Efficient Nazarov Cyclizations of 2-Alkoxy-1,4-pentadien-3-ones

Guangxin Liang, Stefan N. Gradl and Dirk Trauner*

Center for New Directions in Organic Synthesis, Department of Chemistry, University of California—Berkeley, Berkeley, California 94720

Supporting Information

General. Unless otherwise noted, infrared spectra (IR) were obtained on NaCl plates with a ATI Mattson Gemini FTIR spectrometer. Proton NMR spectra (¹H NMR) were recorded at 400 MHz in CDCl₃ and carbon NMR spectra (¹³C NMR) were recorded at 100 MHz in CDCl₃ on Bruker AMX-400 spectrometer. High resolution mass spectra (HRMS) were obtained on VG ProSpec Mass Spectrometer using electron impact (EI) at 70 eV unless otherwise noted. Preparative HPLC was performed on a Varian preparative HPLC instrument with a dynamax Microsorb Si column (ID: 21.4 mm. particle size 8 um. length: 25 cm, pore size: 60 Å) with a linear gradient of 8% EtOAc in hexanes to 25% EtOAc in hexanes over a course of 30 min with a flow rate of 21.6 mL/min. Enantioselectivities were measured on chiral analytical HPLC with a CHIRALPAK AD column (250 X 4.6 mm) with a linear gradient of 2% isopropanol in hexanes to 20% isopropanol in hexanes over a course of 18 min with a flow rate of 1.0 mL/min. The products of the Nazarov electrocyclizations were purified and confirmed by NMR spectra before enantioselectivities were measured. The peaks of two enantiomers were located based on the retention times derived from racemic mixture. Integration was done manually and the estimated error of e.e. is $\pm 1\%$.

All reaction mixtures were magnetically stirred in oven-dried glassware under a blanket of nitrogen. External bath temperatures were used to record all reaction mixture temperatures. Analytical thin layer chromatography (TLC) was carried out on Merck silica gel 60 F₂₅₄ TLC plates. TLC visualization was accomplished using 254 nm UV light or charring solutions of KMnO₄ Flash chromatography was performed on ICN siliTech 32-63 D 60 Å silica gel according to the procedure of Still.¹

Tetrahydrofuran (THF), dichloromethane (CH_2Cl_2) were dried according to the procedure described by Bergman.² Benzene was distilled from CaH_2 immediately prior to use. Acetonitrile (MeCN) was distilled from P_2O_5 immediately prior to use. Extracts were dried over anhydrous Na_2SO_4 and solvents were removed with a rotary evaporator at aspirator pressure.

The preparation of compounds 8a, 8b, 8c, 8e, 8g, 8h, 8j, 8k, 8l, 8m and 8n followed the same general procedure. A representative procedure was demonstrated below.

1-(5,6-Dihydro-4H-pyran-2-yl)-2-methyl-prop-2-en-1-ol (8a) To 0.500 g (5.94 mmol) of dihydropyrone in 0.3 mL of THF was added 3.84 mL of a 1.7 M solution of t-BuLi in pentane dropwise at -78 °C. The reaction mixture was warmed to 0 °C. After the reaction mixture was stirred for 30 min at 0 °C and treated with 0.2 mL of THF, the reaction mixture was cooled back to -78 °C and was treated with 0.480g (6.53 mmol) of 2-methylpropenal dropwise. The reaction mixture was allowed to warm to 0 °C. Upon reaching 0 °C, the reaction was quenched with water (50 mL) and diluted with EtOAc (100 mL). The two layers were separated and the aqueous layer was extracted with EtOAc (2 X 40 mL). The combined organic layers were washed with brine (80 mL), dried, filtered and concentrated in vacuo. The product was purified by column chromatography (EtOAc: hexanes = 1:6) to afford 0.503 g (55%) of 8a as colorless oil. R_f 0.20 (EtOAc: hexanes = 1:6); IR 3427(br), 2928, 2873, 2849, 1675 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ_H 5.08 (s, 1 H), 4.94 (m, 1 H), 4.81 (t, 1 H, J = 3.8 Hz), 4.34 (d, 1 H, J = 5.9 Hz), 3.98 (m, 2 H), 2.22 (d, 1 H, J = 6.1 Hz), 2.03 (m, 2 H), 1.80 (m, 2 H), 1.71 (s, 3 H); 13 C NMR (75 MHz, CDCl₃) δ_C 152.87, 144.67, 111.46, 98.01, 76.00, 66.49, 22.28, 19.92, 18.80; HRMS calcd for $C_9H_{14}O_2(M)^+$ 154.0994, found: 154.0990.

1-(5,6-Dihydro-4H-pyran-2-yl)-2-ethyl-prop-2-en-1-ol (8b) Yield: 83%; Colorless oil. R_f 0.14 (EtOAc: hexanes = 1:9); IR 3434(br), 2965, 2932, 2876, 2849, 1675, 1650cm⁻¹; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 5.13 (s, 1 H), 4.92 (s, 1 H), 4.79 (t, 1 H, J = 3.7 Hz), 4.35 (d, 1 H, J = 6.0 Hz), 4.01 (m, 1 H), 3.93 (m, 1 H), 2.36 (d, 1 H, J = 6.0 Hz), 2.01 (m, 4 H), 1.76 (m, 2 H),1.03 (t, 3 H, J = 7.4 Hz); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 153.12, 150.34, 108.99, 98.02, 75.45, 66.41, 24.82, 22.25, 19.92, 12.12; HRMS calcd for C₁₀H₁₆O₂ (M)⁺ 168.1150, found: 168.1153.

1-(5,6-Dihydro-4H-pyran-2-yl)-2-isopropyl-prop-2-en-1-ol (8c) Yield: 75%; Colorless oil; R_f 0.21 (EtOAc: hexanes = 1:9); IR 3433(br), 2959, 2930, 2871, 2850, 1675, 1649cm⁻¹; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 5.10 (s, 1 H), 4.91 (s, 1 H), 4.76 (t, 1 H, J = 3.7 Hz), 4.34 (d, 1 H, J = 6.0 Hz), 3.95 (m, 1 H), 3.88 (m, 1 H), 2.47 (d, 1 H, J = 6.2 Hz), 2.22 (m, 1 H), 1.97 (m, 2 H), 1.72 (m, 2 H), 0.99 (d, 3 H, J = 6.8 Hz), 0.96 (d, 3 H, J = 6.8 Hz);

 ^{13}C NMR (125 MHz, CDCl₃) δ_C 155.23, 153.40, 107.73, 98.04, 74.60, 66.29, 29.93, 22.92, 22.22, 19.93; HRMS calcd for $C_{11}H_{18}O_2\left(M\right)^+$ 182.1307 found: 182.1305.

