂CH₂CH₂Ph), 0.90(t, 9H, SiCH₂CH₃), 0.49 (m, 8H, SiCH₂CH₃ and SiCH₂CH₂CH₂Ph overlapping). ¹³C-NMR(CDCl₃): δ 151.2 (C_{ipso}bonded to -OMe), 144.0 (C_{ipso}bonded to -OTi), 137.7 (C_{ipso}bonded to -CH₂), 132.2 (*C*₅Me₅), 106.2 (C₆H₂), 56.8 (OMe), 40.4 (SiCH₂CH₂CH₂Ph), 25.8 (SiCH₂CH₂CH₂Ph), 12.6 (C₅Me₅), 11.0 (SiCH₂CH₂CH₂Ph), 7.5(SiCH₂CH₃), 3.3 (SiCH₂CH₃). Anal. Calcd for C₂₇H₄₄Cl₂O₃SiTi: C, 57.55; H, 7.87. Found: C, 57.39; H, 8.06. ### Synthesis of $1G-[(CH_2)_3\{[C_6H_3(OMe)]O\}Ti(C_5Me_5)Cl_2]_4$ (5) A solution of $1G-\{(CH_2)_3[C_6H_3(OMe)]OH\}_4$ (0.40 g, 0.37 mmol) in CH_2Cl_2 (10 mL) was slowly added to a solution of $[Ti(C_5Me_5)Cl_2Me]$ (0.40 g, 1.48 mmol) in CH_2Cl_2 (5 mL). The mixture was allowed to stir overnight. The solvent was removed at reduced pressure, to obtain an oily red solid. The product was washed with a mixture of $Et_2O/hexane$ (1:4) to give **5** as a red foamy solid (0.57g, 74 %). $^1H-NMR(CDCl_3)$: δ 6.89 (m, 1H, C_6H_3), 6.61 (m, 2H, C_6H_3), 3.79 (s, 3H, OMe), 2.54 (m, 2H, $SiCH_2CH_2CH_2Ph$), 2.17 (s, 15H, C_5Me_3), 1.54 (m, 2H, $SiCH_2CH_2CH_2Ph$), 1.29 (m, 2H, $SiCH_2CH_2CH_2Si$), 0.53 (m br, 6H, $SiCH_2CH_2CH_2Si$) and $SiCH_2CH_2CH_2Ph$ overlapping), -0.06 (s, 6H, $SiMe_2$). $^{13}C-NMR(CDCl_3)$; δ 153.5 ($C_{ipso}bonded$ to -OTi), 149.9 ($C_{ipso}bonded$ to -OMe), 138.6 ($C_{ipso}bonded$ to -CH₂),132.6 (C_5Me_5) 120.6, 120.2 and 113.1 (C_6H_3), 56.3 (OMe), 39.9 ($SiCH_2CH_2CH_2Ph$), 26.1 ($SiCH_2CH_2CH_2Ph$), 15.3 ($SiCH_2CH_2CH_2Ph$), 20.3, 18.6, 17.6 ($Si(CH_2)_3Si$), 12.8(C_3Me_5), -3.3 ($SiMe_2$). $^{29}Si\{^1H\}$ NMR ($CDCl_3$): δ 1.91 (G1-Si) and 0.86 (G0-Si). Anal. Calcd. for $C_{100}H_{156}Cl_8O_8Si_5Ti_4$: C, 57.14; H, 7.48. Found: C, 57.11; H, 7.51 #### Synthesis of 2G- $[(CH_2)_3\{[C_6H_3(OMe)]O\}Ti(C_5Me_5)Cl_2]_8$ (6) This dendrimer was prepared by a similar method to that described for **5**, starting from $2G-\{(CH_2)_3[C_6H_3(OMe)]OH\}_8$ (0.30 g, 0.12 mmol) and $[Ti(C_5Me_5)Cl_2Me]$ (0.26 g, 0.96 mmol), affording **6** as a red foamy solid (0.38 g, 70%). ¹H-NMR(CDCl₃): δ 6.89 (m, 2H, C_6H_3), 6.62 (m, 4H, C_6H_3), 3.79 (s, 6H, OMe), 2.53 (m, 4H, SiCH₂CH₂CH₂Ph), 2.17 (s, 30H, C_5Me_5), 1.55 (m, 4H, SiCH₂CH₂CH₂Ph), 1.29 (m, 6H, SiCH₂CH₂CH₂Si) 0.53 (m br,16H, SiC H_2 CH $_2$ CH $_2$ Si and SiC H_2 CH $_2$ CH $_2$ Ph overlapping), -0.07 (s, 12H, SiMe $_2$), -0.09 (s, 3H, SiMe). ¹³C-NMR(CDCl $_3$); δ 153.3 (C $_{ipso}$ bonded to -OTi), 149.7 (C $_{ipso}$ bonded to -OMe), 138.5 (C $_{ipso}$ bonded to -CH $_2$), 132.6 (C_5 Me $_5$), 120.6, 120.1 and 113.0 (C $_6$ H $_3$), 56.3 (OMe), 39.9 (SiCH $_2$ CH $_2$ CH $_2$ Ph), 26.2(SiCH $_2$ CH $_2$ CH $_2$ Ph), 15.4 (SiCH $_2$ CH $_2$ Ph), 20.2, 18.9, 18.5 and overlapped signals (Si(CH $_2$) $_3$ Si), 12.8 (C $_5$ Me $_5$), -3.1 (SiMe $_2$), -4.9 (SiMe). ²⁹Si{¹H} NMR (CDCl $_3$): δ 1.87 (G2-Si), 1.19 (G1-Si) and 0.80 (G0-Si). Anal. Calcd. for C $_{216}$ H $_{348}$ Cl $_{16}$ O $_{16}$ Si $_{13}$ Ti $_8$: C, 57.44; H, 7.77. Found: C, 56.32; H, 8.02. ### Synthesis of $4G-[(CH_2)_3\{[C_6H_3(OMe)]O\}Ti(C_5Me_5)Cl_2]_{32}$ (7) A solution of $4G-\{(CH_2)_3[C_6H_3(OMe)]OH\}_{32}(0.30 \text{ g}, 2.75 \times 10^{-2} \text{ mmol})$ in CH_2Cl_2 (10) mL) was slowly added to a solution of [Ti(C₅Me₅)Cl₂Me] (0.24 g, 0.91 mmol) in CH₂Cl₂ (5mL). The mixture was stirred overnight. The solvent was removed at reduced pressure, to obtain a foamy red solid. The product was washed with Et₂O (2x2mL) to give 7 as a red foamy solid (0.39 g, 75% rto). 