SUPPORTING INFORMATION

Experimental part
Ortep representation of 35
NMR spectra
Cartesian Coordinates
p1
p10
p11
p67

Experimental part

All reactions were performed under nitrogen atmosphere with oven $\left(80^{\circ} \mathrm{C}\right)$ or flame-dried glassware. All solvents were distilled prior to use; diethyl ether and tetrahydrofuran were dried by distilling over sodium benzophenone ketyl. Toluene, acetonitrile, dichloromethane and dimethylformamide were distilled over calcium hydride. Cesium carbonate and sodium iodide were flame-dried under reduced pressure before use. Materials were detected by visualization under ultraviolet lamp and/or by spraying with a solution of phosphomolybdic acid (10% in ethanol) or an aqueous solution of $\mathrm{KMnO}_{4}(1 \% \mathrm{w} / \mathrm{w})$ followed by heating on a hot plate. For the NMR spectra assignments, the following abbreviations were used: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet and br, broad. Chemical shifts are reported in δ values relative to the solvent used $\left(\mathrm{CHCl}_{3}: 7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ NMR and 77.0 ppm for ${ }^{13} \mathrm{C}$ NMR) as internal standard. Where necessary COSY, NOESY and J-resolved correlation experiment were performed.

Alcohol 5.

To a solution of but-3-yn-1-ol ($1 \mathrm{~mL}, 13.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, was added p toluenesulfonic acid ($29.3 \mathrm{mg}, 0.15 \mathrm{mmol}$) followed by 3,4-dihydro-2H-pyrane ($1.55 \mathrm{~mL}, 17$ mmol). The solution was stirred overnight at room temperature. $\mathrm{NaHCO}_{3}(32 \mathrm{mg})$ and sat. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ were introduced and the mixture was stirred for 15 min , followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, the solvent was evaporated in vacuo, and the residue was chromatographed on silica gel with 5% EtOAc in hexane to give 5 as an oil ($1.75 \mathrm{~g}, 86 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $4.65(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{OCHO}) ; 3.92-3.80(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 3.60-3.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 2.50\left(2 \mathrm{H}, \mathrm{td}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ; 1.95(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=2.5 \mathrm{~Hz}, \underline{\mathrm{HC}} \mathrm{C}) ; 1.85-1.50\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{THP}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \bar{\delta} \mathrm{ppm}\right): 98.57$, 81.27, 69.17, 65.38, 61.99, 30.41, 25.32, 19.82, 19.26. IR (film, $\mathrm{v} \mathrm{cm}^{-1}$): 3294, 2943, 2873, 2359, 2120, 1441, 1201. MS (MH $)^{+}$: 153. HRMS calcd: $153.0915(M H)^{+}$; found: 153.0918.

Chlorohydrine 6

A solution of allyl chloride ($3 \mathrm{~mL}, 36.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was treated with ozone. The mixture was quenched with dimethyl-sulfide (37 mL) at $-78^{\circ} \mathrm{C}$ and was warmed to room temperature over 2 h . The chloroacetaldehyde was purified by distillation (bp. $\approx 80^{\circ} \mathrm{C}$).

To a solution of alkynol $5(1.55 \mathrm{~g}, 10.09 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$, was added n BuLi ($8.53 \mathrm{~mL}, 11.09 \mathrm{mmol}$). After 10 min , the mixture was cooled to $-60^{\circ} \mathrm{C}$. Chloroacetaldehyde ($1.11 \mathrm{~g}, 14.25 \mathrm{mmol}$) was added dropwise via a cannula at $-60^{\circ} \mathrm{C}$, and the mixture was warmed to room temperature and stirred for 2 h . Sat. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ was then added and the compound was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The organic layer was dried
over MgSO_{4} and the residue was chromatographed on silica gel with $20 \% \mathrm{EtOAc}$ in hexane to give 6 as an oil ($1.4 \mathrm{~g}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $4.60(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHO}) ; 4.50-4.45(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHC} \mathrm{C}) ; 3.85-$ $3.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right) ; 3.65-3.45\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{O}\right) ; 3.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{OH}) ; 2.50(2 \mathrm{H}$, $\mathrm{td}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{~Hz}, \mathrm{C} \quad \mathrm{CCH} \underline{2}) ; 1.80-1.45\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{THP}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$: 98.68, 83.83, 78.72, 65.68, 62.42, 62.15, 48.98, 30.40, 25.28, 20.09, 19.23. IR (film, $v \mathrm{~cm}^{-1}$): 3383, 2944, 2661, 2231, 1201. MS (M-H) ${ }^{+}$: 231. HRMS calcd: $231.0788(\mathrm{M}-\mathrm{H})^{+}$; found: 231.0792.

Alcohol 7

To a solution of chlorohydrin $6(0.64 \mathrm{~g}, 2.77 \mathrm{mmol})$ in THF $(28 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}, 2,6$-lutidine $(0.42 \mathrm{~mL}, 3.6 \mathrm{mmol})$ and triisopropylsilane triflate ($0.9 \mathrm{~mL}, 3.33 \mathrm{mmol}$) were added. The mixture was stirred for 45 min at $0^{\circ} \mathrm{C}$, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and the residue was chromatographed on silica gel with $20 \% \mathrm{E}_{\mathrm{t}} \mathrm{O}$ in hexanes to give 7 ($1.05 \mathrm{~g}, 98 \%$) as an oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 4.65-4.55 (2H, m, OCHO et OCHC C) ; 3.90-3.75 (2H, m, $\left.\mathrm{CH}_{2} \mathrm{O}\right)$; 3.65-3.45 (4H, m, CH2 $\left.\underline{H}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{O}\right) ; 2.50\left(2 \mathrm{H}, \mathrm{td}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{~Hz}, \mathrm{C} \quad \mathrm{CC} \underline{H}_{2}\right) ; 1.85-1.50(6 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{THP}$) ; 1.30-1.10 ($21 \mathrm{H}, \mathrm{m}$, TITPS). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 98.26, 83.03, $79.63,65.13,63.82,61.50,48.66,30.33,25.35,19.96,19.06,17.74,12.17,12.13,12.08$. IR (film, $v \mathrm{~cm}^{-1}$): 2944, 2867, 2363, 2229, 1464, 1201. MS (M $\left.-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$: 345. HRMS calcd: $345.1653\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$; found: 345.1657.

Abstract

Alkene 8 To a solution of alkyne $7(1.5 \mathrm{~g}, 3.87 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$, Lindlar catalyst (250 mg) was added under H_{2}. The mixture was stirred for 4 h at room temperature and filtered through Celite with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4} and evaporated in vacuo to give the alkene 8 ($1.48 \mathrm{~g}, 98 \%$) as an oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 5.60-5.40 (2H, m, $\underline{\mathrm{HC}=\mathrm{C}} \underline{\mathrm{H}}$); $4.70(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=6.5 \mathrm{~Hz}, 6 \mathrm{~Hz}$, CHOTIPS) ; 4.60-4.55 (1H, m, OCHO) ; 3.90-3.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$) ; 3.55-3.35 ($4 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{H}_{2} \mathrm{Cl}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right)$; 2.45-2.35 (2H, m, $\left.\mathrm{CH}_{2}-\mathrm{CH}=\right)$; 1.85-1.50 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{THP}$) ; 1.12-0.91 (21H, m, TIPS). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 132.30, 128.45, 98.88, 69.24, 66.52, 62.23, 48.97, $30.58,28.94,25.41,19.52,17.94,12.20$. IR (film, $v_{c m^{-1}}$): 2944, 2867, 1654, 1464. MS (M $\left.\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}: 347$. HRMS calcd: $347.1809\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$; found: 347.1818.

Alcohol 9

To a solution of alcohol $8(1.5 \mathrm{~g}, 3.84 \mathrm{mmol})$ in $\mathrm{MeOH}(39 \mathrm{~mL})$ was added p Toluenesulfonic acid ($73 \mathrm{mg}, 0.38 \mathrm{mmol}$). The solution was stirred for 1 h at room temperature and was quenched with sat. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, the solvent was evapored in vacuo, and the residue was chromatographed on silica gel with 30% EtOAc in hexanes to give 9 ($0.88 \mathrm{~g}, 75 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 5.60-5.50 (2H, m, CH=Cㅐㅡ) ; $4.69\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{AX}}=6.5 \mathrm{~Hz}\right.$, $J_{B X}=5.5 \mathrm{~Hz}$, CHOTIPS) ; $3.70\left(2 \mathrm{H}, \mathrm{td}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 3.55\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{AB}}=11 \mathrm{~Hz}\right.$, $\left.J_{B X}=5.5 \mathrm{~Hz}, \quad \mathrm{CHHCl}\right) ; 3.40\left(1 \mathrm{H}, \quad \underline{A B X}, \quad J_{A B}=11 \mathrm{~Hz}, \mathrm{~J}_{A x}=6.5 \mathrm{~Hz}, \quad \mathrm{CH} \underline{\mathrm{HCl}}\right) ; 2.40(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C} \underline{\mathrm{H}}_{2} \mathrm{CH}=\mathrm{CH}\right) ;{ }^{1} .10-0.85(21 \mathrm{H}, \mathrm{m}, \mathrm{TIPS}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \overline{\mathrm{ppm}}$): 133.07, 128.22, $69.05,61.83,48.74,31.60,17.87,12.20$. IR (film, $v^{~ c m^{-1}}$): 3333, 2944, 2866, 1654, 1094. MS $\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$: 263. HRMS calcd: $263.1234\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$; found: 263.1239 .