1-(5,6-Dihydro-4H-pyran-2-yl)-4-methyl-pent-2-en-1-ol (8e) Yield: 91%; Colorless oil. R_f 0.21 (EtOAc: hexanes = 1:9); IR 3440(br), 2957, 2931, 2869, 2851, 1677cm⁻¹; 1 H NMR δ_H 5.67 (ddd, 1 H, J = 15.4, 6.4, 1.0 Hz), 5.48 (ddd, 1 H, J = 15.4, 6.4, 1.0 Hz), 4.73 (t, 1 H, J = 3.7 Hz), 4.36 (t, 1 H, J = 5.3 Hz), 4.00 (m, 2 H), 2.28 (m, 1 H), 2.18 (d, 1 H, J = 4.8 Hz), 2.00 (m, 2 H), 1.79 (m, 2 H), 0.97 (dd, 6 H, J = 6.8, 1.2 Hz); 13 C NMR δ_C 154.37, 140.30, 126.16, 96.87, 73.22, 66.41, 30.66, 22.34, 22.19, 22.13, 19.90; HRMS calcd for $C_{11}H_{18}O_2(M)^+$ 182.1307, found: 182.1308

1-(5,6-Dihydro-4H-pyran-2-yl)-3-methyl-but-2-en-1-ol (8g) Yield: 87%; Colorless oil. R_f 0.21 (EtOAc: hexanes = 1:6); IR 3412 (br), 2967, 2928, 2875, 2850, 1675 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 5.32 (dt, 1 H, J = 8.6, 1.3 Hz), 4.75 (t, 1 H, J = 3.8 Hz), 4.65 (q, 1 H, J = 4.3 Hz), 4.03 (t, 2 H, J = 5.1 Hz), 2.00 (m, 3 H), 1.80 (m, 2 H), 1.73 (d, 3 H, J = 1.0 Hz), 1.69 (d, 3 H, J = 1.0 Hz); ¹³C NMR $\delta_{\rm C}$ 154.45, 136.75, 124.17, 96.43, 69.24, 66.46, 25.88, 22.36, 19.90, 18.19; HRMS calcd for $C_{10}H_{16}O_{2}(M)^{+}$ 168.1150, found: 168.1155

1-(5,6-Dihydro-4H-pyran-2-yl)-2-methyl-but-2-en-1-ol (8h) Yield: 92%; Colorless oil. R_f 0.23 (EtOAc: hexanes = 1:6); IR 3435 (br), 2928, 2861, 1677 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ_H 5.56 (q, 1 H, J = 6.7 Hz), 4.76 (t, 1 H, J = 3.7 Hz), 4.29 (d, 1 H, J = 4.7 Hz), 3.99 (m, 1 H), 3.94 (m, 1 H), 2.22 (d, 1 H, J = 5.2 Hz), 2.01 (m, 2 H), 1.77 (m, 2 H), 1.61 (d, 3 H, J = 6.8 Hz), 1.58 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ_C 153.41, 135.18, 121.37, 96.99, 77.10, 66.34, 22.34, 19.88, 13.21, 12.08; HRMS calcd for $C_{10}H_{16}O_2$ (M)⁺ 168.1150, found: 168.1149.

Cyclopent-1-enyl-(5,6-dihydro-4H-pyran-2-yl)-methanol (8j) Yield: 90%; Colorless oil. R_f 0.10 (EtOAc: hexanes = 1:6); IR 3434(br), 2945, 2847 cm⁻¹; ¹H NMR (400 MHz, C_6H_6) δ_H 5.76 (m, 1 H), 4.75 (t, 1 H, J = 3.6 Hz), 4.63 (d, 1 H, J = 3.5 Hz), 3.67 (m, 2 H), 2.42 (m, 3 H), 2.28 (m, 2 H), 1.78 (m, 4 H), 1.40 (m, 2 H); ¹³C NMR (100 MHz, C_6H_6) δ_C 154.73, 145.34, 126.19, 96.26, 72.22, 66.14, 32.69, 32.43, 23.75, 22.65, 20.17; HRMS calcd for $C_{11}H_{16}O_2(M)^+$ 180.1150, found: 180.1150.

(5,6-Dihydro-4H-pyran-2-yl)-(4,4-dimethyl-cyclopent-1-enyl)-methanol (8k) Yield: 85%; Colorless oil. R_f 0.27 (EtOAc: hexanes = 1:6); IR 3432 (br), 2947, 2864, 1675 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ_H 5.53 (s, 1 H), 4.73 (t, 1 H, J = 1.7 Hz), 4.42 (s, 1 H), 3.96 (m, 2 H), 2.32 (d, 1 H, J = 4.3 Hz), 2.13 (d, 2 H, J = 1.7 Hz), 2.07 (s, 2 H), 1.99 (m, 2 H), 1.76 (m, 2 H), 1.04 (s, 6 H); ¹³C NMR (125 MHz, CDCl₃) δ_C 153.37, 142.79, 124.74, 97.18, 72.22, 66.28, 47.34, 47.09, 38.55, 29.69, 29.64, 22.34, 19.89; HRMS calcd for $C_{13}H_{20}O_2$ (M)⁺ 208.1463, found: 208.1460.

(5,6-Dihydro-4H-pyran-2-yl)-(2-methyl-cyclopent-1-enyl)-methanol (8l) Yield: 85%; Colorless oil. R_f 0.32 (EtOAc: hexanes = 1:6); IR 3428 (br), 2944, 2928, 2847, 1678 cm⁻¹; ¹H NMR δ_H 4.83 (s, 1 H), 4.74 (t, 1 H, J = 3.7 Hz), 4.02 (m, 2 H), 2.47 (m, 1 H), 2.33 (m, 3 H), 2.14 (s, 1 H), 2.03 (m, 2 H), 1.80 (m, 4 H), 1.70 (s, 3 H); ¹³C NMR δ_C 153.75, 136.61, 134.32, 95.66, 68.75, 66.33, 38.90, 31.79, 22.42, 21.58, 19.88, 13.96; HRMS calcd for C₁₂H₁₈O₂ (M)⁺ 194.1307, found: 194.1311

(5,6-Dihydro-4H-pyran-2-yl)-(4-isopropenyl-cyclohex-1-enyl)-methanol (8m) Yield: 88%; Colorless oil. R_f 0.27 (EtOAc: hexanes = 1:6); IR 3434(br), 2917, 1676, 1643cm⁻¹; ¹H NMR δ_H 5.83 (s, 1 H), 4.81 (q, 1 H, J = 3.5 Hz), 4.73 (s, 2 H), 4.35 (d, 1 H, J = 7.2 Hz), 4.02 (m, 2 H), 2.10 (m, 8 H), 1.84 (m, 3 H), 1.75 (s, 3 H), 1.46 (m, 1 H); ¹³C NMR δ_C 153.38, 153.22, 149.89, 137.13, 136.83, 123.34, 122.57, 108.49, 97.48, 97.12, 75.90, 75.74, 66.36, 41.05, 30.48, 27.49, 25.29, 24.89, 22.35, 20.69, 19.91; HRMS calcd for $C_{15}H_{22}O_2$ (M)⁺ 234.1620, found: 234.1618

Cyclohex-1-enyl-(5,6-dihydro-4H-pyran-2-yl)-methanol (8n) Yield: 94%; Colorless oil. R_f 0.27 (EtOAc: hexanes = 1:6); IR 3425(br), 2927, 2854, 1677cm⁻¹; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 5.76 (s, 1 H), 4.76 (t, 1 H, J = 3.4 Hz), 4.26 (d, 1 H, J = 4.8 Hz), 4.02 (m, 1 H), 3.95 (m, 1 H), 2.14 (d, 1 H, J = 5.5 Hz), 2.03 (m, 4 H), 1.93 (m, 2 H), 1.79 (m, 2 H), 1.57 (m, 4 H); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 153.35, 137.25, 123.50, 97.23, 76.15, 66.34, 24.97, 24.56, 22.57, 22.36, 19.91; HRMS calcd for C₁₂H₁₈O₂ (M)⁺ 194.1307, found: 194.1305

The preparation of compounds **8d**, **8f**, and **8i** followed the same general procedure. A representative procedure was demonstrated below.