1 H-NMR(CDCl₃): δ 6.84 (m, 8H, C₆H₃), 6.60 (m, 16H, C₆H₃), 3.77 (s, 24H, OMe), 2.52 (m, 16H, SiCH₂CH₂CH₂Ph), 2.16 (s, 120H, C₅Me₅), 1.54 (m, 16H, SiCH₂CH₂CH₂Ph), 1.24 (m, 30H, SiCH₂CH₂CH₂Si), 0.52 (m br, 76H, SiCH₂CH₂CH₂Si and SiCH₂CH₂CH₂Ph overlapping), -0.07 (m br, 69 H, SiMe₂ and SiMe overlapping). ¹³C-NMR(CDCl₃); δ 153.4 (C_{ipso}bonded to -OTi), 149.9 (C_{ipso}) bonded to -OMe), 138.6 (C_{ipso}) bonded to -CH₂), 132.7 (C_5Me_5) , 120.6, 120.1 and 113.0 (C₆H₃), 56.3 (OMe), 39.9 (SiCH₂CH₂CH₂Ph), 26.1 (SiCH₂CH₂CH₂Ph), 15.3 ($SiCH_2CH_2CH_2Ph$), 20.2, 18.9, 18.5 and overlapped signals ($Si(CH_2)_3Si$), 12.8 (C_5Me_5), -3.2 (SiMe₂), -4.9 (SiMe). ²⁹Si $\{^{1}H\}$ NMR (CDCl₃): δ 1.91 (G4-Si), 1.28 (G3-Si) and the rest not observed. Anal. Calcd. for $C_{912}H_{1500}Cl_{64}O_{64}Si_{61}Ti_{32}$: C, 57.64; H, 7.95. Found: C, 56.82; H, 7.70. #### Synthesis of $[Ti(C_5Me_5)Me_2\{O[C_6H_3(OMe)(CH_2-CH=CH_2)]\}](8)$ A solution of eugenol (0.30 g, 1.83 mmol) in Et₂O (10 mL) was slowly added to a solution of [Ti(C₅Me₅)Cl₂Me] (0.42 g, 1.83 mmol) in Et₂O (5 mL). The mixture was stirred for 2h at room temperature. Then, the solvent was removed at reduced pressure to obtain **8** as a yellow oil in quantitative yield (0.68 g). ¹H-NMR(CDCl₃): δ 6.84 (m, 1H, C₆H₃), 6.69-6.61 (m, 2H, C₆H₃), 5.96 (m, 1H, CH₂-CH=CH₂), 5.06 (m, 2H, CH₂-CH=CH₂), 3.77 (s, 3H, OMe), 3.33 (m, 2H, CH₂-CH=CH₂), 1.91 (s, 15H, C₅Me₅), 0.41 (s, 6H, TiMe₂). ¹³C-NMR(CDCl₃): δ 151.5 (C_{ipso}bonded to -OTi), 150.5 (C_{ipso}bonded to -OMe), 137.9 (CH₂-CH=CH₂), 132.6 (C_{ipso}bonded to -C₃H₅), 122.3(C₅Me₅), 115.4 (CH₂-CH=CH₂), 120.5, 119.8, 112.6 (C₆H₃), 55.7 (OMe), 53.9 (TiMe₂), 40.0 (CH₂-CH=CH₂), 11.3 (C₅Me₅). Anal. Calcd. for C₂₂H₃₂O₂Ti: C, 70.21; H, 8.57. Found: C, 69.70; H, 8.40. #### Synthesis of $[Ti(C_5Me_5)Me_2\{O[C_6H_2(OMe)_2(CH_2CH=CH_2)]\}]$ (9) This product was prepared by a similar method to that described for **8**, starting from 4-allyl-2,6-dimetoxyphenol (0.34g, 1.75 mmol) and [Ti(C_5Me_5)Cl₂Me] (0.40 g, 1.75 mmol), affording **9** as an oily yellow solid in quantitative yield. ¹H-NMR(CDCl₃): δ 6.37 (s, 2H, C_6H_2), 5.96 (m, 1H, CH_2 -CH= CH_2), 5.07 (m, 2H, CH_2 -CH= CH_2), 3.77 (s, 6H, OMe), 3.31 (m, 2H, CH_2 -CH= CH_2), 1.88(s, 15H, C_5Me_5), 0.42 (s, 6H, TiMe₂). ¹³C-NMR(CDCl₃): δ 151.0 (C_{ipso} bonded to -OMe), 142.8 (C_{ipso} bonded to -OTi), 137.8 (C_{ipso} bonded to - C_3H_5), 131.4 (CH_2 -CH= CH_2), 122.1(C_5Me_5), 115.5 (CH_2 -CH= CH_2), 106.0 (C_6H_2), 56.2 (OMe), 53.9 (TiMe₂), 40.4 (CH_2 -CH= CH_2), 11.2 (C_5Me_5). Anal. Calcd. for $C_{23}H_{34}O_3Ti$: C_5H_2 0, C_5H_3 1, 8.43. Found: C_5H_3 1, 8.58. #### Synthesis of $[Ti(C_5Me_5)Me_2\{O[C_6H_3(OMe)(CH_2CH_2CH_2SiEt_3)]\}]$ (10) A solution of $[HO\{C_6H_3(OMe)(CH_2CH_2CH_2SiEt_3)\}]$ (0.40 g, 1.43 mmol) in Et_2O (10 mL) was slowly added to a solution of $[Ti(C_5Me_5)Me_3]$ (0.33 g, 1.43 mmol) in Et_2O (5 mL). The mixture was stirred for 2h at room temperature. Then, the solvent was removed at reduced pressure to obtain **10** as a yellow oil in quantitative yield (0.70 g). ¹H-NMR(CDCl₃): δ 6.82 (m, 1H, C₆H₃), 6.64 (m, 2H, C₆H₃), 3.78 (s, 3H, OMe). 