Mesylate 10

To a solution of alcohol $9(1.74 \mathrm{~g}, 5.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(56 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added triethylamine ($1.15 \mathrm{~mL}, 7.95 \mathrm{mmol}$), methanesulfonyl chloride ($0.53 \mathrm{~mL}, 6.81 \mathrm{mmol}$) and 4dimethylaminopyridine ($69 \mathrm{mg}, 0.57 \mathrm{mmol}$). After stirring for 30 min at $0^{\circ} \mathrm{C}$, the mixture was quenched with sat $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and the solvent was evaporated in vacuo. The residue was chromatographed on silica gel with 20% EtOAc in hexanes to give 10 ($2.13 \mathrm{~g}, 98 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 5.60-5.55(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C} \underline{H}) ; 4.65\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{Ax}}=7 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{BX}}=5.5 \mathrm{~Hz}, \mathrm{CHOTIPS}\right) ; 4.25\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OSO}_{2}\right) ; 3.55\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{AB}}=11 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{BX}}=5.5 \mathrm{~Hz}, \mathrm{C} \underline{H} \mathrm{HCl}\right) ; 3.40\left(1 \mathrm{H}, \underline{A B X}, \mathrm{~J}_{\mathrm{AB}}=11 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AX}}=7 \mathrm{~Hz}, \mathrm{CH} \underline{H} \mathrm{Cl}\right) ; 3.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 2.60-$ $2.55\left(2 \mathrm{H}, \mathrm{td}, \mathrm{J}=6.5 \mathrm{~Hz}, 6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right) ; 1.20-0.90(21 \mathrm{H}, \mathrm{m}, \mathrm{TIPS}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 134.13,125.85,68.90,68.58,48.53,37.33,28.30,17.86,12.24$. IR (film, v cm^{-1}): 2945, 2867, 1464, 1177. MS $\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$: 341. $\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{Cl}\right)^{+}$: 335. HRMS calcd: $341.1009\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$; found: 341.1016.

Malonate 11

To a solution of sodium hydride in a mixture of THF and DMF ($1 / 1,76 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$, dimethyl-malonate was added dropwise. The resulting mixture was stirred at room temperature 20 min then the mesylate $10(2.49 \mathrm{~g}, 7.63 \mathrm{mmol})$ and potassium iodide $(2.53 \mathrm{~g}$, 15.27 mmol) were added. The solution was stirred at $80^{\circ} \mathrm{C}$ for 3 h . The mixture was quenched at room temperature with sat $\mathrm{NH}_{4} \mathrm{Cl}(70 \mathrm{~mL})$ and extracted with a mixture of $\mathrm{Et}_{2} \mathrm{O}$ and hexane $(1 / 1,3 \times 70 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, the solvent was removed, and the residue was chromatographed on silica gel with $20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane yielded 11 (2.56 g , 80\%).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 5.50-5.25 (2H,m, CH=C브) ; $4.65\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{Bx}}=6 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{Ax}}=6.5 \mathrm{~Hz}, \mathrm{CHOTIPS}\right) ; 3.75\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.50\left(1 \mathrm{H}, \mathrm{AB}, \mathrm{J}_{\mathrm{AB}}=11 \mathrm{~Hz}, \mathrm{JBx}^{\mathrm{H}}=6 \mathrm{~Hz}, \mathrm{CHHCl}\right)$; $3.40\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CHCO}_{2} \mathrm{Me}\right) ; 3.35\left(1 \mathrm{H}, \underline{A B X}, \mathrm{~J}_{\mathrm{AB}}=11 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{Ax}}=6.5 \mathrm{~Hz}, \mathrm{CH} \underline{H C l}\right) ; 2.15-2.05$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}\right) ; 2.00-1.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right) ; 1.10-0.85(21 \mathrm{H}, \mathrm{m}, \mathrm{TIPS}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 169.37,131.96,130.18,68.95,52.34,50.83,48.68,28.38,25.81,17.84$, 12.18. IR (film, $v \mathrm{~cm}^{-1}$): 2946, 2807, 1755, 1738, 1469, 1434, 1249. MS ($\left.\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$: 377. (M $\left.-\mathrm{CH}_{2} \mathrm{Cl}\right)^{+}$: 371. HRMS calcd: $377.1551\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$; found: 377.1556.

Ether 13

To a solution of the iodoalcohol $12(1.32 \mathrm{~g}, 7.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, were added p-toluenesulfonic acid ($181 \mathrm{mg}, 0.72 \mathrm{mmol}$) and 3,4-dihydro- 2 H -pyran ($1 \mathrm{~mL}, 10.97 \mathrm{mmol}$) at room temperature. The solution was stirred overnight in the dark. The mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, the solvent was removed, and the residue was chromatographed on silica gel with $20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes to give 13 ($1.82 \mathrm{~g}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $6.48(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8 \mathrm{~Hz}, 6 \mathrm{~Hz}, 5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHI}) ; 6.40(1 \mathrm{H}, \mathrm{dt}$, $\mathrm{J}=8 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHI}) ; 4.65(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHO}) ; 4.28(1 \mathrm{H}$, complex system AB appearing as a ddd, $J_{A B}=13.5 \mathrm{~Hz}, \mathrm{~J}=5 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}, \mathrm{CH} H \mathrm{THP}$) ; 4.12 (1 H , complex system AB appearing as a ddd, $\mathrm{J}_{\mathrm{AB}}=13.5 \mathrm{~Hz}, \mathrm{~J}=6 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}, \mathrm{C} H \underline{H O T H P}$) ; 3.90-3.85 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{H} H O$ THP) ; 3.55-3.50 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H \mathrm{O}$ THP) ; 1.85-1.5 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{THP}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 138.29, 98.42, 82.79, 69.99, 62.2, 30.49, 25.36, 19.34. IR (film, $\mathrm{v} \mathrm{cm}^{-1}$): 2945, 2865, 1612, 1447. MS (M - OTHP) ${ }^{+}$: 167 HRMS calcd: 166.9358 (M- OTHP) ${ }^{+}$; found: 166.9363.

Ether 15

To the compound $14(2.29 \mathrm{~g}, 6.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, imidazole ($1.05 \mathrm{~g}, 15.43$ $\mathrm{mmol})$ and t-butyldimethylsilyl chloride ($1.12 \mathrm{~g}, 7.4 \mathrm{mmol}$) were added at $0^{\circ} \mathrm{C}$. After stirring for 1 h at room temperature, water was added (40 mL), and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$.). The organic layer was dried over MgSO_{4}, the solvent was removed and the residue was chromatographed on silica gel with $10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane yielding 15 as an oil ($2.65 \mathrm{~g}, 93 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 6.17 ($1 \mathrm{H}, \underline{\mathrm{ABX}}, \mathrm{J}_{\mathrm{AB}}=19 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{Ax}}=1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} \underline{H} S n$) ; 6.05 $\left(1 \mathrm{H}, ~ \mathrm{ABX}, \mathrm{J}_{\mathrm{AB}}=19 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{BX}}=4 \mathrm{~Hz}, \quad \mathrm{C} \underline{H}=\mathrm{CHSn}\right) ; 4.20\left(2 \mathrm{H}, \quad \mathrm{ABX}, \mathrm{J}_{\mathrm{BX}}=4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AX}} 1.5 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{OTBDMS}$) ; 1.60-1.43 (6H, m, $\left.\mathrm{CH}_{2} \mathrm{Sn}\right) ; 1.40-1.25\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Sn}\right) ; 1.00-0.75(24 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Sn}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$: $147.25,126.77,66.69,28.94,27.21,25.92,13.67,9.36,-5.17$. IR (film, $\mathrm{v} \mathrm{cm}^{-1}$): 2928, 2855, 1463, 1361, 1253, 1093. MS $\left(M-\mathrm{C}_{4} \mathrm{H}_{9}\right)^{+}$: 405. HRMS calcd: $405.1636\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)^{+}$; found: 405.1639.