1-(5,6-Dihydro-4H-pyran-2-yl)-3-phenyl-prop-2-en-1-ol (8d) To 0.500 g (5.94 mmol) of dihydropyrone in 0.3 mL of THF was added 3.84 mL of a 1.7 M solution of *t*-BuLi in pentane dropwise at –78 °C. The reaction mixture was warmed to 0 °C. After the reaction mixture was stirred for 30 min at 0 °C, it was treated with 0.862 g (6.53 mmol) of 3-phenyl-propenal in 1 mL of THF dropwise. The reaction mixture was kept at 0 °C for 1 h before it was quenched with water (50 mL) and diluted with EtOAc (100 mL). The two layers were separated and the aqueous layer was extracted with EtOAc (2 X 40 mL). The combined organic layers were washed with brine (80 mL), dried, filtered and concentrated *in vacuo*. The product was purified by column chromatography (EtOAc:

hexanes = 1:6) to afford 0.770 g (60%) of **8d** as lightly yellow oil. R_f 0.17 (EtOAc: hexanes = 1:6); IR 3432(br), 3081, 3057, 3026, 2930, 2876, 2848, 1674cm⁻¹; ¹H NMR δ_H 7.39 (d, 2 H, J = 7.3 Hz), 7.31 (t, 2 H, J = 7.3 Hz), 7.23 (t, 1 H, J = 7.3 Hz), 6.66 (d, 1 H, J = 6.0 Hz), 6.31 (dd, 1 H, J = 15.9, 6.3 Hz), 4.85 (t, 1 H, J = 3.7 Hz), 4.62 (t, 1 H, J = 5.4 Hz), 4.05 (m, 2 H), 2.30 (d, 1 H, J = 5.3 Hz), 2.04 (m, 2 H), 1.83 (m, 2 H); ¹³C NMR δ_C 153.78, 136.62, 131.23, 128.78, 128.48, 127.63, 126.57, 97.47, 73.24, 66.51, 22.29, 19.89; HRMS calcd for $C_{14}H_{16}O_2$ (M)⁺ 216.1150, found: 216.1153

1-(5,6-Dihydro-4H-pyran-2-yl)-hexa-2,4-dien-1-ol (8f) Yield: 45%; Colorless oil. R_f 0.19 (EtOAc: hexanes = 1:6); IR 3440(br), 3017, 2930, 2876, 2850, 1675cm⁻¹; ¹H NMR $\delta_{\rm H}$ 6.25 (dd, 1 H, J = 15.2, 10.4 Hz), 6.07 (m, 1 H), 5.70 (m, 2 H), 4.79 (t, 1 H, J = 3.8 Hz), 4.46 (s, 1 H), 4.03 (m, 2 H), 2.21 (d, 1 H, J = 4.5 Hz), 2.03 (m, 2 H), 1.82 (m, 2 H), 1.76 (d, 3 H, J = 6.7 Hz); ¹³C NMR $\delta_{\rm C}$ 154.03, 131.86, 130.80, 130.24, 129.57, 97.13, 73.02, 66.47, 22.33, 19.91, 18.11; HRMS calcd for $C_{11}H_{16}O_2$ (M)⁺ 180.1150 found: 180.1149

1-(5,6-Dihydro-4H-pyran-2-yl)-2-methyl-3-phenyl-prop-2-en-1-ol (8i) Yield: 68%; Colorless oil. R_f 0.24 (EtOAc: hexanes = 1:6); IR 3429(br), 3080, 3054, 3023, 2945, 2930, 2870, 2849, 1675 cm⁻¹; ¹H NMR δ_H 7.32 (m, 4 H), 7.21 (m, 1 H), 6.64 (s, 1 H), 4.88 (t, 1 H, J = 3.7 Hz), 4.51 (d, 1 H, J = 4.4 Hz), 4.03 (m, 2 H), 2.54 (d, 1 H, J = 5.2 Hz), 2.06 (m, 2 H), 1.88 (d, 3 H, J = 1.1 Hz), 1.82 (m, 2 H); ¹³C NMR δ_C 153.16, 137.69, 137.40, 129.03, 128.00, 126.33, 126.23, 97.85, 66.47, 22.34, 19.99, 14.49; HRMS calcd for $C_{15}H_{18}O_2$ (M)⁺ 230.1307, found: 230.1310

The preparation of compounds **8p**, **8r** and **8s** followed the same general procedure. A representative procedure was demonstrated below.

2-Ethoxy-4-methyl-penta-1,4-dien-3-ol (8p) To 0.500 g (6.93 mmol) of ethyl vinyl ether in 0.4 mL of THF was added 3.71 mL of a 1.7 M solution of t-BuLi in pentane dropwise at -78 °C. The reaction mixture was warmed to 0 °C. After the reaction mixture was stirred for 30 min at 0 °C and treated with 0.3 mL of THF, the reaction mixture was cooled back to -78 °C and was treated with 0.400 g (5.73 mmol) of 2-methyl-propenal dropwise. The reaction mixture was allowed to warm to 0 °C. Upon reaching 0 °C, the reaction was quenched with water (50 mL) and diluted with EtOAc (100 mL). The two layers were separated and the aqueous layer was extracted with EtOAc (2 X 40 mL). The combined organic layers were washed with brine (80 mL), dried, filtered and concentrated in vacuo. The product was purified by column chromatography (EtOAc: hexanes = 1:15) to afford 0.400 g (49%) of **8p** as colorless oil. R_f 0.23 (EtOAc: hexanes = 1:9); IR 3436(br), 2979, 2917, 2882, 1658, 1625cm⁻¹; ¹H NMR $\delta_{\rm H}$ 5.06 (s, 1 H), 4.92 (dd, 1 H, J = 2.5, 1.5 Hz), 4.43 (d, 1 H, J = 6.0 Hz), 4.16 (d, 1 H, J = 2.3 Hz), 4.01 (d, 1 H, J = 3.5) 2.3 Hz), 3.74 (q, 2 H, J = 7.0 Hz), 2.33 (d, 1 H, J = 6.2 Hz) 1.71 (s, 3 H), 1.28 (t, 3 H, J =7.0Hz); 13 C NMR δ_{C} 161.37, 144.71, 111.89, 82.33, 76.35, 63.09, 18.44, 14.21; HRMS calcd for $C_8H_{14}O_2(M)^+$ 142.0994, found: 142.0997

1-Cyclohex-1-enyl-2-ethoxy-prop-2-en-1-ol (8r) Yield: 78%; Colorless oil. R_f 0.12 (EtOAc: hexanes = 1:20); IR 3410(br), 2978, 2927, 1657, 1623cm⁻¹; ¹H NMR $\delta_{\rm H}$ 5.71 (s, 1 H), 4.33 (d, 1 H, J = 3.9 Hz), 4.11 (d, 1 H, J = 2.0 Hz), 3.96 (d, 1 H, J = 2.0 Hz), 3.71 (q, 2 H, J = 7.0 Hz), 2.36 (d, 1 H, J = 5.0 Hz), 1.93 (m, 4 H), 1.55 (m, 4 H), 1.25 (t, 3 H, J = 7.0 Hz); ¹³C NMR $\delta_{\rm C}$ 162.00, 137.36, 123.98, 81.77, 76.62, 62.99, 25.04, 24.26, 22.62, 22.41, 14.29; HRMS calcd for C₁₁H₁₈O₂(M)⁺ 182.1307, found: 182.1307