2.56 (m, 2H, SiCH₂CH₂CH₂Ph), 1.90 (s, 15H, C₅Me₅), 1.58 (m, 2H, SiCH₂CH₂CH₂Ph), 0.90 (t, 9H, SiCH₂CH₃), 0.51 (m, 8H, SiCH₂CH₃ and SiCH₂CH₂CH₂Ph overlapping), 0.40 (s, 6H, TiMe₂). ¹³C-NMR(CDCl₃): δ 152.2 (C_{ipso}bonded to -OTi), 150.3 (C_{ipso}bonded to -OMe), 135.5 (C_{ipso} bonded to -CH₂), 122.2 (C₅Me₅), 120.4, 119.7, 112.6 (C₆H₃), 55.7 (OMe), 53.7 (TiMe₂), 40.4 (SiCH₂CH₂CH₂Ph), 26.1 (SiCH₂CH₂CH₂Ph), 11.3 (C₅Me₅), 11.1 (SiCH₂CH₂CH₂Ph), 7.5 (SiCH₂CH₃), 3.3 (SiCH₂CH₃). Anal. Calcd for C₂₈H₄₈O₂SiTi: C, 68.26; H, 9.82. Found: C, 67.91; H, 9.70. #### Synthesis of $[Ti(C_5Me_5)Me_2\{O[C_6H_2(OMe)_2(CH_2CH_2CH_2SiEt_3)]\}]$ (11) This product was prepared by a similar method to that described for 10, starting from [HO{C₆H₂(OMe)₂(CH₂CH₂CH₂SiEt₃)}] (0.40 g, 1.29 mmol) and [Ti(C₅Me₅)Me₃] (0.29 g, 1.29 mmol), affording 11 as a yellow oil in quantitative yield (0.67 g). H-NMR(CDCl₃): δ 6.36 (s, 2H, C₆H₂), 3.77 (s, 6H, OMe). 2.54 (m, 2H, SiCH₂CH₂CH₂Ph), 1.88 (s, 15H, C₅Me₅), 1.56 (m, 2H, SiCH₂CH₂CH₂Ph), 0.90 (t, 9H, SiCH₂CH₃), 0.48 (m, 8H, SiCH₂CH₃ and SiCH₂CH₂CH₂Ph overlapping), 0.42 (s, 6H, TiMe₂). C-NMR(CDCl₃): δ 150.9 (C_{ipso}bonded to -OMe), 142.6 (C_{ipso}bonded to -OTi), 134.3 (C_{ipso}bonded to -CH₂), 122.0 (C₅Me₅), 106.0 (C₆H₂), 56.3 (OMe), 53.6(TiMe₂), 40.4 (SiCH₂CH₂CH₂Ph), 26.0 (SiCH₂CH₂CH₂Ph), 11.2 (C₅Me₅), 11.1 (SiCH₂CH₂CH₂Ph), 7.5(SiCH₂CH₃), 3.3 (SiCH₂CH₃). Anal. Calcd for C₂₉H₅₀O₃SiTi: C, 66.64; H, 9.64. Found: C, 66.30; H, 9.48. #### Synthesis of $1G-[(CH_2)_3\{[C_6H_3(OMe)]O\}Ti(C_5Me_5)Me_2]_4$ (12) A solution of $1G-\{(CH_2)_3[C_6H_3(OMe)]OH\}_4$ (0.47 g, 0.43 mmol) in Et_2O (10 mL) was slowly added to a solution of $[Ti(C_5Me_5)Me_3]$ (0.40 g, 1.74 mmol) in Et_2O (5 mL). The reaction mixture was stirred for 2h at room temperature. Then, the solvent was removed at reduced pressure to obtain **12** as a brown-yellow oil in quantitative yield (0.84 g). 1H_2O NMR(CDCl₃): δ 6.83 (m, 1H, C₆H₃), 6.63 (m, 2H, C₆H₃), 3.77 (s, 3H, OMe), 2.55 (m, 2H, SiCH₂CH₂CH₂Ph), 1.91 (s, 15H, C₅Me₅), 1.58 (m, 2H, SiCH₂CH₂CH₂Ph), 1.32 (m, 2H, SiCH₂CH₂CH₂Si), 0.55 (m br, 6H, SiCH₂CH₂CH₂CH₂Si and SiCH₂CH₂CH₂Ph overlapping), 0.40 (s, 6H, TiMe₂) -0.04 (s, 6H, SiMe₂). ¹³C-NMR(CDCl₃); δ 152.2(C_{ipso}bonded to -OTi), 150.2 (C_{ipso}bonded to -OMe), 135.5 (C_{ipso}bonded to CH₂), 122.1 (C_3 Me₅) 120.3, 119.7, and 112.5 (C_6 H₃), 55.7 (OMe), 53.8 (TiMe₂), 39.9 (SiCH₂CH₂CH₂Ph), 26.4 (SiCH₂CH₂CH₂Ph), 15.5 (SiCH₂ CH₂CH₂Ph), 20.4, 18.7, 17.7 (Si(CH₂)₃Si), 11.4 (C_3 Me₅), -3.1 (SiMe₂). ²⁹Si{¹H} NMR (CDCl₃): δ 1.89 (G1-Si) and 0.86 (G0-Si). Anal. Calcd. for C₁₀₈H₁₈₀O₈Si₅Ti₄: C, 66.92; H, 9.36. Found: C, 66.90; H, 9.20. ### Synthesis of 2G- $[(CH_2)_3[[C_6H_3(OMe)]O]Ti(C_5Me_5)Me_2]_8$ (13) This dendrimer was obtained by a similar procedure to that described for **12**, starting from 2G-{(CH₂)₃[C₆H₃(OMe)]OH}₈ (0.54 g, 0.22 mmol) and [Ti(C₅Me₅)Me₃] (0.40 g, 1.74 mmol), to obtain **13** as a brown-yellow oil in quantitative yield (0.92 g). ¹H-NMR(CDCl₃): δ 6.84 (m, 2H, C₆H₃), 6.62 (m, 4H, C₆H₃), 3.76 (s, 6H, OMe), 2.54 (m, 4H, SiCH₂CH₂CH₂Ph), 1.90 (s, 30H, C₅Me₅), 1.57 (m, 4H, SiCH₂CH₂CH₂Ph), 1.30 (m, 6H, SiCH₂CH₂CH₂Si) 0.54 (m br, 16H, SiCH₂CH₂CH₂Si and SiCH₂CH₂CH₂Ph overlapping), 0.40 (s, 12H, TiMe₂), -0.05 (s, 12H, SiMe₂), -0.07 (s, 3H, SiMe). ¹³C-NMR(CDCl₃); δ 152.2 (C_{ipso}bonded to -OTi), 150.3 (C_{ipso}bonded to -OMe), 135.5 (C_{ipso}bonded to -CH₂), 122.2 (C₅Me₅), 120.3, 119.7 and 112.5 (C₆H₃), 55.7 (OMe), 53.7(TiMe₂) 39.9 (SiCH₂CH₂CH₂Ph), 26.3 (SiCH₂CH₂CH₂Ph), 15.4 (SiCH₂CH₂CH₂Ph), 20.2, 18.8, 18.5 and overlapped signals (Si(CH₂)₃Si), 11.4 (C₅Me₅), -3.2 (SiMe₂), -4.9 (SiMe). ²⁹Si{¹H} NMR (CDCl₃): δ 1.90 (G2-Si), 1.18 (G1-Si) and 0.79 (G0-Si). Anal. Calcd. for C₂₃₂H₃₉₆O₁₆Si₁₃Ti₈: C, 66.51; H, 9.53. Found: C, 65.10; H, 9.38. #### Synthesis of 4G- $[(CH_2)_3[[C_6H_3(OMe)]O]Ti(C_5Me_5)Me_2]_{32}(14)$ This dendrimer was prepared following a similar procedure to that described in the preparation of **12**, starting from 4G-{(CH₂)₃[C₆H₃(OMe)]OH}₃₂ (0.30 g, 2.75x10⁻² mmol) and [Ti(C₅Me₅)Me₃] (0.20 g, 0.88 mmol), affording **14** as a brown-yellow oil in quantitative yield (0.48g). ¹H-NMR(CDCl₃): δ 6.80 (m, 8H, C₆H₃), 6.60 (m, 16H, C₆H₃), 3.73 (s, 24H, OMe), 2.53 (m, 16H, SiCH₂CH₂CH₂Ph), 1.88 (s, 120H, C₅Me₅), 1.56 (m, 16H, SiCH₂CH₂CH₂Ph), 1.30 (m, 30H, SiCH₂CH₂CH₂Si), 0.54 (m br, 76H, SiCH₂CH₂CH₂Si and SiCH₂CH₂CH₂Ph overlapping), 0.38 (s, 48H, TiMe₂), -0.06 (m br, 69 H, SiMe₂ and SiMe overlapping). ¹³C-NMR(CDCl₃); δ 152.3 (C_{ipso} bonded to -OTi), 150.3 (C_{ipso} bonded to -OMe), 135.5 (C_{ipso} bonded to -CH₂), 122.2 (C₅Me₅), 120.3, 119.7 and 112.5 (C₆H₃), 55.7 (OMe), 53.8 (TiMe₂), 39.9 (SiCH₂CH₂CH₂Ph), 26.3 (SiCH₂CH₂Ph), 15.4 (SiCH₂CH₂CH₂Ph), 20.2, 18.8, 18.5 and overlapped signals (Si(CH₂)₃Si), 11.4 (C₅Me₅), -3.2 (SiMe₂), -4.9 (SiMe). ²⁹Si{¹H} NMR (CDCl₃): δ 1.94 (G4-Si), 1.31 (G3-Si) and the rest not observed. Anal. Calcd. for C₉₇₆H₁₆₉₂O₆₄Si₆₁Ti₃₂: C, 66.24; H, 9.64. Found: C, 65.02; H, 9.40. #### Synthesis of $[Ti(C_5H_5),Cl\{O[C_6H_3(OMe)(CH_2CH=CH_2)]\}]$ (15) A solution of eugenol (0.33 g, 2.0 mmol), in toluene (10 mL) was slowly added to a solution of $[Ti(C_5H_5)_2Cl_2]$ (0.50 g, 2.0 mmol) in toluene (50 mL), to this mixture a slight excess of NEt₃ (0.30 mL, 2.9 mmol) was added. The reaction mixture was stirred for 12h and then filtered through celite to remove NEt₃.HCl. The resulting red solution was evaporate under reduced pressure to obtain a red oil that was washed with hexane (2x5 mL) to give **15** as red microcrystaline solid (0.45 g, 60 %). ¹H-NMR(CDCl₃): δ 6.69 – 6.62 (m, 3H, C₆H₃), 6.33 (s, 10H C₅H₅), 5.93 (m, 1H, CH₂-CH=CH₂), 5.01 (m, 2H, CH₂-CH=CH₂), 3.77 (s, 3H, OMe), 3.30 (d, 2H, CH₂-CH=CH₂). ¹³C- NMR (CDCl₃): δ 159.5 (C_{ipso} bonded to –OTi), 146.3 (C_{ipso} bonded to -OMe), 138.0 (CH₂-CH=CH₂), 132.1(C_{ipso} bonded to –C₃H₅), 120.9, 117.4, and 111.9 (C₆H₃), 117.6 (C₅H₅), 115.3 (CH₂-CH=*C*H₂), 55.8 (OMe), 39.9 (*C* H₂-CH=CH₂). Anal. Calcd for C₂₀H₂₁ClO₂Ti: C, 63.77; H, 5.62. Found: C, 64.02; H, 6.12. ### Synthesis of $[Ti(C_5H_5)_2Cl\{O[C_6H_3(OMe)(CH_2CH_2CH_2SiEt_3)]\}]$ (16) A solution of [OH{C₆H₃(OMe)(CH₂CH₂CH₂SiEt₃)}] (0.12 g, 0.44 mmol) in toluene (10 mL) was slowly added to a solution of [Ti(C₅H₃)₂Cl₂] (0.11 g, 0.44 mmol) in toluene (50 mL). To this mixture a slight excess of NEt₃ (90 μ L, 0,64 mmol) was added. The reaction mixture was stirred for 12h and then filtered through celite to remove NEt₃.HCl. The resulting red solution was evaporated under reduced pressure, affording **16** as an oily red compound (0.12 g, 55%). ¹H- NMR (CDCl₃): δ 6.67 – 6.60 (m, 3H, C₆H₃), 6.34 (s, 10H, C₅H₅), 3.78 (s, 3H, OMe), 2.53 (m, 2H, SiCH₂CH₂CH₂Ph), 1.56 (m, 2H, SiCH₂CH₂CH₂Ph), 0.89 (t, 9H, SiCH₂CH₃), 0.49 (m, 8H, SiCH₂CH₂CH₂Ph and SiCH₂CH₃ overlapping). ¹³C- NMR (CDCl₃): δ 159.4 (C_{ipso} bonded to –OTi), 146.1 (C_{ipso} bonded to -OMe), 135 (C_{ipso} bonded to –CH₂), 120.8, 120.1 and 111.9 (C₆H₃), δ 117.5 (C₃H₅), 55.8 (OCH₃), 39.9 (SiCH₂CH₂CH₂Ph), 26.2. (SiCH₂CH₂CH₂Ph), 1.1(SiCH₂CH₂CH₂Ph), 7.5 (SiCH₂CH₃), 3.3(SiCH₂CH₃). Anal. Calcd. for C₂₆H₃₇ClO₂SiTi: C, 63.38; H, 