Diene 18

To a solution of the alcohol $12(0.82 \mathrm{~g}, 4.39 \mathrm{mmol})$ in N, N-dimethylformamide (45 mL), the compound 15 ($2.79 \mathrm{~g}, 5.75 \mathrm{mmol}$) was added and the mixture was degassed. Bisacetonitrile palladium-chloride ($57 \mathrm{mg}, 0.22 \mathrm{mmol}$) was added and the mixture was degassed again. The solution was stirred for 3 h at room temperature, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ $(50 \mathrm{~mL})$ and extracted with a mixture of $\mathrm{Et}_{2} \mathrm{O}$ and hexane $(1 / 1,3 \times 50 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, the solvent was removed and the residue was chromatographed on silica gel with $20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane to yield 18 as an oil ($0.8 \mathrm{~g}, 80 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $6.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}, 11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} \underline{H C H}=\mathrm{CH}) ; 6.10(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}) ; 5.80(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15 \mathrm{~Hz}, 5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}) ; 5.58(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH})$; $4.30\left(2 \mathrm{H}, \mathrm{td}, \mathrm{J}=6 \mathrm{~Hz}, 1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 4.25(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{OTBDMS}\right) ; 1.30-0.90\left(9 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\delta \mathrm{ppm}$): 134.63, 129.85, 129.25, 124.08, 63.28, 58.61, 25.89, 18.37, -5.27. IR (film, $\mathrm{v} \mathrm{cm}^{-1}$): 3345, 2929, 2857, 1656, 1613, 1471. MS (M - $\left.\mathrm{C}_{4} \mathrm{H}_{9}\right)^{+}: 171$; $\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}: 210$. HRMS calcd: $171.0841\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)^{+}$; found: 171.0846; calcd: $210.1440\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}$; found: 210.1447.

Diene 19

To a solution of alcohol $18(0.50 \mathrm{~g}, 2.2 \mathrm{mmol})$ in N, N-dimethylformamide (20 mL) at $0^{\circ} \mathrm{C}$ were added $2,4,6$-collidine ($1.16 \mathrm{~mL}, 8.78 \mathrm{mmol}$) methanesulfonyle chloride (0.68 mL , $8.78 \mathrm{mmol})$ and dry lithium chloride ($372 \mathrm{mg}, 8.78 \mathrm{mmol}$). The solution was stirred at $0^{\circ} \mathrm{C}$ for 3 h and water (20 mL) was added. The mixture was extracted with hexane and ether ($1 / 1,3 \mathrm{x}$ 30 mL). The organic layer was dried over MgSO_{4}, the solvent was removed, and the residue was chromatographed on silica gel with $20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes yielding 19 as an oil (0.43 g , 80\%).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $6.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}, 11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} \underline{H} C H=\mathrm{CH}) ; 6.10(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHC} \underline{H}=\mathrm{CH}) ; 5.90(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, C \underline{H}=\mathrm{CHCH}=\mathrm{CH}) ; 5.60(1 \mathrm{H}, \mathrm{dt}$, $\mathrm{J}=11 \mathrm{~Hz}, 8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH})$; $4.30\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OTBDMS}\right) ; 4.21$ (2H, d, $\left.\mathrm{J}=8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right) ; 1.30-0.90\left(9 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right) .{ }^{73} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\delta \mathrm{ppm}): 136.47,132.27,124.96,122.92,63.15,39.51,25.89,18.35,-5.27$. IR (film, $v \mathrm{~cm}^{-1}$): 2955, 2857, 1651, 1613, 1471. MS $\left(M-\mathrm{C}_{4} \mathrm{H}_{9}\right)^{+}: 189 ;(\mathrm{M}-\mathrm{Cl})^{+}: 211$. HRMS calcd: 189.0502 $\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)^{+}$; found: 189.0502.

triene 20

To a solution of sodium hydride ($215 \mathrm{mg}, 5.38 \mathrm{mmol}$) in N, N-dimethylformamide and tetrahydrofuran ($1 / 1,40 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$, the compound $11(2.16 \mathrm{~g}, 5.13 \mathrm{mmol})$ was added dropwise via a cannula. The mixture was stirred at room temperature during 20 min , cooled at $0^{\circ} \mathrm{C}$ and the diene 17 ($1.22 \mathrm{~g}, 5.65 \mathrm{mmol}$) in tetrahydrofuran (5 mL) was added dropwise via a cannula. The solution was stirred at room temperature for 17 h and quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ $(40 \mathrm{~mL})$. The mixture was extracted with hexane and ether $(1 / 1,3 \times 30 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, the solvent was removed, and the residue was chromatographed on silica gel with toluene yielding 20 as an oil ($2.68 \mathrm{~g}, 87 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 6.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}, 11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} \underline{H} C H=\mathrm{CH}) ; 6.05(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHC} \underline{H}=\mathrm{CH}) ; 5.60-5.40(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{C} \underline{H}, \mathrm{CH}=\mathrm{C} \underline{H}) ; 4.65-4.60(2 \mathrm{H}, \mathrm{m}$, CHOTIPS, OCHO); $4.30\left(1 \mathrm{H}\right.$, complex $\left.\mathrm{AB}, \mathrm{J}_{\mathrm{AB}}=13 \mathrm{~Hz}, \mathrm{~J}=6.5 \mathrm{~Hz}, \mathrm{CHHOTHP}\right) ; 4.20(1 \mathrm{H}$, complex $\underline{A B}, J_{A B}=13 \mathrm{~Hz}, \mathrm{~J}=7 \mathrm{~Hz}$, CHHOTHP); 3.90-3.80 (1H, m, CHHO THP); 3.75 ($6 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{O}$); 3.55-3.50 (2H, m, CHHCI, CHHO THP); $3.35\left(1 \mathrm{H}, \underline{\mathrm{ABX}}, \mathrm{J}_{\mathrm{AB}}=11 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AX}}=6.5 \mathrm{~Hz}\right.$, $\mathrm{CHHCl}) ; 2.70\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}\right) ; 2.00-1.45$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$); 1.10-0.90 (21商, m, TIPS). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 171.22, 131.45, 130.82, 130.60, 129.13, $126.61,97.72,69.09,62.63,62.10,57.53,53.41,52.38,48.72,36.47,32.45,30.56,25.41$, 23.12, 19.39, 17.92, 12.22. IR (film, $v \mathrm{~cm}^{-1}$): 2947, 2867, 1732, 1655, 1454, 1441. MS (M $\left.\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}: 557$.
HRMS calcd: $557.2701\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$; found: 557.2708.

Triene 21

The same method was applied from 11 ($1.53 \mathrm{~g}, 3.62 \mathrm{mmol}$) and 19 ($0.98 \mathrm{~g}, 3.99 \mathrm{mmol}$) and gave 21 as an oil ($2.2 \mathrm{~g}, 96 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $6.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}, 11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} \underline{H C H}=\mathrm{CH}) ; 6.10(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}) ; 5.80(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15 \mathrm{~Hz}, 5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}) ; 5.50-5.30(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CHCH}=\mathrm{C} \underline{H}, \mathrm{C} \underline{\bar{H}}=\mathrm{CH}) ; 5.20(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}) ; 4.60\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{Ax}}=6.5 \mathrm{~Hz}\right.$, $\mathrm{J}_{\mathrm{BX}}=6 \mathrm{~Hz}, \mathrm{CHOTIPS}$); 4.20 (2H, d, J=5Hz, CH2 $\underline{2}_{2} \mathrm{OTBDMS}$); 3.70 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}$); 3.68 ($3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right) ; 3.45\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{AB}}=11 \mathrm{~Hz}, \mathrm{~J}_{B X}=6 \mathrm{~Hz}, \mathrm{C} H \mathrm{HCl}\right) ; 3.35\left(1 \mathrm{H}, \underline{A B X}, \mathrm{~J}_{A B}=11 \mathrm{~Hz}, \mathrm{~J}_{A X}=6.5 \mathrm{~Hz}\right.$, CHHCl); $2.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}\right) ; 2.00-1.90\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.10-0.90(21 \mathrm{H}, \mathrm{m}$, TIPS); $0.9\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \overline{\mathrm{C}}^{2} \mathrm{DCl}_{3}, \delta \mathrm{ppm}$): 171.35, $134.45,131.58,131.49,130.59,124.25,123.67,69.08,63.46,57.33,52.4,52.34,48.79$, $32.25,30.91,25.86,23.15,17.90,12.23,-5.28$. IR (film, $v^{2} \mathrm{~cm}^{-1}$): 2949, 2865, 1738, 1654, 1463, 1254. MS $\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$: 587. HRMS calcd: $587.2991\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$; found: 587.2980.