1-(4,4-Dimethyl-cyclopent-1-enyl)-2-ethoxy-prop-2-en-1-ol (8s) Yield: 58%; Colorless oil. R_f 0.30 (EtOAc: hexanes = 1:9); IR 3441(br), 2952, 2925, 2901, 2866, 2840, 1717, 1650, 1622cm⁻¹; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 5.56 (s, 1 H), 4.55 (d, 1 H, J = 6.0 Hz), 4.11 (d, 1 H, J = 1.8 Hz), 3.97 (d, 1 H, J = 1.8 Hz), 3.75 (q, 2 H, J = 7.0 Hz), 2.28 (d, 1 H, J = 6.4 Hz), 2.15 (s, 2 H), 2.10 (s, 2 H), 1.28 (t, 3 H, J = 7.0 Hz), 1.06 (s, 6 H); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 161.78, 142.74, 125.14, 81.74, 72.56, 62.97, 47.35, 46.79, 38.57, 29.63, 14.27; HRMS calcd for C₁₂H₂₀O₂ (M)⁺ 196.1463, found: 196.1463

4-Ethoxy-1-phenyl-penta-1,4-dien-3-ol (8q) To 0.500 g (6.93 mmol) of ethyl vinyl ether in 0.4 mL of THF was added 3.71 mL of a 1.7 M solution of t-BuLi in pentane dropwise at -78 °C. The reaction mixture was warmed to 0 °C. After the reaction mixture was stirred for 30 min at 0 °C, it was treated with 0.757 g (5.73 mmol) of 3-phenylpropenal in 1 mL of THF dropwise. The reaction mixture was kept at 0 °C for 1 h before it was quenched with water (50 mL) and diluted with EtOAc (100 mL). The two layers were separated and the aqueous layer was extracted with EtOAc (2 X 40 mL). The combined organic layers were washed with brine (80 mL), dried, filtered and concentrated in vacuo. The product was purified by column chromatography (EtOAc: hexanes = 1:9) to afford 0.678 g (58%) of $\mathbf{8q}$ as colorless oil. R_f 0.26 (EtOAc: hexanes = 1:6); IR 3368(br), 3027, 2979, 2360, 2335, 1658, 1625cm⁻¹; ¹H NMR $\delta_{\rm H}$ 7.43 (d, 2 H, J = 7.6 Hz), 7.34 (t, 2 H, J = 7.6 Hz), 7.27 (d, 1 H, J = 7.6 Hz), 6.70 (d, 1 H, J = 16.0 Hz), 6.35 (dd, 1 H, J = 16.0, 6.2 Hz), 4.74 (t, 1 H, J = 3.7 Hz), 4.25 (d, 1 H, J = 2.1 Hz), 4.06(d, 1 H, J = 2.1 Hz), 3.83 (q, 2 H, J = 7.0 Hz), 2.42 (d, 1 H, J = 5.5 Hz), 1.36 (t, 3 H, J =7.0 Hz); 13 C NMR $\delta_{\rm C}$ 162.32, 136.71, 131.32, 129.17, 128.54, 127.71, 126.63, 81.99, 73.64, 63.27, 14.36; HRMS calcd for $C_{13}H_{16}O_2(M)^+$ 204.1150, found: 204.1153

(4,5-Dihydro-furan-2-vl)-(4,4-dimethyl-cyclopent-1-enyl)-methanol (80) To 0.500 g (7.13 mmol) of dihydrofuran in 0.3 mL of THF was added 4.62 mL of a 1.7 M solution of t-BuLi in pentane dropwise at -78 °C. The reaction mixture was warmed to 0 °C. After the reaction mixture was stirred for 30 min at 0 °C and treated with 0.2 mL of THF, the reaction mixture was cooled back to -78 °C and was treated with 0.974 g (7.84 mmol) of 4,4-dimethyl-cyclopent-1-enecarbaldehyde dropwise. The reaction mixture was allowed to warm to 0 °C. Upon reaching 0 °C, the reaction was quenched with water (50 mL) and diluted with EtOAc (100 mL). The two layers were separated and the aqueous layer was extracted with EtOAc (2 X 40 mL). The combined organic layers were washed with brine (80 mL), dried, filtered and concentrated in vacuo. The product was purified by column chromatography (EtOAc: hexanes = 1:6) to afford 1.18 g (85%) of **80** as colorless oil; R_f 0.27 (EtOAc: hexanes = 1:6); IR 3460(br), 2951, 2929, 2892, 2865, 2840, 1714 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 5.61 (d, 1 H, J = 1.2 Hz), 4.86 (t, 1 H, J = 2.2 Hz), 4.76 (d, 1 H, J = 5.1 Hz), 4.36 (m, 2 H), 2.65 (m, 2 H), 2.18 (d, 2 H, J = 2.0 Hz), 2.15 (d, 2 H, J = 3.0 Hz) 2.0 Hz), 2.02 (d, 1 H, J = 5.6 Hz), 1.08 (s, 3 H), 1.08 (s, 3 H); 13 C NMR (125 MHz, CDCl₃) δ_C 157.80, 141.93, 125.76, 95.95, 70.34, 67.64, 47.32, 46.77, 38.58, 29.77, 29.69, 29.67; HRMS calcd for $C_{12}H_{18}O_2(M)^+$ 194.1307, found: 194.1312

1-(5,6-Dihydro-[1,4]dioxin-2-yl)-2-isopropyl-prop-2-en-1-ol (8t) To 0.500 g (5.81) mmol) of 2,3-dihydro-[1,4]dioxine in 0.3 mL of THF was added 3.76 mL of a 1.7 M solution of t-BuLi in pentane dropwise at -78 °C. The reaction mixture was warmed to 0 °C. After the reaction mixture was stirred for 30 min at 0 °C and treated with 0.2 mL of THF, the reaction mixture was cooled back to -78 °C and was treated with 0.627 g (6.39 mmol) of 2-isopropyl-propenal dropwise. The reaction mixture was allowed to warm to 0 °C. Upon reaching 0 °C, the reaction was quenched with water (50 mL) and diluted with EtOAc (100 mL). The two layers were separated and the aqueous layer was extracted with EtOAc (2 X 40 mL). The combined organic layers were washed with brine (80 mL), dried, filtered and concentrated in vacuo. The product was purified by column chromatography (EtOAc: hexanes = 1:6) to afford 0.696 g (65%) of 8t as colorless oil; R_f 0.21 (EtOAc: hexanes = 1:4); IR 3428(br), 2961, 2931, 2874, 1680, 1649 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta_{\text{H}} 6.10 \text{ (s, 1 H)}, 5.21 \text{ (s, 1 H)}, 5.02 \text{ (s, 1 H)}, 4.40 \text{ (d, 1 H, } J = 4.2 \text{ Hz)},$ 4.08 (s, 2 H), 3.98 (m, 2 H), 2.26 (m, 2 H), 1.06 (d, 3 H, J = 6.8 Hz), 1.03 (d, 3 H, J = 6.8Hz); 13 C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 154.43, 136.88, 125.18, 108.06, 72.16, 64.62, 64.07, 30.28, 22.97, 22.01; HRMS calcd for $C_{10}H_{16}O_3(M)^+$ 184.1100, found: 184.1102

The oxidation of compounds 8 to 9 was carried out by either Dess-Martin oxidation or MnO_2 . The representative procedures of both methods were demonstrated below.