7.52. Found: C, 63.08; H, 7.37. ### Synthesis of 1G-[(CH₂)₃{[C₆H₃(OMe)]O}Ti(C₅H₅)₂Cl]₄ (17) A solution of $1G-\{(CH_2)_3[C_6H_3(OMe)]OH\}_4$ (0.14 g, 0.12 mmol) in toluene (10 mL) was slowly added to a solution of $[Ti(C_5H_5)_2Cl_2]$ ((0.12 g, 0.50 mmol) in toluene (50 mL), over this mixture a slight excess of NEt₃ (80 μ l, 0.57 mmol) was added. The reaction mixture was stirred for 12h and then filtered through celite to remove NEt₃.HCl. The resulting red solution was evaporated under reduced pressure to give **17** as red microcrystaline solid (0.18 g, 68%). 1 H- NMR (CDCl₃): δ 6.67 – 6.60 (m, 3H, C_6H_3), 6.33 (s, 10H, C_5H_5), 3.77 (s, 3H, OMe), 2.34 (m, 2H, SiCH₂CH₂CH₂Ph), 1.56 (m, 2H, SiCH₂CH₂Ph), 1.29 (m, 2H, SiCH₂CH₂CH₂-Si), 0.50 (m, 6H, SiCH₂CH₂CH₂Ph) and SiC H_2 CH $_2$ CH $_2$ Si overlapping), -0.06 (s, 6H, SiMe $_2$). ¹³C- NMR (CDCl $_3$): δ 159.3 (C $_{ipso}$ bonded to –OTi), 146.1 (C $_{ipso}$ bonded to -OMe), 135.2 (C $_{ipso}$ bonded to –CH $_2$), 120.7, 120.1 and 111.9 (C $_6$ H $_3$), 117.2 (C $_5$ H $_5$), 55.8 (OMe), 39.9 (SiCH $_2$ CH $_2$ CH $_2$ Ph), 26.4. (SiCH $_2$ CH $_2$ Ph), 15.4 (SiCH $_2$ CH $_2$ Ph), 20.3, 18.6 and 17.6 (Si(CH $_2$) $_3$ Si), -3.3 (SiMe $_2$). ²⁹Si{ 1 H} NMR (CDCl $_3$): δ 1.91 (G2-Si), 0.86 (G0-Si). Anal. Calcd for C $_{100}$ H $_{136}$ Cl $_4$ O $_8$ Si $_5$ Ti $_4$: C, 61.91; H, 7.07. Found: C. 62.41; H, 7.26. ### Synthesis of 2 G- $[(CH_2)_3\{[C_6H_3(OMe)]O\}Ti(C_5H_5)_2Cl]_8$ (18) This dendrimer was prepared by a similar method to that described for **17**, starting from $2G-\{(CH_2)_3[C_6H_3(OMe)]OH\}_8$ (0.10 g, 0.04 mmol), $[Ti(C_3H_5)_2Cl_2]$ (0.08 g, 0.30 mmol), and NEt₃ (50 µL, 0.36 mmol), affording **18** as red microcrystaline solid (0.127 g, 79%). $^1H-$ NMR (CDCl₃): δ 6.67 – 6.60 (m, 6H, C_6H_3), 6.32 (s, 20H, C_9H_3), 3.76 (s, 6H, OMe), 2.51 (m, 4H, SiCH₂CH₂CH₂Ph), 1.54 (m, 4H, SiCH₂CH₂CH₂Ph), 1.29 (m, 6H, SiCH₂CH₂CH₂Si), 0.50 (m, 16H, SiCH₂CH₂CH₂Ph and SiCH₂CH₂CH₂CH₂Si overlapping), -0.07 (s, 12H, SiMe₂), -0.09 (s, 3H, SiMe). $^1C-$ NMR (CDCl₃): δ 159.1 (C_{ipso} bonded to -OTi), 145.8 (C_{ipso} bonded to -OMe), 134.9 (C_{ipso} bonded to -C₆H₃), 125.1, 120.5 and 111.8 (C_6H_3), 117.4 (C_3H_5), 55.9 (OCH₃), 39.9 (SiCH₂CH₂CH₂Ph), 26.4. (SiCH₂CH₂CH₂Ph), 15.6 (SiCH₂CH₂CH₂Ph), 22.7, 19.1, 18.7 and overlapped signals (Si(CH_2)₃Si), -2.9 (SiMe₂), -4.6 (SiMe). 2C Si 1H NMR (CDCl₃): δ 1.87 (G2-Si), 1.19 (G1-Si) and 0.77 (G0-Si). Anal. Calcd for $C_{216}H_{308}$ Cl₈ O₁₆ Si₁₃Ti₈: C, 61,88; H, 7,40. Found: C, 61.52; H, 7.46. ### Synthesis of $[Zr(C_5H_5)_2\{O[C_6H_3(OMe)(CH_2CH=CH_2)]\}_2]$ (19) A solution of $[Zr(C_5H_5)_2Cl_2]$ (0.99 g, 3.4 mmol) in THF (10 mL) was added to a solution of eugenol (1.1 g, 6.7 mmol) in THF (10 mL). To this mixture a slight exces of NEt₃ (1.05 mL, 7.5 mmol) was added. The reaction mixture was stirred for 12h and then filtered through celite to remove NEt₃.HCl. The resulting yellow solution was evaporate under reduced pressure to obtain a yellow oil that was extracted with hexane. The resulting hexane solution was evaporated under reduced pressure affording **19** as a yellow solid (0.78 g, 42%). 1 H-NMR (CDCl₃): δ 6.67 - 6.63 (m, 6H, 0 GH₃), 6.28 (s, 10H, 0 G₅H₅), 5.97 (m, 2H, 0 GH₂-CH=CH₂), 5.06 (m, 4H, 0 GH₂-CH=CH₂), 3.84 (s, 6H, OMe), 3.32 (d, 4H, 0 GH₂-CH=CH₂). 