Alcohol 22

To a solution of THP ether $20(2.68 \mathrm{~g}, 4.46 \mathrm{mmol})$ in methanol (50 mL), para-toluenesulfonic acid ($42 \mathrm{mg}, 0.23 \mathrm{mmol}$) was added. The mixture was stirred for 2 h at room temperature, and quenched with NaHCO_{3} sat (30 mL). The methanol was removed in vacuo and extracted with ether ($3 \times 45 \mathrm{~mL}$). The organic layer was dried over MgSO_{4}, the solvent was removed, and the residue was chromatographed on silica gel with $20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes yielding 22 as an oil ($1.72 \mathrm{~g}, 75 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $6.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.5 \mathrm{~Hz}, 11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}) ; 6.00(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}) ; 5.60-5.30(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{C} \underline{H}, \mathrm{CH}=\mathrm{CH}) ; 4.60(1 \mathrm{H}, \mathrm{ABX}$, $\left.J_{A X}=6.5 \mathrm{~Hz}, \mathrm{~J}_{B X}=6 \mathrm{~Hz}, \mathrm{CHOTIPS}\right) ; 4.30\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 3.70\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right)$; $3.50\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{AB}}=11 \mathrm{~Hz}, \mathrm{~J}_{B x}=6 \mathrm{~Hz}, \mathrm{C} \underline{H} H C I\right) ; 3.35\left(1 \mathrm{H}, \underline{A B X}, \mathrm{~J}_{\mathrm{AB}}=11 \mathrm{~Hz}, \mathrm{~J}_{A x}=6.5 \mathrm{~Hz}, C H \underline{H C l}\right) ;$ $2.70\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}\right) ; 2.00-1.85\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.10-0.90(21 \mathrm{H}, \mathrm{m}, \mathrm{TIPS})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \bar{\delta} \mathrm{ppm}$): 171.28, 131.51, 130.60, 130.12, 129.43, 129.06, 128.81,
69.12, 58.71, 52.46, 48.72, 36.43, 32.49, 23.13, 17.95, 17.90, 12.24. IR (film, $\mathrm{v} \mathrm{cm}^{-1}$): 3367, 2947, 2866, 1731, 1654, 1454. MS $\left(M-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}: 473$. HRMS calcd: $473.2126\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$; found: 473.2119.

Chloride 23

To a solution of alcohol $22(1.73 \mathrm{~g}, 3.34 \mathrm{mmol})$ in tetrahydrofuran $(59 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ were added triphenylphosphine ($1.75 \mathrm{~g}, 6.64 \mathrm{mmol}$) and hexachloroacetone ($0.76 \mathrm{~mL}, 5$ $\mathrm{mmol})$. After 5 min , the solution was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with ether ($3 \times 40 \mathrm{~mL}$). The organic layer was dried over MgSO_{4}, the solvent was removed and the residue was chromatographed on silica gel with $20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane yielding 23 as an oil ($1.78 \mathrm{~g}, 98 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 6.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}, 11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} \underline{H} \mathrm{CH}=\mathrm{CH}) ; 6.10(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHC} \underline{H}=\mathrm{CH}) ; 5.65$ ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, \mathrm{C} \underline{H}=\mathrm{CHCH}=\mathrm{CH}$); 5.55 (1H, dt, $\mathrm{J}=10.5 \mathrm{~Hz}, 8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{C} \underline{H}) ; 5.50-5.30(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}) ; 4.60\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{AX}}=6.5 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{\mathrm{BX}}=6 \mathrm{~Hz}, \mathrm{CHOTIPS}\right) ; 4.15\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right) ; 3.70\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.50(1 \mathrm{H}, \mathrm{ABX}$, $\left.\mathrm{J}_{\mathrm{AB}}=11 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{BX}}=6 \mathrm{~Hz}, \mathrm{CHC} \underline{H} \mathrm{HCl}\right) ; 3.35\left(1 \mathrm{H}, \underline{A B X}, \mathrm{~J}_{A B}=11 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AX}}=6.5 \mathrm{~Hz}, \mathrm{CHCHHCl}\right) ; 2.75(2 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}\right) ; 2.00-1.85\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.10-0.90(21 \mathrm{H}, \mathrm{m}, \mathrm{TIPS}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 171.20, 132.29, 131.57, 131.21, 130.54, 127.87, 125.02, 69.13, $52.52,48.72,39.31,36.56,32.60,23.15,17.95,17.90,12.25$. IR (film, $v_{\mathrm{cm}}{ }^{-1}$): 2949, 2867, 1785, 1731, 1651, 1453, 1201. MS $\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$: 491. HRMS calcd: $491.1787\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$; found: 491.1792.

Substituted malonate 24

To a solution of $\mathrm{NaH}(267 \mathrm{mg}, 6.67 \mathrm{mmol})$ in N, N-dimethylformamide and tetrahydrofuran $(1 / 1,65 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise the dimethylmalonate $(0.76 \mathrm{~mL}, 6.68$ $\mathrm{mmol})$. The mixture was stirred at room temperature during 20 min and a solution of the allyl chloride $23(1.78 \mathrm{~g}, 3.34 \mathrm{mmol})$ and potassium iodide ($1.1 \mathrm{~g}, 6.67 \mathrm{mmol}$) in tetrahydrofuran (5 mL) was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 2 h , quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with ether and hexane ($1 / 1,3 \times 50 \mathrm{~mL}$). The organic layer was dried over MgSO_{4}, the solvent was removed, and the residue was chromatographed on silica gel with $20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane yielding 24 as an oil ($1.89 \mathrm{~g}, 90 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $6.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}, 11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}) ; 6.00(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHC} \underline{H}=\mathrm{CH}) ; 5.65-5.25(4 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{H}=\mathrm{CHCH}=\mathrm{C} \underline{H}, \mathrm{CH}=\mathrm{C} \underline{H}) ; 4.60\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{Ax}}=\right.$ $6.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{BX}}=6 \mathrm{~Hz}$, CHOTIPS); 3.72 ($12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}$); $3.50^{-}\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{AB}}=11 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{BX}}=6 \mathrm{~Hz}\right.$, $\mathrm{CHHCl}) ; 3.40\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{C} \underline{H}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)_{2}\right) ; 3.35\left(1 \mathrm{H}, \underline{\mathrm{ABX}}, \mathrm{J}_{\mathrm{AB}}=11 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{Ax}}=6.5 \mathrm{~Hz}, \mathrm{CH} \underline{H C l}\right)$; 2. $\overline{7} 0-2.60\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CCH} \underline{\mathrm{H}}_{2} \mathrm{CH}=\mathrm{CH}\right) ; 2.00-1.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \underline{C}_{2} \underline{H}_{2}\right) ; 1.10-0.90\left(21 \mathrm{H}, \mathrm{m}, \mathrm{TIPS} .^{-13} \mathrm{C}\right.$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 171.27, 169.13, 131.46, $130.80,130.60,128.87,128.73$, 125.55, 69.09, 57.59, 52.49, 52.43, 51.45, 48.76, 36.49, 32.47, 27.09, 23.14, 17.99, 12.23. IR (film, $v \mathrm{~cm}^{-1}$): 2951, 2867, 1731, 1435. MS ($\left.\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$: 587. HRMS calcd: 587.2443 ($\mathrm{M}-$ $\left.\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$; found: 587.2446.

chlorohydrine 25

To a solution of silyl ether $24(0.69 \mathrm{~g}, 1.1 \mathrm{mmol})$ in tetrahydrofuran $(12 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added 1 M tetra- n-butylammonium fluoride ($2.75 \mathrm{~mL}, 2.75 \mathrm{mmol}$). The solution was stirred at $-20^{\circ} \mathrm{C}$ during 2 h . The solution was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with ether ($3 \times 20 \mathrm{~mL}$). The organic layer was dried over MgSO_{4}, the solvent was removed and the residue was chromatographed on silica gel with $40 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane yielding 25 as an oil ($0.42 \mathrm{~g}, 80 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $6.39(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}, 11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} \underline{H} C H=\mathrm{CH}) ; 6.00(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}) ; 5.65-5.35(3 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{H}=\mathrm{CHCH}=\mathrm{CH}, \mathrm{CH}=\mathrm{C} \underline{H}) ; 5.28(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.5 \mathrm{~Hz}$, $7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}) ; 4.55(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}) ; 3.73\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Cl}\right) ; 3.40$ ($\left.1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)_{2}\right) ; 2.80-2.70\left(4 \mathrm{H}, \mathrm{m}, \quad \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}\right) ; 2.20-1.90(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 171.30, 169.22, 132.92, 130.71, 129.08, 128.99, $128.62,125.59,67.59,57.32,52.53,51.47,51.35,49.02,36.34,32.22,27.06,22.82$. IR (film, $\left.v \mathrm{~cm}^{-1}\right):$ 2951, 2867, 1731, 1435. MS $\left(\mathrm{M}-\mathrm{OCH}_{3}\right)^{+}: 443$; $(\mathrm{M}-\mathrm{Cl})^{+}: 439$. HRMS calcd: $443.1473\left(\mathrm{M}-\mathrm{OCH}_{3}\right)^{+}$; found: 443.1465.