1-(5,6-Dihydro-4H-pyran-2-yl)-hexa-2,4-dien-1-one (9f) Oxidation by Dess-Martin reagent: To 0.250 g (1.39 mmol) of **8f** and 1 mL pyridine in 25 mL of CH_2Cl_2 was added 0.718 g (1.46 mmol) of Dess-Martin reagent at 23 °C. After 20 min, the reaction was quenched with 20 mL 1:1 mixture of water and 6 N NaOH solution. The mixture was stirred vigorously for 10 min. The two layers were separated and the aqueous layer was extracted with CH_2Cl_2 (2 X 15 mL). The combined organic layers were washed with brine (30 mL), dried, filtered and concentrated *in vacuo*. The product was purified by column chromatography (EtOAc: hexanes = 1:9) to afford 0.990 g (40%) of **9f** as colorless oil:

Oxidation by MnO₂: To a suspension of 7.80 g manganese (IV) oxide in 50 mL benzene was added 0.780 g (4.33 mmol) of **8f** dissolved in 50 mL benzene. After 5 min, the reaction mixture was filtered through Celite and washed with EtOAc (4 X 50 mL). The combined filtrate was concentrate *in vacuo*. The product was purified by column chromatography (EtOAc: hexanes = 1:9) to afford 0.733 g (95%) of **9f** as colorless oil R_f

0.23 (EtOAc: hexanes = 1:6); IR 2991, 2950, 2934, 1671, 1620, 1580cm⁻¹; ¹H NMR $\delta_{\rm H}$ 7.30 (m, 1 H), 6.32 (d, 1 H, J = 15.0 Hz), 6.20 (m, 2 H), 5.99 (t, 1 H, J = 4.2 Hz), 4.09 (t, 2 H, J = 5.1 Hz), 2.21 (dd, 2 H, J = 10.7, 6.3 Hz), 1.84 (m, 5 H); ¹³C NMR $\delta_{\rm C}$ 185.78, 151.94, 144.23, 140.68, 130.65, 121.84, 110.20, 66.31, 21.58, 20.86, 18.83; HRMS calcd for $C_{11}H_{14}O_{2}$ (M)⁺ 178.0994, found: 178.0998

1-(5,6-Dihydro-4H-pyran-2-yl)-2-methyl-propenone (9a) Dess-Martin oxidation afforded **9a** as colorless oil in 85% yield. R_f 0.33 (EtOAc: hexanes = 1:6); IR 2928, 2878, 1657, 1625 cm⁻¹; ¹H NMR (500 Hz, CDCl₃) $\delta_{\rm H}$ 5.84 (t, 1 H, J = 4.1 Hz), 5.66 (s, 1 H), 5.64 (t, 1 H, J = 1.4 Hz), 4.11 (t, 2 H, J = 5.1 Hz), 2.22 (m, 2 H), 1.93 (t, 3 H, J = 1.1 Hz), 1.87 (m, 2 H); ¹³C NMR (125 Hz, CDCl₃) $\delta_{\rm C}$ 192.61, 150.89, 142.79, 123.83, 113.83, 66.28, 21.43, 20.82, 18.92; HRMS calcd for C₉H₁₂O₂ (M)⁺ 152.0837, found: 152.0839

1-(5,6-Dihydro-4H-pyran-2-yl)-2-ethyl-propenone (9b) Dess-Martin oxidation afforded **9b** as colorless oil in 82% yield. R_f 0.27 (EtOAc: hexanes = 1:6); IR 2967, 2934, 2876, 1656, 1625cm⁻¹; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 5.72 (t, 1 H, J = 4.2 Hz), 5.43 (d, 1 H, J = 1.0 Hz), 5.39 (d, 1 H, J = 1.0 Hz), 3.96 (t, 2 H, J = 5.1 Hz), 2.19 (m, 2 H), 2.08 (m, 2 H), 1.71 (m, 2 H), 0.87 (t, 3 H, J = 7.4 Hz); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 192.80, 151.08, 148.56, 120.87, 114.67, 66.18, 25.39, 21.25, 20.74, 12.02; HRMS calcd for $C_{10}H_{14}O_{2}$ (M)⁺ 166.0994, found: 166.0993

1-(5,6-Dihydro-4H-pyran-2-yl)-2-isopropyl-propenone (9c) Dess-Martin oxidation afforded **9c** as a colorless oil in 88% yield. R_f 0.23 (EtOAc: hexanes = 1:9); IR 2961, 2932, 2873, 1660, 1625cm⁻¹; ¹H NMR δ_H 5.74 (t, 1 H, J = 4.2 Hz), 5.33 (d, 2 H, J = 4.4 Hz), 3.98 (t, 2 H, J = 5.1 Hz), 2.73 (m, 1 H), 2.10 (m, 2 H), 1.74 (m, 2 H), 0.9 (d, 6 H, J = 7.0 Hz); ¹³C NMR δ_C 193.60, 153.34, 151.51, 118.34, 115.30, 66.29, 29.92, 21.32, 21.07, 20.89; HRMS calcd for $C_{11}H_{16}O_2$ (M)⁺ 180.1150 found: 181.1153

1-(5,6-Dihydro-4H-pyran-2-yl)-3-phenyl-propenone (9d) Oxidation by MnO₂ afforded **9d** as lightly yellow oil in 80% yield. R_f 0.34 (EtOAc: hexanes = 1:6); IR 3059, 3026, 2950, 2932, 2874, 1664, 1628, 1599, 1575cm⁻¹; ¹H NMR $\delta_{\rm H}$ 7.70 (d, 1 H, J = 5.8 Hz), 7.54 (m, 2 H), 7.32 (m, 4 H), 6.09 (t, 1 H, J = 4.2 Hz), 4.11 (t, 2 H, J = 5.0 Hz), 2.21 (dd, 2 H, J = 10.6, 6.2 Hz), 1.84 (m, 2 H); ¹³C NMR $\delta_{\rm C}$ 185.28, 151.83, 143.71, 134.88, 130.32, 128.80, 128.39, 120.5, 110.88, 66.34, 21.49, 20.87; HRMS calcd for C₁₄H₁₄O₂ (M)⁺ 214.0994, found: 214.0989

1-(5,6-Dihydro-4H-pyran-2-yl)-4-methyl-pent-2-en-1-one (9e) Dess-Martin oxidation afforded **9e** as colorless oil in 55% yield. R_f 0.28 (EtOAc: hexanes = 1:15); IR 2961, 2933, 2871, 1683, 1671, 1634, 1614cm⁻¹; ¹H NMR $\delta_{\rm H}$ 6.89 (dd, 1 H, J = 15.5, 6.7 Hz), 6.53 (d, 1 H, J = 15.5 Hz), 5.94 (t, 1 H, J = 4.2 Hz), 4.02 (t, 2 H, J = 5.0 Hz), 2.39 (m, 1 H), 2.14 (dd, 2 H, J = 10.8, 6.2 Hz), 1.78 (m, 2 H), 0.98 (d, 6 H, J = 6.8Hz); ¹³C NMR $\delta_{\rm C}$ 185.69, 154.74, 151.62, 121.0, 110.72, 66.20, 31.27, 21.43, 21.23, 20.75; HRMS calcd for $C_{11}H_{16}O_{2}$ (M)⁺ 180.1150, found: 180.1152