13 G-NMR (CDCl₃): δ 153.6 (0 Gipso bonded to 0 GH₂), 149.1 (0 Gipso bonded to 0 GH₃), 138.2 (0 GH₂-CH=CH₂), 130.4 (0 Gipso bonded to 0 GH₃), 120.8, 118.4, and 112.4 (0 Gh₃), 113.3 (0 Gh₅), 115.2 (0 GH₂-CH=CH₂), 55.7 (0 GCH₃), 39.9 (0 GH₂-CH=CH₂). Anal. Calcd. for 0 GnH₃₂O₄Zr: C, 65.79; H, 5.85. Found: C, 65.22; H, 5.53. #### Synthesis of $[Zr(C_5H_5)_2Cl\{O[C_6H_3(OMe)(CH_2CH=CH_2)]\}]$ (20) A solution of eugenol, $\{OH[C_6H_3(OMe)(CH_2CH=CH_2)]\}$, (0.14 g, 0.50 mmol) in THF (10 mL) was slowly added to a suspensión of $[Zr(C_5H_5)_2HCl]$ (0.13 g, 0.50 mmol) in THF (10 mL). After hydrogen evolution ceased, the resulting yellow solution was evaporated under reduced pressure, affording **20** as a yellow oil. 1H -NMR(CDCl₃): δ 6.62 – 6.56 (m, 3H, C_6H_3), 6.34 (s, 10H, C_5H_5), 5.93 (m, 1H, CH_2 - $CH=CH_2$), 5.02 (m, 2H, CH_2 - $CH=CH_2$), 3.83 (s, 3H, OMe), 3.29 (d, 2H, CH_2 - $CH=CH_2$). ^{13}C -NMR(CDCl₃): δ 153.3 (C_{ipso} bonded to -OZr), 148.5 (C_{ipso} bonded to -OMe), 138.2 (CH_2 - $CH=CH_2$), 121.4, 118.1, and 112.3 (C_6H_3), 114.3 (C_5H_5), 116.2 (CH_2 - $CH=CH_2$), 55.8 (OCH_3), 40.2 (CH_2 - $CH=CH_2$). Anal. Calcd. for $C_{20}H_{21}CIO_2Zr$: C, 57.19; C, 50. Found: C, 56.99; C, 4.88. #### Synthesis of $[Zr(C_5H_5)_2Cl\{O[C_6H_3(OMe)(CH_2CH_2CH_2SiEt_3)]\}]$ (21) A solution of $\{OH[C_6H_3(OMe)(CH_2CH_2CH_2SiEt_3)]\}$ (0.14 g, 0.50 mmol) in THF (10 mL) was slowly added to a suspensión of $[Zr(C_5H_5)_2HCl]$ (0.13g, 0.50 mmol) in THF (10 mL). After hydrogen evolution ceased, the resulting yellow solution was evaporated under reduced pressure, affording **21** as a yellow oil. ¹H-NMR(CDCl₃): δ 6.66 – 6.59 (m, 3H, C₆H₃), 6.34 (s, 10H, C₅H₅), 3.83 (s, 3H, OMe), 2.53 (m, 2H, SiCH₂CH₂CH₂Ph), 1.56 (m, 2H, SiCH₂CH₂CH₂Ph), 0.89 (t, 9H, SiCH₂CH₃), 0.49 (m, 8H, SiCH₂CH₂CH₂Ph and SiCH₂CH₃ overlapping). ¹³C-NMR (CDCl₃): δ 153.4 (C_{ipso} bonded to –OZr), 149.1 (C_{ipso} bonded to -OCH₃), 130.8 (C_{ipso} bonded to –CH₂), 120.8, 119.1 and 111.9 (C₆H₃), 114.5 (C₅H₅), 55.8 (OCH₃), 39.9 (SiCH₂CH₂CH₂Ph), 26.2. (SiCH₂CH₂CH₂Ph), 11.1 (SiCH₂CH₂CH₂Ph), 7.5 (SiCH₂CH₃), 3.3(SiCH₂CH₃). Anal. Calcd. for C₂₆H₃₇ClO₂SiZr: C, 58.25; H, 6.91. Found: C, 58.02; H, 6.93. #### Synthesis of $1G-[(CH_2)_3\{[C_6H_3(OMe)]O\}Zr(C_5H_5)_2Cl]_4$ (22) A solution of $1G-\{(CH_2)_3[C_6H_3(OMe)]OH\}_4$ (0.081 g, 0.07 mmol) in THF (5 mL) was slowly added to a suspension containing $[Zr(C_5H_5)_2HCl]$ (0.077 g, 0.29 mmol) in THF (5 mL). The reaction mixture was stirred for 15 min. After hydrogen evolution ceased, the resulting yellow solution was evaporated under reduced pressure, affording quantitatively **22** as a yellow oil (0.148 g). $^1H-NMR(CDCl_3)$: δ 6.62 - 6.55 (m, 3H, C_6H_3), 6.34 (s, 10H, C_3H_5), 3.82 (s, 3H, OMe), 2.52 (m, 2H, SiCH $_2CH_2CH_2Ph$), 1.55 (m, 2H, SiCH $_2CH_2CH_2Ph$), 1.29 (m, 2H, SiCH $_2CH_2CH_2Si$), 0.51 (m, 6H, SiCH $_2CH_2CH_2Ph$) and SiCH $_2CH_2CH_2Si$ overlapping), -0.05 (s, 6H, SiMe $_2$). $^{13}C-NMR(CDCl_3)$: δ 152.6 (C_{ipso} bonded to -OZr), 147.9 (C_{ipso} bonded to -OMe), 134.6 (C_{ipso} bonded to $-CH_2$), 120.5, 117.6 and 115.9 (C_6H_3), 114.4 (C_3H_5), 55.6 (OMe), 39.8 (SiCH $_2CH_2CH_2Ph$), 26.4. (SiCH $_2CH_2CH_2Ph$), 15.4 (SiCH $_2CH_2CH_2Ph$), 20.3, 18.6 and 17.6 (Si(CH_2) $_3Si$), -3.2 (SiMe $_2$). $^{29}Si\{^1H\}$ NMR (CDCl $_3$): δ 1.85 (G1-Si) and 0.82 (G0-Si). Anal. Calcd for $C_{100}H_{136}Cl_4O_8Si_5Zr_4$: C, 56.86; H, 6.44. Found: C. 56.41; H, 6.26. #### Synthesis of 2G- $[(CH_2)_3[[C_6H_3(OMe)]O]Zr(C_5H_5)_2Cl]_8$ (23) This dendrimer was prepared by a similar