Chloroketone 26

To a solution of chlorohydrine $25(124 \mathrm{mg}, 0.26 \mathrm{mmol})$ in dichloromethane $(6 \mathrm{~mL})$ was added diisopropylamine ($37 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) and Dess-Martin reagent ($382 \mathrm{mg}, 0.78 \mathrm{mmol}$). The mixture was stirred at room temperature during 20 min . The solution was quenched with $10 \% \mathrm{NaS}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$, extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The organic layer was dried over MgSO_{4}, the solvent was removed, and the residue was chromatographed on Florisil (treated with $E t_{3} \mathrm{~N}$) with $40 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane yielding 26 as an oil ($104 \mathrm{mg}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta \mathrm{ppm}$): $6.40(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=15 \mathrm{~Hz}, 11 \mathrm{~Hz}, 1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} \underline{\mathrm{HCH}}=\mathrm{CH})$; 6.35-6.20 (2H, m, CHㅡ는); $6.00(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}) ; 5.55(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15 \mathrm{~Hz}, 8 \mathrm{~Hz}$, $\mathrm{C} \underline{H}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}) ; 5.30(\overline{1} \mathrm{H}, \mathrm{dt}, \mathrm{J}=11 \mathrm{~Hz}, 8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\overline{\mathrm{C}} \underline{H}) ; 4.15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Cl}\right) ; 3.70(6 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right) ; 3.68\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; 3.40\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)_{2}\right) ; 2.75-2.70(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\overline{\mathrm{CH}} \mathrm{CH}=\mathrm{CHCH} \underline{H}_{2}\right) ; 2.60-2.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH} \underline{H}_{2}\right) ; 2.00-1.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \overline{\mathrm{C}}_{2} \mathrm{Cl}_{2}, \delta \mathrm{ppm}$): 191.63, 171.09, 169.08, 150.02, 130.59, 129.11, 128.75 , 125.73, 123.17, 57.44, 52.32, 51.42, 49.29, 35.92, 31.36, 27.02, 24.43. IR (film, $\mathrm{v} \mathrm{cm}^{-1}$): 3008, 2956, 2848, 1730, 1695, 1621, 1435. MS (M) ${ }^{+}$: 472; ($\left.\mathrm{M}-\mathrm{HCl}\right)^{+}$: 436. HRMS calcd: 472.1500 $(\mathrm{M})^{+}$; found: 472.1507; calcd: $436.1733(\mathrm{M}-\mathrm{HCl})^{+}$; found: 436.1739.

Alcohol 27

The same method as that used to prepare 22 was applied from 21 ($2.2 \mathrm{~g}, 3.49 \mathrm{mmol}$) to give 27 as an oil ($1.71 \mathrm{~g}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 6.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}, 11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} \underline{H C H}=\mathrm{CH}) ; 6.10(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHC} \underline{H}=\mathrm{CH}) ; 5.85(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15 \mathrm{~Hz}, 6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}) ; 5.45-5.20(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CHCH}=\mathrm{C} \underline{H}, \mathrm{CH}=\mathrm{C} \underline{H}) ; 4.60\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{Ax}}=6.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{BX}}=6 \mathrm{~Hz}, \mathrm{CHOTIPS}\right) ; 4.20(2 \mathrm{H}, \mathrm{td}$, $\left.\mathrm{J}=5 \mathrm{~Hz}, 1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 3.70\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right)$; $3.50\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{AB}}=11 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{BX}}=6 \mathrm{~Hz}, \mathrm{CHHCl}\right) ; 3.35$ $\left(1 \mathrm{H}, ~ A B X, J_{A B}=11 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{Ax}}=6.5 \mathrm{~Hz}, \mathrm{CHHCl}\right) ; 2.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}\right) ; 2.00-1.85(4 \mathrm{H}$, $\mathrm{m}, \mathrm{C}_{2} \underline{\mathrm{C}}_{\underline{H}}^{2}$) ; 1.10-0.90 (21H, m, TIP $\left.\overline{\mathrm{S}}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 171.38, 133.91, $131.52,131.35,130.60,125.45,124.54,69.10,63.19,57.3,52.5,48.78,32.18,30.90,23.14$, 17.94, 12.24. IR (film, $v \mathrm{~cm}^{-1}$): 3444, 2950, 2867, 1738, 1667, 1455. MS (M - $\left.\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}: 473$. HRMS calcd: $473.2126\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$; found: 473.2135.

Chloride 28

The same method as that used to prepare 23 was applied from 27 ($1.66 \mathrm{~g}, 3.21 \mathrm{mmol}$) to give 28 as an oil ($1.68 \mathrm{~g}, 98 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $6.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}, 11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} \underline{H} C H=\mathrm{CH}) ; 6.10(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHC} \underline{H}=\mathrm{CH}) ; 5.85(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15 \mathrm{~Hz}, 7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}) ; 5.50-5.30(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CHCH}=\mathrm{C} \underline{H}, \mathrm{CH}=\mathrm{CH}) ; 4.60\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{AX}}=6.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{BX}}=6 \mathrm{~Hz}, \mathrm{C} \underline{H} O T I P S\right) ; 4.10(2 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHC} \underline{H}_{2} \mathrm{Cl}\right) ; 3.70\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C}_{3} \underline{3}_{3} \mathrm{O}\right) ; 3.50\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{AB}}=11 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{BX}}=6 \mathrm{~Hz}, \mathrm{C} \underline{H} \mathrm{HCl}\right) ; 3.35$ $\left(1 \mathrm{H}, \underline{A B X}^{2} \mathrm{~J}_{\mathrm{AB}}=11 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AX}}=6.5 \mathrm{~Hz}, \mathrm{CHHCl}\right) ; 2.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}\right) ; 2.00-1.80(4 \mathrm{H}$, $\mathrm{m}, \mathrm{C}_{2} \underline{\mathrm{C}}_{\underline{H}}^{2}$) ; 1.10-0.90 (21H, m, TIPS $) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 171.23,131.57$,
$130.64,130.50,129.90,128.64,126.44,69.09,57.33,52.53,48.73,44.89,32.2,30.94$, 23.14, 17.92, 12.24. IR (film, $v \mathrm{~cm}^{-1}$): 2951, 2867, 1794, 1654, 1458, 1201. MS (M-C $\left.\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$: 491. HRMS calcd: $491.1787\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$; found: 491.1778.

Substituted malonate 29

The same method as that used to prepare 24 was applied from 28 ($1.68 \mathrm{~g}, 3.15 \mathrm{mmol}$) to give 29 as an oil ($1.41 \mathrm{~g}, 71 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $6.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}, 11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} \underline{H C H}=\mathrm{CH}) ; 6.05(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}) ; 5.65(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15 \mathrm{~Hz}, 7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}) ; 5.50-5.30(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CH}$); 5.20 (1 H , br q, $\mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}$); $4.60\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{Ax}}=6.5 \mathrm{~Hz}\right.$, $\mathrm{bxx}^{2}=6 \mathrm{~Hz}$, CHOTIPS); 3.75 ($6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}$); 3.70 ($6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}$); $3.50\left(1 \mathrm{H}, \mathrm{ABX}, \mathrm{J}_{\mathrm{AB}}=11 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{BX}}=6 \mathrm{~Hz}\right.$, $\mathrm{CHHCl}) ; 3.45\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)_{2}\right) ; 3.35\left(1 \mathrm{H}, \underline{A B X}, \mathrm{~J}_{\mathrm{AB}}=11 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{Ax}}=6.5 \mathrm{~Hz}, \mathrm{CH} \underline{H C l}\right)$; $2.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{CCH} \underline{2}_{2} \mathrm{CH}=\mathrm{CH}\right) ; 2.70\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{C}_{2} \underline{C H}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right) ; 2.00-1.90(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$); 1.05 ($21 \mathrm{H}, \mathrm{m}$, TIPS). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 171.34, 169.10, 131.53, $130.74,130.58,130.20,127.76,123.65,69.09,57.32,52.54,52.46,51.58,48.79,32.22$, 32.04, 30.95, 23.15, 17.9, 12.24. IR (film, $\mathrm{v} \mathrm{cm}^{-1}$): 2948, 2867, 1737, 1440, 1202. MS (M $\left.\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$: 587. HRMS calcd: $587.2443\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}$; found: 587.2446 .