1-(5,6-Dihydro-4H-pyran-2-yl)-3-methyl-but-2-en-1-one (9g) Oxidation by MnO₂ afforded **9g** as colorless oil in 91% yield. R_f 0.34 (EtOAc: hexanes = 1:9); IR 2972, 2934, 2875, 1663, 1631, 1611 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 6.43 (t, 1 H, J = 1 Hz), 5.88 (t, 1 H, J = 4.2 Hz), 4.02 (t, 2 H, J = 5.1 Hz), 2.12 (m, 2 H), 2.07 (s, 3 H), 1.85 (s, 3 H), 1.77 (m, 2 H); ¹³C NMR $\delta_{\rm C}$ 186.56, 156.56, 152.31, 119.50, 109.23, 66.23, 27.93, 21.56, 20.99, 20.74; HRMS calcd for $C_{10}H_{14}O_{2}$ (M)⁺ 166.0994, found: 166.0989

1-(5,6-Dihydro-4H-pyran-2-yl)-2-methyl-but-2-en-1-one (9h) Dess-Martin oxidation afforded **9h** as colorless oil in 70% yield. R_f 0.26 (EtOAc: hexanes = 1:6); IR 2931, 2874, 1649 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 6.40 (m, 1 H), 5.55 (t, 1 H, J = 4.1 Hz), 4.00 (t, 2 H, J = 5.2 Hz), 2.10 (m, 2 H), 1.77 (m, 2 H), 1.72 (m, 6 H); ¹³C NMR $\delta_{\rm C}$ 193.07, 151.23, 137.73, 136.13, 111.86, 66.26, 21.53, 20.67, 14.37, 12.35; HRMS calcd for $C_{10}H_{14}O_{2}$ (M)⁺ 166.0994, found: 166.0993.

1-(5,6-Dihydro-4H-pyran-2-yl)-2-methyl-3-phenyl-propenone (9i) Dess-Martin oxidation afforded **9i** as colorless oil in 83% yield. R_f 0.23 (EtOAc: hexanes = 1:9); IR 3055, 3024, 2954, 2929, 2873, 2841, 1654, 1626 cm⁻¹; ¹H NMR δ_H 7.35 (m, 4 H), 7.27 (m, 1 H), 7.21 (d, 1 H, J = 1.3 Hz), 5.79 (t, 1 H, J = 4.2 Hz), 4.12 (t, 2 H, J = 5.1 Hz), 2.21 (m, 2 H), 2.10 (d, 3 H, J = 1.4 Hz), 1.87 (m, 2 H); ¹³C NMR δ_C 193.68, 151.18, 138.74, 135.77, 135.72, 129.54, 128.35, 128.24, 113.27, 66.37, 21.51, 20.84, 14.72; HRMS calcd for $C_{15}H_{16}O_2$ (M)⁺ 228.1150, found: 228.1152

Cyclopent-1-enyl-(5,6-dihydro-4H-pyran-2-yl)-methanone (9j) Dess-Martin oxidation afforded **9j** as colorless oil in 60% yield. R_f 0.26 (EtOAc: hexanes = 1:6); IR 2947, 2872, 1644, 1609 cm $^{-1}$; 1 H NMR δ_H 6.79, (m, 1 H), 5.84 (t, 1 H, J = 4.2 Hz), 4.10 (t, 2 H, J = 5.1 Hz), 2.61 (m, 2 H), 2.54 (m, 2 H), 2.19 (m, 2 H), 1.86 (m, 4 H); 13 C NMR δ_C 187.61, 152.02, 145.08, 142.97, 111.16, 66.24, 34.32, 32.15, 22.29, 21.58, 20.74; HRMS calcd for $C_{11}H_{14}O_{2}$ (M) $^{+}$ 178.0994, found: 178.0993.

(5,6-Dihydro-4H-pyran-2-yl)-(4,4-dimethyl-cyclopent-1-enyl)-methanone (9k) Dess-Martin oxidation afforded **9k** as colorless oil in 65% yield. R_f 0.32 (EtOAc: hexanes = 1:9); IR 2952, 2930, 2867, 2845,, 1646, 1610 cm ⁻¹; ¹H NMR (500 MHz, CDCl₃) δ_H 6.68 (s, 1 H), 5.82 (t, 1 H, J = 4.1 Hz), 4.09 (t, 2 H, J = 5.1 Hz), 2.43 (d, 2 H, J = 1.9 Hz), 2.35 (m, 2 H), 2.19 (dd, 2 H, J = 10.6, 6.3 Hz), 1.85 (m, 2 H), 1.08 (s, 6 H); ¹³C NMR (125 MHz, CDCl₃) δ_C 187.52, 152.00, 143.79, 141.73, 110.99, 66.17, 48.99, 46.74, 37.67, 29.38, 21.55, 20.70; HRMS calcd for C₁₃H₁₈O₂(M)⁺ 206.1307, found: 206.1309.

(5,6-Dihydro-4H-pyran-2-yl)-(2-methyl-cyclopent-1-enyl)-methanone (9l) Dess-Martin oxidation afforded **9l** as colorless oil in 57% yield. R_f 0. 18 (EtOAc: hexanes = 1:9); IR 2932, 2869, 2623 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 5.84 (t, 1 H, J = 4.2 Hz), 4.11 (t, 2 H, J = 5.1 Hz), 2.67 (m, 2 H), 2.44 (dt, 2 H, J = 7.8, 1.0 Hz), 2.22 (m, 2 H), 1.86 (m, 7 H); ¹³C NMR $\delta_{\rm C}$ 191.80, 152.20, 148.85, 135.14, 112.74, 66.33, 30.96, 35.56, 22.25, 21.54, 20.90, 16.27; HRMS calcd for $C_{12}H_{16}O_{2}$ (M)⁺ 192.1150, found: 192.1148

(5,6-Dihydro-4H-pyran-2-yl)-(4-isopropenyl-cyclohex-1-enyl)-methanone (9m) Dess-Martin oxidation afforded 9m as colorless oil in 78% yield. R_f 0.33 (EtOAc: hexanes = 1:6); IR 3079, 2915, 1642cm⁻¹; ¹H NMR δ_H 6.70 (m, 1 H), 5.67 (t, 1 H, J = 4.1 Hz), 4.71 (m, 2 H), 4.08 (t, 2 H, J = 6.0 Hz), 2.46 (m, 1 H), 2.33 (m, 1 H), 2.18 (m, 5 H), 1.85 (m, 3 H), 1.72 (s, 3 H), 1.43 (m, 1 H); ¹³C NMR δ_C 191.95, 151.33, 148.83, 139.67, 137.09, 111.91, 109.13, 66.27, 40.16, 31.12, 26.88, 24.59, 21.53, 20.70, 20.65; HRMS calcd for $C_{15}H_{20}O_2$ (M)⁺ 232.1463, found: 232.1459, $[\alpha]_{D}^{20} - 82.3$ (c 0.6, CHCl₃).