method to that described for **22**, starting from $2G-\{(CH_2)_3[C_6H_3(OMe)]OH\}_8$ (0.05 g, 0.02 mmol) and $[Zr(C_5H_5)_2HCl]$ (0.04 g, 0.17 mmol), affording quantitatively **23** as yellow oil (0.088 g). ¹H-NMR(CDCl₃): δ 6.67–6.60 (m, 6H, C₆H₃), 6.33 (s, 20H, C₅H₅), 3.82 (s, 6H, OMe), 2.51 (m, 4H, SiCH₂CH₂CH₂Ph), 1.54 (m, 4H, SiCH₂CH₂CH₂Ph), 1.29 (m, 6H, SiCH₂CH₂CH₂Si), 0.52 (m, 16H, SiCH₂CH₂CH₂Ph and SiCH₂CH₂CH₂Si overlapping), -0.07 (s, 12H, SiMe₂), -0.12 (s, 3H, SiMe). ¹³C-NMR(CDCl₃): δ 152.6 (C_{ipso} bonded to -OZr), 147.9 (C_{ipso} bonded to -OMe), 134.6 (C_{ipso} bonded to -CH₂), 120.5, 117.6 and 115.9 (C₆H₃), 114.4 (C₅H₅), 55.6 (OMe), 39.8 (SiCH₂CH₂CH₂Ph), 26.4. (SiCH₂CH₂CH₂Ph), 15.4 (SiCH₂CH₂Ph), 20.7, 19.1, 17.7 and overlapped signals (Si(CH₂)₃Si), -2.9 (SiMe₂), -4.6 (SiMe). ²⁹Si{¹H} NMR (CDCl₃): δ 1.86 (G2-Si), 1.19 (G1-Si) and 0.77 (G0-Si). Anal. Calcd for C₂₁₆H₃₀₈Cl₈O₁₆Si₁₃Zr₈: C, 57.18; H, 6.79. Found: C, 56,92; H, 6,56. ### NMR data of -SiMe₃ protected phenols and phenol ended dendrimers. See for example NMR data of: IIIa. 1 H-NMR(CDCl₃): δ 6.75 (m, 1H, C₆H₃), 6.65 (m, 2H, C_6H_3), 3.79 (s, 3H, OMe), 2.54 (t, 2H, SiCH₂CH₂CH₂Ph), 1.58 (m, 2H, SiCH₂CH₂CH₂Ph), 0.90 (t, 9H, SiCH₂CH₃), 0.50 (m, 8H, SiCH₂CH₃ y SiCH₂CH₂Ph overlapped), 0.22 (s, 9H, OSiMe₃). *IIIb*. 1 H-NMR(CDCl₃): δ 6.34 (s, 2H, C₆H₂), 3.78 (s, 6H, OMe), 2.53 (t, 2H, SiCH₂CH₂CH₂Ph), 1.57 (m, 2H, SiCH₂CH₂Ph), 0.89 (t, 9H, SiCH₂CH₃), 0.50 (m, 8H, SiCH₂CH₃ y SiCH₂CH₂CH₂Ph overlapped), 0.20 (s, 9H, OSiMe₃). Va. ¹H-NMR(CDCl₃): δ 6.72 (m, 1H, C₆H₃), 6.62 (m, 2H, C₆H₃), 3.77 (s, 3H, OMe), 2.52 (t, 2H, SiCH₂CH₂CH₂Ph), 1.55 (m, 2H, SiCH₂CH₂CH₂Ph), 1.29 (m, 2H, SiCH₂CH₂CH₂Si), 0.52 (m broad, 6H, SiCH₂CH₂CH₂CH₂Si y SiCH₂CH₂CH₂Ph overlapped), 0.21 (s, 9H, OSiMe₃) -0.07 (s, 6H, SiMe₂). 13 C-NMR $\{^{1}$ H $\}$ (CDCl₃): δ 150.4 (C_{ipso} bonded to -OSiMe₃), 142.3 (C_{ipso} bonded to -OMe), 136.4 (C_{ipso} bonded to -CH₂), 120.4, 120.3, 112.4, (C₆H₃), 55.5 (OMe), 39.8 (SiCH₂CH₂CH₂Ph), 26.3 (SiCH₂CH₂CH₂Ph), $15.5 \text{ (Si}CH_2CH_2CH_2Ph), 20.4, 18.6, 17.6 (Si(CH_2)_3Si), 0.40 (OSiMe_3), -3.2 (SiMe_2).$ *VIa*: 1 H-NMR (CDCl₃): δ 6.72 (m, 2H, C₆H₃), 6.62 (m, 4H, C₆H₃), 3.77 (s, 6H, OMe), 2.52 (t, 4H, SiCH₂CH₂Ph), 1.55 (m, 4H, SiCH₂CH₂Ph), 1.29 (m, 6H, SiCH₂CH₂CH₂Si), 0.52 (m broad, 16H, SiCH₂CH₂CH₂Si y SiCH₂CH₂CH₂Ph overlapped), 0.21 (s, 18H, OSiMe₃), -0.07 (s, 12H, SiMe₂), -0.10 (s, 3H, SiMe). ¹³C-NMR{¹H} (CDCl₃): δ 150.5 (C_{ipso} bonded to –OSiMe₃), 142.4 (C_{ipso} bonded to -OMe), 136.4 (C_{ipso} bonded to -CH₂), 120.5, 120.4, 112.4 (C₆H₃), 55.5 (OMe), 39.8 (SiCH₂CH₂CH₂Ph), 26.2 (SiCH₂CH₂CH₂Ph), 15.4 (SiCH₂CH₂CH₂Ph), 20.2, 18.8, 18.5 and overlapped signals (Si(CH₂)₃Si), 0.30 (OSiMe₃), -3.2 (SiMe₂), -4.9 (SiMe). #### **Crystal structure determinations of 2** Red crystals of compound 2 were obtained from a mixture of Et_2O /hexane cooled at $-20^{\circ}C$ and a suitable sized crystal was mounted in a Lindemann tube and mounted in an Enraf-Nonius CAD 4 automatic four-circle diffractometer whit graphite monochromated MoK α radiation &=0.71073Å). Crystallographic and experimental details are summarized in Table 2. Data were collected at room temperature. Intensities were corrected for Lorentz and polarization effects in the usual manner. No absorption or extinction corrections were made. The structure was solved using the WINGX package^{#1} by direct methods (SHELXS 97) and refined by least squares against F^2 (SHELXL 97)^{#2}. All non hydrogen atoms were refined anisotropically, and the hydrogen atoms were introduced from geometrical calculations and refined using a riding model with thermal parameters equivalent to those of the carbon atom to which they were attached. (#1): Farrugia, L.J., *J. Appl. Crystallgr.