Chlorohydrine 30

The same method as that used to prepare 25 was applied from 29 ($0.69 \mathrm{~g}, 1.1 \mathrm{mmol}$) to give 27 as an oil ($0.44 \mathrm{~g}, 84 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $6.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}, 11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} \underline{H C H}=\mathrm{CH}) ; 6.05(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=11 \mathrm{~Hz}, \quad \mathrm{CH}=\mathrm{CHC} \underline{H}=\mathrm{CH}) ; 5.65(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15 \mathrm{~Hz}, 7 \mathrm{~Hz}, \quad \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}) ; 5.50(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}$); $5.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11 \mathrm{~Hz}, 8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}$); $5.15(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=11 \mathrm{~Hz}, 7.5 \mathrm{~Hz}$, $\mathrm{C} \underline{H}=\mathrm{CH}) ; 4.55(1 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{HOH}}) ; 3.70\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$; $3.68\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; 3.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Cl}\right)$; $3.45\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{C} \underline{H}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right) ; 2.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CCH} \underline{2}_{2} \mathrm{CH}=\mathrm{CH}\right) ; 2.70(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}$, $\left.\mathrm{C} \underline{H}_{2} \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right) ; 2.11-1.90\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 171.40$, 169.13, 133.07, 131.57, 130.93, 129.02, 127.65, 123.67, 67.55, 57.14, 52.53, 52.54, 51.5, 49.16, 32.15, 31.98, 30.94, 22.93. IR (film, $\mathrm{v} \mathrm{cm}^{-1}$): 3522, 3011, 2954, 2846, 1733, 1435. MS $\left(\mathrm{M}-\mathrm{OCH}_{3}\right)^{+}: 443 ;(\mathrm{M}-\mathrm{Cl})^{+}: 439$. HRMS calcd: $443.1473\left(\mathrm{M}-\mathrm{OCH}_{3}\right)^{+}$; found: 443.1465.

Chloroketone 31

The same method as that used to prepare 26 was applied from 30 ($122.5 \mathrm{mg}, 0.26$ mmol) to give 31 as an oil ($105 \mathrm{mg}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta \mathrm{ppm}$): $6.40(1 \mathrm{H}$, ddd, $\mathrm{J}=15 \mathrm{~Hz}, 11 \mathrm{~Hz}, 1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} \underline{H C H}=\mathrm{CH})$; 6.35-6.20 (2H, m, CH=CHCH=CH, COCH=CH); 6.05 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}$); 5.65 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}$); $5.25(1 \mathrm{H}, \mathrm{br} \mathrm{q}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{COCH}=\mathrm{CH}) ; 4.25(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C} \underline{H}_{2} \mathrm{Cl}\right) ; 3.71\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; 3.70\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; 3.45\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)_{2}\right) ; 2.80$ $\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{CCH} \mathrm{H}_{2} \mathrm{CH}=\mathrm{CH}\right) ; 2.75\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right) ; 2.58(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{COCH}=\mathrm{CHCH}_{2}\right) ; 2.00-1.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta \mathrm{ppm}\right)$: $191.58,171.15,169.07,150.07,131.53,130.81,127.75,123.76,123.16,57.25,52.32,51.50$, 49.36, 41.13, 31.95, 31.28, 30.55, 24.55. IR (film, $\mathrm{v} \mathrm{cm}^{-1}$): 3008, 2956, 2848, 1730, 1695, 1621, 1435. MS (M) ${ }^{+}$: 472; ($\left.\mathrm{M}-\mathrm{HCl}\right)^{+}$: 436. HRMS calcd: $472.1500(\mathrm{M})^{+}$; found: 472.1507; calcd: $436.1733(\mathrm{M}-\mathrm{HCl})^{+}$; found: 436.1739.

Macrocycle 2

To a solution of cesium carbonate ($581.8 \mathrm{mg}, 1.50 \mathrm{mmol}$) and cesium iodide (392 mg , 1.50 mmol) in acetonitrile (67 mL) was added the chloroketone $26(95.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ in
acetonitrile (1 mL). The solution was stirred at room temperature for 48 h in the dark. The mixture was filtered, the solvent was removed and the residue was chromatographed on silica gel with $40 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane yielding 26 as an oil ($26 \mathrm{mg}, 30 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 375 \mathrm{~K}, \delta \mathrm{ppm}$): $6.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}, 11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}$); 5.98 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}$); 5.72 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5 \mathrm{~Hz}, 7 \mathrm{~Hz}, \mathrm{COC} \underline{H}=\mathrm{CH}$); 5.50-5.40 (2H, m, $\mathrm{C} \underline{H}=\mathrm{CHCH}=\mathrm{C} \underline{\mathrm{H}}) ; 5.22(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=11.5 \mathrm{~Hz}, 9 \mathrm{~Hz}, \mathrm{COCH}=\mathrm{C} \underline{H}) ; 3.40\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; 3.35(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right) ; 3.17\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2}\right) ; 2.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CHCH}_{2}\right) ; 2.40(2 \mathrm{H}, \mathrm{br} \mathrm{q}$, $\left.\mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}=\overline{\mathrm{C}}\right)$); 1.90-1.80 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}^{-2}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$ $\mathrm{ppm}): 199.69,170.60,142.845,132.5,130.75,130.10,127.98,125,56.16,54.5,52.72$, $44.38,35.44,31.66,30.29,29.68,27.11,22.1$. IR $\left(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), v \mathrm{~cm}^{-1}\right): 3003,2955,1734,1695$, 1628, 1444, 1266, 1221. MS $\left(\mathrm{M}^{+}\right.$: 436 . HRMS calcd: $436.1733(\mathrm{M})^{+}$; found: 436.1739. mp: $160-162^{\circ} \mathrm{C}$.

Macrocycle 3

To a solution of cesium carbonate ($45 \mathrm{mg}, 0.12 \mathrm{mmol}$) and cesium iodide ($30 \mathrm{mg}, 0.12$ mmol) in acetonitrile (15 mL), the compound $31(11 \mathrm{mg}, 0.02 \mathrm{mmol})$ in acetonitrile (1 mL) was slowly added via a syringe pump over 10 h at $40^{\circ} \mathrm{C}$. The solution was stirred at $40^{\circ} \mathrm{C}$ for an additional 12 h period. The mixture was filtered and the solvent was removed. The residue was chromatographed on silica gel with $40 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane to yield 3 as an oil (1.8 mg , $17 \%)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 6.35 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}, 11.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}$); 6.156.05 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C} \underline{H} C H=\mathrm{CH}, \mathrm{COCH}=\mathrm{CH}$); 5.75 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=11.5 \mathrm{~Hz}, 7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}$); 5.65 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15 \mathrm{~Hz}, 7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}$); $4.95\left(1 \mathrm{H}, \mathrm{br} \mathrm{q}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}\right) ; 3.80$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; 3.78\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; 3.15-1 . \overline{8}\left(10 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$ ppm): $200.75,172.13,172.04,141.93,132.69,131.10,130.20,129.47,125.55,57.94,53.99$, $53.72,45.63,36.77,31.75,30.69,30.44,24.5$. IR (film, $\mathrm{v} \mathrm{cm}^{-1}$): 2955, 1732, 1698, 1633, 1436, 1270, 1223. MS (M) ${ }^{+}$: 436. HRMS calcd: 436.1733. found: 436.1739.