Cyclohex-1-enyl-(5,6-dihydro-4H-pyran-2-yl)-methanone (9n) Dess-Martin oxidation afforded **9n** as colorless oil in 70% yield. R_f 0.22 (EtOAc: hexanes = 1:9); IR 2930, 2861, 1648, 1630cm⁻¹; ¹H NMR δ_H 6.66 (m, 1 H), 5.64 (t, 1 H, J = 4.1 Hz), 4.06 (t, 2 H, J = 5.0 Hz), 2.19 (m, 6 H), 1.83 (m, 2 H), 1.59 (m, 4 H); ¹³C NMR δ_C 192.32, 151.29, 140.36, 137.42, 111.79, 66.24, 25.75, 24.09, 21.90, 21.53, 20.67; HRMS calcd for C₁₂H₁₆O₂(M)⁺ 192.1150, found: 192.1154

2-Ethoxy-4-methyl-penta-1,4-dien-3-one (9p) Dess-Martin oxidation afforded **9p** as colorless oil in 75% yield. R_f 0.32 (EtOAc: hexanes = 1:30); IR 2982, 2928, 2882, 1667, 1601cm⁻¹; ¹H NMR δ_H 5.85 (t, 1 H, J = 1.0 Hz), 5.75 (m, 1 H), 4.85 (d, 1 H, J = 2.6 Hz), 4.57 (d, 1 H, J = 2.6 Hz), 3.80 (q, 2 H, J = 7.0 Hz), 1.91 (dd, 3 H, J = 1.4, 1.0 Hz), 1.34 (t, 3 H, J = 7.0Hz); ¹³C NMR δ_C 191.13, 157.66, 142.71, 126.45, 93.44, 63.64, 18.36, 14.16; HRMS calcd for $C_8H_{12}O_2$ (M)⁺ 140.0837 found: 142.0840

4-Ethoxy-1-phenyl-penta-1,4-dien-3-one (9q) Oxidation by MnO₂ afforded **9q** as colorless oil in 93 % yield. R_f 0.28 (EtOAc: hexanes = 1:15); IR 3080, 3060, 3028, 2981, 1930, 2901, 1736, 1678, 1594cm⁻¹; ¹H NMR $\delta_{\rm H}$ 7.75 (d, 1 H, J = 5.9 Hz), 7.58 (m, 2 H), 7.37 (m, 4 H), 5.29 (d, 1 H, J = 2.5 Hz), 4.51 (d, 1 H, J = 2.5 Hz), 3.84 (q, 2 H, J = 7.0 Hz), 1.41 (t, 3 H, J = 7.0 Hz); ¹³C NMR $\delta_{\rm C}$ 186.40, 158.17, 144.46, 134.84, 130.49, 128.83, 128.51, 120.56, 91.68, 63.81, 14.32; HRMS calcd for C₁₃H₁₄O₂ (M)⁺ 202.0994, found: 202.0993

1-Cyclohex-1-enyl-2-ethoxy-propenone (9r) Dess-Martin oxidation afforded **9r** as colorless oil in 85% yield. R_f 0.20 (EtOAc: hexanes = 1:30); IR 2980, 2932, 2992, 2868, 1657, 1632, 1607cm⁻¹; ¹H NMR δ_H 6.85 (m, 1 H), 4.63 (d, 1 H, J = 2.5 Hz), 4.45 (d, 1 H, J = 2.5 Hz), 3.77 (q, 2 H, J = 7.0 Hz), 2.19 (m, 4 H), 1.59 (m, 4 H), 1.31 (t, 3 H, J = 7.0 Hz); ¹³C NMR δ_C 192.78, 158.36, 143.34, 137.57, 91.44, 63.53, 26.07, 23.59, 21.86, 21.52, 14.24; HRMS calcd for $C_{11}H_{16}O_2$ (M)⁺ 180.1150, found: 180.1153. This compound is previously reported. The analysis data matches those reported.

1-(4,4-Dimethyl-cyclopent-1-enyl)-2-ethoxy-propenone (9s) Dess-Martin oxidation afforded **9s** as colorless oil in 75% yield. R_f 0.25 (EtOAc: hexanes = 1:20); IR 2979, 2954, 2930, 2868, 2848, 2831, 1655, 1601 cm⁻¹; ¹H NMR δ_H 6.80 (s, 1 H), 4.91 (s, 1 H), 4.44 (s, 1 H), 3.79 (q, 2 H, J = 7.0 Hz), 2.41 (s, 2 H), 2.34 (s, 2 H), 1.34 (t, 3 H, J = 7.0 Hz) 1.06 (s, 6 H); ¹³C NMR δ_C 187.94, 158.87, 145.63, 141.93, 91.72, 63.64, 49.17, 46.50, 37.73, 29.43, 14.29; HRMS calcd for C₁₂H₁₈O₂ (M)⁺ 194.1307, found: 194.1308

1-(5,6-Dihydro-[1,4]dioxin-2-yl)-2-isopropyl-propenone (9t) Dess-Martin oxidation afforded **9t** as colorless oil in 46% yield. R_f 0.21 (EtOAc: hexanes = 1:4); IR 3428(br), 2960, 2930, 2875, 1649, 1607 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ_H 7.15 (s, 1 H), 5.36 (s, 1 H), 5.34 (s, 1 H), 4.18 (s, 4 H), 2.85 (m, 1 H), 1.04 (d, 6 H, J = 6.9 Hz); ¹³C NMR (125 MHz, CDCl₃) δ_C 191.83, 153.33, 142.36, 137.51, 116.81, 65.14, 63.47, 30.43, 21.05; HRMS calcd for $C_{10}H_{14}O_3$ (M)⁺ 182.0943, found: 182.0941

The Nazarov cyclization of compounds **9** was carried out by the catalysis of 10 mol% AlCl₃ in either CH₂Cl₂ or MeCN. The amount of the substrates used in the cyclization was generally around 90-120 mg. The representative procedure was demonstrated below.

6-Methyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (**10a**) To 0.011 g (0.079 mmol) of AlCl₃ in 2 mL CH₂Cl₂ was added 0.120 g (0.788mmol) of **9a** in 2 mL CH₂Cl₂. The reaction mixture was stirred for 1 min before it was quenched water (4 mL). The mixture was further diluted with 10 mL CH₂Cl₂. The two layers were separated and the aqueous layer was extracted with CH₂Cl₂ (2 X 5 mL). The combined organic layers were washed with brine (10 mL), dried, filtered and concentrated *in vacuo*. The product was purified by column chromatography (EtOAc: hexanes = 1:4) to afford 0.110 g (92%) **10a** as colorless oil. R_f 0.14 (EtOAc: hexanes = 1:4); IR 2962, 2928, 2872, 1707, 1648 cm⁻¹; ¹H NMR (500 Hz, CDCl₃) δ_H 4.10 (m, 2 H), 2.69 (m, 1 H), 2.38 (m, 1 H), 2.32 (t, 2 H, *J* = 6.2 Hz), 2.03 (dd, 1 H, *J* = 7.4, 1.8 Hz), 1.95 (m, 2 H), 1.18 (d, 3 H, *J* = 7.4 Hz); ¹³C NMR (125 Hz, CDCl₃) δ_C 203.44, 150.13, 143.82, 66.71, 37.95, 34.80, 23.98, 21.57, 16.45; HRMS calcd for C₉H₁₂O₂ (M)⁺ 152.0837, found: 152.0838

6-Ethyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (10b) Cyclization of **9b** in CH₂Cl₂ afforded **10b** as colorless oil in 91% yield. Reaction time: 1 min; R_f 0.20 (EtOAc: hexanes = 1:4); IR 2961, 2929, 2875, 1706, 1650cm⁻¹; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 4.03 (m, 2 H), 2.55 (m, 1 H), 2.28 (t, 2 H, J = 6.2 Hz), 2.21 (m, 1 H), 2.06 (dd, 1 H, J = 17.5, 1.8 Hz), 1.91 (m, 2 H), 1.77 (m, 1 H), 1.34 (m, 1 H), 0.87 (t, 3 H, J = 7.4 Hz); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 202.84, 150.57, 144.38, 66.69, 44.66, 32.14, 24.31, 23.97, 21.54, 11.09; HRMS calcd for C₁₀H₁₄O₂(M)⁺ 166.0994, found: 166.0997

