Propagation of melting cooperativity along the phosphodiester backbone of DNA

Jessica Becaud, Isabelle Pompizi and Christian J. Leumann*

Supporting Information

Page S2-3	¹ H-NMR spectra of compounds 4-7 .
Page S4-5	Analytical data of oligonucleotides
Page S6-8	UV-melting curves of investigated duplexes.

¹H NMR spectrum of **4** (CDCl₃)

¹H NMR spectrum of **5** (CDCl₃)

¹H NMR spectrum of **7** (CDCl₃)

<u></u>
ğ
\mathbf{S}
iis
th
Ш.
Ч
Se
n
<u> </u>
Ξ
õ
č
ğ
or
. <u>50</u>
Ю
JC
a
lat
ld
G
Ē
L L
μ
13
ŭ
0
SI.
he
nt
sy
ø
ğ
ne
þ
Š
Ξ
5
le
ab
Ē

Sequence	Scale	ESI	-MS	Yield	DEAE-HPLC ^a	RP-HPLC ^b
	[lomu]]	m/z (calc.)	m/z (found)	OD_{260} (%)		
d(GATGAC1GCTAGCTAGGAC)	1.3	5685.8	5685.2	42.6 (18)	$35\% - 60\%$ B in 30min. $t_{R} = 26$ min.	$0\% - 50\%$ B in 30min. $t_{R} = 17$ min.
d(GTCCTAGCTAGC1GTCATC)	1.3	5587.7	5587.0	21.6 (10)	$35\% - 60\%B$ in 30 min. $t_{R} = 26$ min.	$0\% - 50\%$ B in 30min. $t_{R} = 17$ min.
d(GATGAC1 ² GCTAGCTAGGAC)	1.3	5823.8	5823.1	19.7 (8)	$35\% - 70\%$ B in 30min. $t_{R} = 22$ min.	$0\% - 50\%$ B in 30min. $t_{R} = 17$ min.
d(GTCCTAGCTAGC1 ² GTCATC)	1.3	5725.7	5725.1	34.2 (16)	$35\% - 70\%$ B in 30 min. $t_{R} = 21$ min.	$0\% - 50\%$ B in 30min. $t_{R} = 17$ min.
d(GATGAC1 ³ GCTAGCTAGGAC)	1.3	5960.0	5960.4	40.7 (17)	$53\% - 75\%$ B in 30min. $t_{R} = 23$ min.	$10\% - 35\%B$ in 30min. $t_R = 11$ min.
d(GTCCTAGCTAGC1 ³ GTCATC)	1.3	5863.4	5863.6	56.8 (27)	53% - 75%B in 30min. $t_R = 18min.$	$10\% - 35\%B$ in 30min. $t_R = 12$ min.
d(GATGAC1 ⁶ GCTAGCTAGGAC)	1.3	6377.0	6377.1	67.6 (28)	$50\% - 75\%$ B in 30min. $t_{R} = 21$ min.	$10\% - 35\%B$ in 30min. $t_R = 9$ min.
d(GTCCTAGCTAGC1 ⁶ GTCATC)	1.3	6278.9	6278.9	65.1 (31)	53% - 75%B in 30min. $t_R = 19min$.	$10\% - 35\%B$ in 30min. $t_R = 10$ min.
d(GATGAC1 ⁹ GCTAGCTAGGAC)	1.3	6790.2	6789.8	19.7 (8)	35% - 80%B in 30 min. t _R = 21 min.	$0\% - 50\%$ B in 30min. $t_{R} = 16$ min.
d(GTCCTAGCTAGC1 ⁹ GTCATC)	1.3	6692.1	6691.8	13.6 (6)	$35\% - 80\%$ B in 30 min. $t_{R} = 21$ min.	$0\% - 50\%$ B in 30min. $t_{R} = 18$ min.
d(GATGAC1 ¹² GCTAGCTAGGAC)	1.3	7204.4	7204.2	15.2 (6)	35% - 70%B in 30 min. t _R = 26 min.	$0\% - 50\%$ B in 30min. $t_{R} = 17$ min.
d(GTCCTAGCTAGC1 ¹² GTCATC)	1.3	7106.3	7106.0	21.1 (10)	$35\% - 80\%B$ in 30 min. $t_R = 22$ min.	$0\% - 50\%$ B in 30min. $t_{R} = 17$ min.
d(GATGAC1 ¹⁶ GCTAGCTAGGAC)	1.3	7757.6	7757.1	31.8 (13)	$55\% - 80\%$ B in 30min. $t_{R} = 25$ min.	$10\% - 30\%$ B in 30min. $t_{R} = 9$ min.
d(GTCCTAGCTAGC1 ¹⁶ GTCATC)	1.3	7659.5	7659.5	39.5 (19)	$55\% - 80\%$ B in 30min. $t_{R} = 24$ min.	$10\% - 30\%$ B in 30min. $t_{R} = 9$ min.
d(GATGAC1 ²⁰ GCTAGCTAGGAC)	1.3	8308.8	8308.3	12.9 (5)	$35\% - 70\%$ B in 30 min. $t_{R} = 28$ min.	$0\% - 50\%$ B in 30min. $t_{R} = 16$ min.
d(GTCCTAGCTAGC1 ²⁰ GTCATC)	1.3	8210.7	8210.0	11.4 (5)	$35\% - 80\%$ B in 30min. $t_{R} = 23$ min.	$0\% - 50\%$ B in 30min. $t_{R} = 17$ min.
d(GATGAC2GCTAGCTAGGAC)	1.3	5813.5	5813.6	63.4 (27)	53% - 75%B in 30min. t _R = 25min.	$10\% - 35\%$ B in 30min. $t_{R} = 18$ min.
d(GTCCTAGCTAGC2GTCATC)	1.3	5714.0	5713.8	54.1 (26)	53% - 75%B in 30min. $t_{R} = 23min.$	$10\% - 35\%B$ in 30min. $t_R = 13$ min.
d(GATGAC2 ² GCTAGCTAGGAC)	1.3	6078.1	6078.0	41.2 (17)	$53\% - 75\%B$ in 30min. $t_R = 26min$.	$10\% - 35\%$ B in 30min. $t_{R} = 12$ min.
d(GTCCTAGCTAGC2 ² GTCATC)	1.3	5980.1	5979.9	44.6 (21)	$53\% - 75\%$ B in 30min. $t_{R} = 24$ min.	$10\% - 35\%B$ in 30min. $t_R = 13$ min.
d(GATGAC2 ³ GCTAGCTAGGAC)	1.3	6344.2	6344.1	26.0 (11)	53% - 75%B in 30min. $t_R = 21min$.	$10\% - 35\%B$ in 30min. $t_R = 12$ min.
d(GTCCTAGCTAGC2 ³ GTCATC)	1.3	6246.1	6245.9	43.9 (21)	53% - 75%B in 30min. t _R = 22min.	$10\% - 35\%B$ in 30min. $t_R = 13$ min.