Diels-Alder adduct 33 and its epimer 34

The macrocycle $2(10 \mathrm{mg}, 23 \mu \mathrm{~mol})$ in toluene $(2 \mathrm{~mL})$ in a quartz tube was sealed in vacuo and heated in an oven for 2 h at $220^{\circ} \mathrm{C}$. The solvent was removed and the residue was chromatographed on silica gel with 40% AcOEt in hexane. It was impossible to separate both compounds 33 and 34 at that stage, their relative population was evaluated by integration of the NMR signal corresponding to the alkene (1:1).
The mixture of the two tricycles was then treated with para-toluenesulfonic acid (catalytic) in toluene (3 mL) at reflux for 5 h . The residue was purified on silica gel with 40% AcOEt in hexane to afford the tricycle 34 ($9 \mathrm{mg}, 87 \%$).
TAT tricycle 34: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $5.45(2 \mathrm{H}, \mathrm{s}, \mathrm{C} \underline{\mathrm{H}}=\mathrm{C} \underline{\mathrm{H}}) ; 3.75$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$); $3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; 2.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13 \mathrm{~Hz}, 3 \mathrm{~Hz}, \mathrm{CHHCO}) ; 2.72(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=13 \mathrm{~Hz}, \mathrm{CH} \underline{H C O}$); 2.60-2.50 (2H, m, CH,); 2.45-2.30 (3H, m, COCHC $\underline{H} C H=\mathrm{CH}, \mathrm{CH}$); 2.15 $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{CHCO}$, this coupling proves the TAT ring junction); 1.95-1.80 (2H, m, CH); $1.75(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=14 \mathrm{H} z, 4 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{H}}) ; 1.60-1.40(3 \mathrm{H}, \mathrm{m}, \overline{\mathrm{C}} \underline{\mathrm{H}}) ; 1.11-0.90(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR $(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 206.68,172.41,171.62,170.60,170.41,131.72,128.51,57.73,55.63$, $55.35,53.21,53.11,52.7,52.55,46.25,40.32,38.55,38.16,37.89,37.52,36.93,31.29$, 29.69, 25.7, 22.68. IR (film, $v^{2} \mathrm{~cm}^{-1}$): 2956, 2854, 1731, 1450, 1436, 1258. MS (M) ${ }^{+}: 436$. HRMS calcd: 436.1733 (M) ${ }^{+}$;found: 436.1730.
CST tricycle 33: Only a few ${ }^{1} \mathrm{H}$ NMR signals could be attributed for this compound which could not be separated from its epimer $34:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 5.66(1 \mathrm{H}$,
complex $A B$ system appearing as a doublet of doublet, $J_{A B}=10 H z, J=3.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}$); 5.57 (1 H , complex AB system appearing as a doublet of doublet, $\mathrm{J}_{\mathrm{AB}}=10 \mathrm{~Hz}, \mathrm{~J}=4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}$); 3.72 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}_{3} \underline{3}_{3}\right)$.

Diels-Alder adduct 35 and its epimer 36

The macrocycle $3(1.6 \mathrm{mg}, 3.6 \mu \mathrm{~mol})$ in toluene (2 mL) in a quartz tube was sealed in vacuo and heated in an oven for 2 h at $160^{\circ} \mathrm{C}$. The solvent was removed and the residue was chromatographed on silica gel with 40% AcOEt in hexane. It was impossible to separate both compounds 35 and 36 at that stage, their relative population was evaluated by integration of the NMR signal corresponding to the alkene (1:1).
The mixture of the two tricycles was then treated with para-toluenesulfonic acid (catalytic) in toluene (3 mL) at reflux for 5 h . The final mixture still contained both compounds but with a different $36 / 35$ ratio of $3: 1$ and with no significant total weight loss.

In a separate experiment a solution of $1 \mathrm{M} \mathrm{SnCl}_{4}(7.6 \mu \mathrm{~L})$ was added to a solution of the macrocycle $3(1.6 \mathrm{mg}, 3.6 \mu \mathrm{~L})$ in dichloromethane (1 mL) at $30^{\circ} \mathrm{C}$, The solution was stirred at $30^{\circ} \mathrm{C}$ for 3.5 h and quenched with sat. $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. The mixture was extracted with dichloromethane ($3 \times 5 \mathrm{~mL}$) and dried. Pure tricycle 35 was obtained after purification on silica gel with 40% AcOEt in hexane. ($1.5 \mathrm{mg}, 94 \%$). Since the conditions had been sufficiently mild to avoid epimerization, 35 could be crystallized from pentane and ether and its structure proven crystal X-ray diffraction analysis.

Finally, pure tricycle 35 was treated with para-toluenesulfonic acid (catalytic) in toluene $(3 \mathrm{~mL})$ at reflux for 5 h . The solvent was removed and the residue was chromatographed on silica gel with 40% AcOEt in hexane. A 3:1 mixture of compounds 36 and 35 was obtained as previously observed.
CST tricycle 35: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$) : 5.45 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{CH}$) ; $3.76(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right) ; 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; 3.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}$, $2.5 \mathrm{~Hz}, \mathrm{COCH}) ; 2.60-1.95(9 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{H}}) ;$ 1.70-1.30(4H, m, C브) .
IR (film, $v \mathrm{~cm}^{-1}$) : 2922, 1734, 1437, 1257. SM (M) ${ }^{+}$: 436. HRMS calcd: $436.1733(\mathrm{M})^{+}$; found: 436.1730. mp : $153-155^{\circ} \mathrm{C}$

CAC tricycle 36: Only a few ${ }^{1} \mathrm{H}$ NMR signals could be attributed for this compound which could not be separated from its epimer 35: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $5.66(1 \mathrm{H}$, complex $A B$ system appearing as a doublet of doublet, $\left.J_{A B}=9 \mathrm{~Hz}, \mathrm{~J}=4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}\right) ; 5.56(1 \mathrm{H}$, complex $A B$ system appearing as a doublet of doublet, $\left.J_{A B}=9 \mathrm{~Hz}, \mathrm{~J}=3.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}\right) ; 3.74(6 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OC}_{\underline{3}}\right) ; 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}_{\underline{3}}\right) ; 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}_{3} \underline{3}\right)$.

ORTEP
representation of 35

P

七9

コ

$\stackrel{\rightharpoonup}{\omega}$

N

$\tilde{\omega}$

9ε ヌ $\varsigma \varepsilon$ əınıx!W

C	2.502002	-1.685880	.660848
C	1.285935	-2.173190	-.084554
C	.040757	-1.891382	.260453
C	-1.137248	-2.288422	-.517118
C	-2.372984	-1.842348	-.349566
C	-2.860190	-.831744	.661430
C	3.325327	-.675054	-.182384
C	2.512115	.540904	-.669568
C	1.973562	1.431332	.476345
C	1.214982	2.613692	-.080914
C	-3.243866	.510608	-.016930
C	-2.037643	1.296258	-.571253
C	-1.161247	1.934307	.535899
C	-.088991	2.817698	-.060840
H	3.144585	-2.527073	.906719
H	2.202321	-1.229030	1.596475
H	1.477754	-2.748429	-.975648
H	-.129937	-1.313453	1.148837
H	-.950090	-2.991008	-1.310712
H	-3.136809	-2.206073	-1.015283
H	-3.745126	-1.231155	1.149734
H	-2.126513	-.655383	1.435069
H	3.727238	-1.194328	-1.047773
H	4.171117	-.334498	.407908
H	1.673670	.201718	-1.264327
H	3.142620	1.146959	-1.313858
H	1.342778	.845058	1.127318
H	2.812683	1.788077	1.068659
H	1.833316	3.345434	-.573717
H	-3.934602	.299088	-.827701
H	-3.774349	1.130605	.700094
H	-1.423283	.643753	-1.179333
H	-2.404607	2.089487	-1.216172
H	-.726315	1.161342	1.152060
H	-1.799330	2.539466	1.175442
H	-.467960	3.706602	-.537369

C	-2.641526	1.502524	.820158
C	-1.546995	2.077721	-.045785
C	-.260235	1.855371	.166602
C	.820687	2.326210	-.706147
C	2.108709	2.041361	-.567714
C	2.737970	1.212854	.527965
C	-3.530727	.490802	.047695
C	-2.732257	-.631769	-.643109
C	-1.984843	-1.570910	.340797
C	-1.103295	-2.503162	-.454380
C	3.304425	-.141559	.023703
C	2.290729	-1.025780	-.716559
C	1.106003	-1.483710	.114278
C	.212148	-2.442730	-.583565
O	.896285	-1.066564	1.240801
H	-3.279657	2.301273	1.188984
H	-2.202258	1.019907	1.684859
H	-1.865869	2.665804	-.891229
H	.021678	1.250280	1.004439
H	.515724	2.939847	-1.536535
H	2.797598	2.432776	-1.297014
H	3.565306	1.776211	.951780
H	2.041257	1.011165	1.321565
H	-4.090509	1.029668	-.711444
H	-4.253893	.061144	.734677
H	-2.005397	-.184873	-1.308884
H	-3.408801	-1.226020	-1.250771
H	-1.387533	-1.010158	1.036589
H	-2.711857	-2.149409	.903151
H	-1.631148	-3.231153	-1.047571
H	4.135616	.050465	-.647864
H	3.695119	-.683588	.877779
H	1.882782	-.488712	-1.568552
H	2.790955	-1.905716	-1.111671
H	. .702889	-3.098892	-1.278296