* **1999**, *32*, 837. (#2) Sheldrick, G.M.SHELX-97; Program for Cristal Structure Analices (Release 97-2); Universität Göttingen, Göttingen, Germany, **1998**. # ¹³C{¹H}-NMR # $^{13}C{^1H}-NMR$ ## $^{13}C{^1H}-NMR$ ## ¹³C{¹H}-NMR # $^{13}C{^1H}$ -NMR ¹³C{¹H}-NMR # ¹³C{¹H}-NMR # ¹³C{H}-NMR ## ¹³C{H}-NMR ²⁹ Si-RMN ²⁹ Si-RMN Table 1. Bond lengths $[\mathring{A}]$ and angles $[^{\circ}]$ for compound 2. | Ti(1)-O(1) | 1.770(3) | C(22)-O(2) | 1.348(7) | |-------------------|------------|-------------------------|-----------| | Ti(1)-Cl(2) | 2.2638(18) | O(2)-C(43) | 1.438(7) | | Ti(1)-Cl(1) | 2.2661(18) | O(3)-C(44) | 1.417(8) | | O(1)-C(21) | 1.363(6) | C(31)-C(32) | 1.433(10) | | C(26)-O(3) | 1.375(6) | C(32)-C(33) | 1.277(10) | | C(24)-C(31) | 1.543(8) | Cp(1)-Ti(1) | 2.026 | | | | | | | O(1)-Ti(1)-Cl(2) | 104.35(14) | O(2)-C(22)-C(23) | 125.8(6) | | O(1)-Ti(1)-Cl(1) | 102.50(13) | O(2)-C(22)-C(21) | 115.4(5) | | Cl(2)-Ti(1)-Cl(1) | 100.31(8) | C(22)- $O(2)$ - $C(43)$ | 116.6(5) | | C(21)-O(1)-Ti(1) | 163.1(3) | C(26)-O(3)-C(44) | 117.8(5) | | O(1)-C(21)-C(26) | 120.7(5) | C(32)-C(31)-C(24) | 116.9(7) | | O(1)-C(21)-C(22) | 119.6(5) | C(33)-C(32)-C(31) | 130.4(9) | | C(25)-C(26)-O(3) | 125.8(6) | Cp(1)-Ti(1)-O(1) | 118.9 | | O(3)-C(26)-C(21) | 114.2(5) | Cp(1)-Ti(1)-Cl(1) | 114.5 | | C(25)-C(24)-C(31) | 120.7(6) | Cp(1)-Ti(1)-Cl(2) | 113.8 | | C(23)-C(24)-C(31) | 119.3(6) | Ti(1)-O(1)-C(21) | 163.1(3) | Cp(1) is the centroid of C(1), C(2),C(3),C(4),C(5). Table 2. Crystal data and structure refinement for compound 2. | Tubic 21 Ci julii data ana una una ci actare i cim | ement for compound 2. | | |----------------------------------------------------|-------------------------------------------------------------------|--| | Empirical formula | C ₂₁ H ₂₈ Cl ₂ O ₃ Ti | | | Formula weight | 447.23 | | | Temperature | 293(2) K | | | Wavelength | 0.71073 Å | | | Crystal system | Monoclinic | | | Space group | C2/c | | | Unit cell dimensions | a = 30.543(2) Å | | | | $b = 9.5370(10) \text{ Å}$ $\beta = 112.41(2)^{\circ}$ | | | | c = 16.588(2) Å | | | Volume | 4467.0(8) Å ³ | | | Z | 8 | | | Density (calculated) | $1.330 \mathrm{Mg/m^3}$ | | | Absorption coefficient | 0.640 mm ⁻¹ | | | F(000) | 1872 | | | Crystal size | $0.35 \times 0.30 \times 0.15 \text{ mm}^3$ | | | θ range for data collection | 2.25 to 25.00° | | | Index ranges | -36<=h<=33, 0<=k<=11, 0<=l<=19 | | | Reflections collected | 4065 | | | Independent reflections | 3912 [R(int) = 0.0312] | | | Completeness to $\theta = 25.00^{\circ}$ | 99.8 % | | | Absorption correction | None | | | Refinement method | Full-matrix least-squares on F^2 | | | Data / restraints / parameters | 3912 / 0 / 239 | | | Goodness-of-fit on F^2 | 0.998 | | | Final <i>R</i> indices $[I>\sigma(I)]^a$ | R1 = 0.0606, wR2 = 0.1308 | | | R indices (all data) | R1 = 0.1587, wR2 = 0.1619 | | | Largest diff. peak and hole | 0.517 and -0.342 e Å ⁻³ | | | _ | | | $^{{}^{}a}R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; \quad wR2 = \{ [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}] / [\Sigma w(F_{o}^{2})^{2}] \}^{1/2}.$