d(GATGAC <mark>2°</mark> GCTAGCTAGGAC)	0.2	7144.8	7144.9	3.1 (9)	$60\% - 95\%B$ in 30min. $t_R = 21$ min.	10% - 40%B in 30min. t _R = 14 min.
d(GTCCTAGCTAGC2 ⁶ GTCATC)	0.2	7046.7	7046.3	2.5 (7)	$60\% - 95\%$ B in 30min. $t_{R} = 19$ min.	$10\% - 40\%$ B in 30min. $t_{R} = 14$ min.
d(GATGAC2 [°] GCTAGCTAGGAC)	0.2	7943.3	7943.3	1.7 (5)	$60\% - 95\%B$ in 30min. $t_R = 24$ min.	10% - 40%B in 30min. $t_{R} = 15$ min.
d(GTCCTAGCTAGC ² ,GTCATC)	0.2	7845.2	7845.4	6.1 (18)	$60\% - 95\%$ B in 30min. $t_{R} = 20$ min.	10% - 40%B in 30min. $t_{R} = 14$ min.
d(GATGAC2 ¹² GCTAGCTAGGAC)	0.2	8741.9	8741.4	2.2 (6)	$70\% - 100\%$ B in 30min. $t_{R} = 19$ min.	10% - 40%B in 30min. t _R = 16 min.
d(GTCCTAGCTAGC2 ¹² GTCATC)	0.2	8643.8	8643.3	2.2 (7)	$60\% - 95\%$ B in 30min. $t_{R} = 24$ min.	10% - 40%B in 30min. t _R = 15 min.
d(GATGAC2 ¹⁶ GCTAGCTAGGAC)	1.3	9807.7	9807.1	5.34 (2)	53% - 80%B in 30min. t _R = 26min.	$10\% - 30\%$ B in 30min. $t_{R} = 12$ min.
d(GTCCTAGCTAGC2 ¹⁶ GTCATC)	1.3	9709.6	9708.8	26.0 (12)	$55\% - 88\%B$ in 30 min. $t_{R} = 19$ min.	10% - 30%B in 30min. t _R = 12 min.
A Ministration DEAE 60 7 Mischause 8.	Via col. A. J			4.1 nU 60. D		UN 1.1 "U & U

a) Nucleogen DEAE 60-7, Macherey & Nagel; A: 20mM KH₂PO₄ in H₂O/CH₃CN 4:1, pH 6.0; B: 20mM KH₂PO₄, 1M KCl in H₂O/CH₃CN 4:1, pH 6.0 b) Aquapore RP-300; Brownlee; A: 0.1M triethylammoniumacetate in H₂O, pH 7.0; B: 0.1M triethylammoniumacetate in H₂O/CH₃CN 1:4, pH 7.0

Figure S1: UV-melting curves of the symmetric duplexes with the propanediol anucleosidic linker (X = 1) bottom; and the bicyclic linker (X = 2), top. C = $1.8-2.0 \mu$ M in 10 mM NaH₂PO₄, 150 mM NaCl, pH 7.0. Sequence context as in Figure 1 of the printed paper.

Figure S2: UV-melting curves of the asymmetric duplexes with the propanediol anucleosidic linker (X = 1). C = $1.8-2.0 \mu$ M in 10 mM NaH₂PO₄, 150 mM NaCl, pH 7.0. Sequence context as in Figure 1 of the printed paper.

Figure S2: UV-melting curves of the asymmetric duplexes with the bicyclic linker (X = 2). C = $1.8-2.0 \mu$ M in 10 mM NaH₂PO₄, 150 mM NaCl, pH 7.0. Sequence context as in Figure 1 of the printed paper.