C	-2.131622	2.177379	.497735
C	-.852711	2.391678	-.275868
C	.306065	1.883899	.113136
C	1.572412	2.034824	-.608253
C	2.714505	1.431719	-.309545
C	2.974260	.456936	.815876
C	-3.153732	1.258769	-.229682
C	-2.551588	.003309	-.878313
C	-1.748958	-.898134	.040003
C	-1.249913	-2.131007	-.623348
C	3.347945	-.950012	.279400
C	2.199100	-1.630809	-.490299
C	1.059416	-2.143316	.429438
C	-.062434	-2.678276	-.426813
O	-1.498153	-.612892	1.197417
H	-2.613365	3.133806	.680097
H	-1.896421	1.732003	1.450435
H	-.916462	2.973687	-1.180970
H	.320151	1.301117	1.012506
H	1.549169	2.694404	-1.458702
H	3.571042	1.629037	-.931643
H	3.807228	.825896	1.408984
H	2.124372	.380519	1.478009
H	-3.650335	1.825152	-1.011504
H	-3.912902	.965989	.487297
H	-1.878698	.288800	-1.682374
H	-3.343419	-.587130	-1.331910
H	-1.914270	-2.559193	-1.351272
H	4.204883	-.850733	-.380217
H	3.654462	-1.578683	1.110194
H	1.787832	-.927287	-1.203357
H	2.594090	-2.471624	-1.053304
H	.691468	-1.363264	1.072747
H	1.445336	-2.942037	1.056313
H	.186508	-3.556069	-.999391

C	.575180	-.516288	.996893
C	1.156946	1.150597	-.348439
C	-.777528	-.464622	1.282119
C	-1.748811	1.332068	.282624
C	-.790430	2.252999	.634850
C	.561638	2.198328	.305557
C	1.222128	-1.652633	.214006
C	2.745897	-1.479296	.059944
C	2.667489	1.042193	-.444727
C	3.133414	-.349493	-.910532
C	-1.766123	-1.569208	.902540
C	-2.151039	-1.707787	-.583330
C	-2.007735	.780167	-1.111088
C	-2.890987	-.477598	-1.119128
H	1.229703	-.069779	1.720217
H	.630376	.611071	-1.101574
H	-1.037031	.027257	2.197598
H	-2.665679	1.390572	.850072
H	-1.045582	2.923162	1.438517
H	1.208861	2.885400	.825297
H	.780447	-1.754229	-.769571
H	1.032266	-2.589000	.737317
H	3.186028	-1.286686	1.034361
H	3.168933	-2.411178	-.303162
H	3.033300	1.784693	-1.151446
H	3.114722	1.270965	.517950
H	4.212415	-.337191	-1.029961
H	2.706170	-.559260	-1.887756
H	-2.680844	-1.407440	1.464061
H	-1.361631	-2.521660	1.241081
H	-1.272253	-1.886654	-1.189848
H	-2.788794	-2.581539	-.684361
H	-2.528725	1.568393	-1.652883
H	-1.102328	.581066	-1.658199
H	-3.784669	-.301168	-.526203
H	-3.215157	-.670150	-2.137421

36			
ts M 1	b.bc -539.8274153 au		
C	.606252	-.628202	.905424
C	1.261816	1.101700	-.290965
C	-.772285	-.628924	1.068557
C	-1.650314	1.295301	.267228
C	-.688772	2.181019	.695568
C	.668474	2.116087	.420017
C	1.318492	-1.708914	.089335
C	2.846584	-1.526622	.029804
C	2.776226	1.002527	-.351991
C	3.273520	-.356599	-.870044
C	-1.646745	-1.670738	.371714
C	-3.079405	-1.193412	.074813
C	-1.866061	.715663	-1.122150
C	-3.103930	-.208842	-1.117177
H	1.188190	-.257280	1.727372
H	.752835	.657742	-1.117200
H	-1.156358	-.305905	2.016290
H	-2.583956	1.378786	.800440
H	-.972952	2.831776	1.504937
H	1.312228	2.753768	1.002652
H	.933190	-1.748831	-.923787
H	1.105951	-2.676674	.539777
H	3.232759	-1.373540	1.033631
H	3.291536	-2.442269	-.348045
H	3.151887	1.784995	-1.008594
H	3.192760	1.186022	.633725
H	4.356542	-.332117	-.940830
H	2.890231	-.521444	-1.873584
H	-1.690834	-2.546481	1.017644
H	-1.191894	-1.995283	-.555259
H	-3.710731	-2.046385	-.150984
H	-3.488978	-.724252	.962213
H	-2.030996	1.530330	-1.823266
H	-1.012697	.163194	-1.477388
H	-4.005911	.393575	-1.074257
H	-3.132075	-.767330	-2.047304

C	-.576543	-.664950	-.782657
C	-1.573994	1.062030	.109284
C	.743978	-.368065	-1.081275
C	1.329708	1.689839	-.231447
C	. .283650	2.347408	-.834537
C	-1.071762	2.082334	-.659625
C	-1.072721	-1.707637	.220311
C	-2.608742	-1.844421	.190033
C	-3.045152	.688901	.061895
C	-3.336638	-.631992	.798139
C	1.976222	-.970795	-.529889
C	2.127856	-1.106393	.966857
C	1.484691	1.348860	1.244398
C	2.550686	.273667	1.521409
O	2.910827	-1.239901	-1.266747
H	-1.242654	-.563444	-1.618371
H	-1.085301	.788579	1.015741
H	.922852	-.015303	-2.076872
H	2.290085	1.830123	-.703023
H	.533533	2.932028	-1.702966
H	-1.741787	2.542878	-1.366166
H	-.768515	-1.472973	1.231807
H	-.633871	-2.670019	-.029085
H	-2.935906	-1.989659	-.835295
H	-2.890089	-2.734321	. .744306
H	-3.628981	1.481109	.525553
H	-3.373332	.612414	-.970139
H	-4.406200	-.815376	.785016
H	-3.042915	-.528596	1.839450
H	1.216314	-1.422515	1.444654
H	2.906471	-1.832235	1.159561
H	1.799786	2.271154	1.729415
H	.558239	1.059255	1.707609
H	3.492478	.559308	1.064979
H	2.713184	.197559	2.590656

C	-.712980	-.508759	-1.015748
C	-1.317203	.942954	.336153
C	.687643	-.495737	-.996988
C	1.546675	1.705661	-.336420
C	.407847	2.358158	-.732079
C	-.892554	2.070650	-.349945
C	-1.484553	-1.722970	-.472118
C	-2.995715	-1.518950	-.309710
C	-2.815066	.829637	.604534
C	-3.307824	-.597030	.873724
C	1.455501	-1.100667	.070024
C	2.946127	-.842475	.028540
C	1.983201	1.298273	1.057206
C	3.196363	.336410	1.019070
O	.970510	-1.619516	1.075692
H	-1.159899	-.104985	-1.908111
H	-.697944	.476633	1.076256
H	1.225844	-.196194	-1.869255
H	2.397168	1.856948	-.984104
H	.507486	3.009167	-1.584456
H	-1.662436	2.650868	-.829642
H	-1.043169	-2.036874	.456610
H	-1.316448	-2.516996	-1.196817
H	-3.425054	-1.107499	-1.219864
H	-3.455832	-2.488501	-.146272
H	-3.050276	1.454999	1.463132
H	-3.359676	1.233452	-.243725
H	-4.377404	-.569216	1.056443
H	-2.833740	-.990489	1.767790
H	3.483431	-1.721086	.358889
H	3.271008	-.579497	-.967930
H	2.282766	2.209481	1.570985
H	1.191497	.853257	1.634012
H	4.089396	.876510	.726261
H	3.354047	-.062194	2.012173

C	.478747	-.299850	1.104325
C	1.083971	1.435600	-.373153
C	-.888369	-.281799	1.396440
C	-1.763350	1.365939	.430363
C	-.864915	2.384123	.711934
C	.469827	2.426233	.347887
C	1.134770	-1.140715	.117484
C	2.653601	-1.094170	.143047
C	2.591337	1.372716	-.523420
C	3.100536	-.034120	-.894500
C	-1.808796	-1.437283	.956202
C	-3.237864	-1.027254	.561834
C	-1.981497	.638950	-.896606
C	-3.242317	-.245573	-.773696
O	.570090	-1.761536	-.782666
H	1.139912	.152259	1.812560
H	.531040	.889438	-1.103995
H	-1.132589	.097210	2.372491
H	-2.688201	1.468557	.973017
H	-1.170276	3.086077	1.468496
H	1.093377	3.150978	.842542
H	3.032372	-.840718	1.123614
H	3.030986	-2.065085	-.150813
H	2.889207	2.066414	-1.307585
H	3.063978	1.702158	.395879
H	4.181861	-.020406	-.967507
H	2.703449	-.326242	-1.860152
H	-1.861528	-2.114302	1.805822
H	-1.344269	-1.965881	.142682
H	-3.846694	-1.919226	.461144
H	-3.681916	-.433723	1.353420
H	-2.116538	1.368078	-1.690349
H	-1.151700	.005572	-1.163140
H	-4.134175	.369712	-.837737
H	-3.263464	-.943931	-1.602661