6-Isopropyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (10c) Cyclization of **9c** in CH₂Cl₂ afforded **10c** as colorless oil in 93% yield. Reaction time: 1 min; R_f 0.22 (EtOAc: hexanes = 1:4); IR 2956, 2930, 2872, 1706, 1650cm⁻¹; ¹H NMR $\delta_{\rm H}$ 4.03 (m, 2 H), 2.37 (m, 1 H), 2.29 (m, 3 H), 2.17 (m, 2 H), 1.89 (m, 2 H), 0.92 (d, 3 H, J = 7.0 Hz), 0.71 (d, 3 H, J = 6.8 Hz); ¹³C NMR $\delta_{\rm C}$ 202.59, 151.27, 144.74, 66.75, 49.10, 28.55, 28.12, 24.02, 21.63, 20.39, 16.95; HRMS calcd for C₁₁H₁₆O₂ (M)⁺ 180.1150 found: 181.1151

5-Phenyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (10d) Cyclization of **9d** in MeCN afforded **10d** as colorless oil in 86% yield. Reaction time: 10 min; R_f 0.26 (EtOAc: hexanes = 1:3); IR 2928, 1710, 1648cm⁻¹; ¹H NMR δ_H 7.33 (m, 2 H), 7.26 (m, 1 H), 7.14 (m, 2 H), 4.15 (m, 2 H), 3.85 (dd, 1 H, J = 6.6, 1.6 Hz), 2.91 (dd, 1 H, J = 19.0, 6.6 Hz), 2.32 (dt, 1 H, J = 19.0, 0.9 Hz), 2.12 (tq, 2 H, J = 19.0, 6.2 Hz), 1.92 (m, 2 H); ¹³C NMR δ_C 200.08, 151.50, 147.39, 141.72, 129.00, 127.17, 127.10, 66.94, 43.66, 42.94, 22.20, 21.46; HRMS calcd for $C_{14}H_{14}O_2$ (M)⁺ 214.0994, found: 214.0998

5-Isopropyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (10e) Cyclization of **9e** in MeCN afforded **10e** as colorless oil in 92% yield. Reaction time: 50 min; R_f 0.13 (EtOAc: hexanes = 1:6); IR 2955, 2930, 2872, 1709, 1645cm⁻¹; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 4.13 (m, 1 H), 4.00 (m, 1 H), 2.69 (s, 1 H), 2.33 (dd, 1 H, J = 18.6, 6.8 Hz), 2.22 (m, 2 H), 2.03 (m, 2 H), 1.90 (m, 2 H), 0.93 (d, 3 H, J = 6.8 Hz), 0.66 (d, 3 H, J = 6.8Hz); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 200.40, 151.34, 147.65, 66.74, 43.06, 33.96, 28.03, 22.61, 21.44, 20.66, 15.52; HRMS calcd for $C_{11}H_{16}O_2$ (M)⁺ 180.1150, found: 180.1151

5-Propenyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (10f) Cyclization of **9f** in MeCN afforded **10f** as colorless oil in 90% yield. Reaction time:30 min; R_f 0.20 (EtOAc: hexanes = 1:4); IR 2933, 1710, 1645cm^{-1} ; ¹H NMR δ_{H} 5.58 (m, 1 H), 5.14 (m, 1 H), 4.07 (m, 2 H), 3.20 (t, 1 H, J = 7.4 Hz), 2.62 (dd, 1 H, J = 18.8, 6.3 Hz), 2.34 (dt, 1 H, J = 18.8, 6.3 Hz), 2.14 (m, 2 H), 1.91 (m, 2 H), 1.67 (m, 3 H); ¹³C NMR δ_{C} 199.87, 150.79, 147.39, 131.41, 127.59, 66.78, 41.11, 40.21, 22.19, 21.42, 17.72; HRMS calcd for $C_{11}H_{14}O_2(M)^+$ 178.0994, found: 178.0996

5,5-Dimethyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (10g) Cyclization of **9g** in MeCN afforded **10g** as colorless oil in 85% yield. Reaction time: 12 h; R_f 0.15 (EtOAc: hexanes = 1:4); IR 2957, 2928, 2869, 1710, 1645 cm⁻¹; ¹H NMR (500 Hz, CDCl₃) $\delta_{\rm H}$ 4.07 (t, 2 H, J = 5.2 Hz), 2.28 (t, 2 H, J = 6.2 Hz), 2.25 (s, 2 H), 1.94 (m, 2 H), 1.18 (s, 6 H); ¹³C NMR (125 Hz, CDCl₃) $\delta_{\rm C}$ 199.59, 152.70, 148.93, 66.50, 49.17, 36.78, 27.18, 21.41, 18.91; HRMS calcd for C₁₀H₁₄O₂(M)⁺ 166.0994, found: 166.0989

2,3,3a,5,6,8a-Hexahydro-1H,4H-7-oxa-cyclopenta[α]inden-8-one (10j) Cyclization of 9j in CH₂Cl₂ afforded 10j as colorless oil in 88% yield. Reaction time: 40 min; R_f 0.19 (EtOAc: hexanes = 1:4); IR 2945, 2867, 1706, 1644 cm ⁻¹; ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 4.01, (m, 2 H), 3.01 (m, 1 H), 2.65 (m, 1 H), 2.32 (m, 1 H), 2.20 (m, 1 H), 1.89 (m, 2 H), 1.79 (m, 1 H), 1.55 (m, 4 H), 1.20 (m, 1 H); ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ 203.78, 151.41, 147.70, 67.03, 48.74, 43.21, 28.93, 28.18, 24.03, 22.67, 21.84; HRMS calcd for C₁₁H₁₄O₂ (M)⁺ 178.0994, found: 178.0987.

2,2-Dimethyl-2,3,3a,5,6,8a-hexahydro-1H,4H-7-oxa-cyclopenta[a]inden-8-one (10k) Cyclization of 9k in CH₂Cl₂ afforded 10k as colorless oil in 92% yield. Reaction time: 30 min; R_f 0.29 (EtOAc: hexanes = 1:3); IR 2950, 2864, 1708, 1644 cm $^{-1}$; ¹H NMR $\delta_{\rm H}$ 4.03 (m, 2 H), 3.13 (q, 1 H, J = 7.5 Hz), 2.87 (dd, 1 H, J = 16.6, 7.1 Hz), 2.24 (m, 2 H), 1.91 (m, 2 H), 1.73 (m, 2 H), 1.37 (dd, 1 H, J = 12.9, 7.6 Hz), 1.11 (dd, 1 H, J = 12.6, 7.4 Hz), 0.95 (d, 6 H, J = 4.7 Hz); ¹³C NMR $\delta_{\rm C}$ 203.45, 148.63, 148.44, 66.64, 48.89, 43.47, 43.43, 43.27, 41.23, 28.65, 27.81, 22.62, 21.55; HRMS calcd for C₁₃H₁₈O₂ (M)⁺ 206.1302, found: 206.1309.

3a-Methyl-2,3,3a,5,6,8a-hexahydro-1H,4H-7-oxa-cyclopenta[a]inden-8-one (10l) Cyclization of 9l in CH₂Cl₂ afforded 10l as colorless oil in 91% yield. Reaction time: 12 h; R_f 0. 27 (EtOAc: hexanes = 1:4); IR 2948, 2866, 1706, 1644 cm⁻¹; ¹H NMR δ_H 4.05 (m, 2 H), 2.28 (m, 3 H), 1.93 (m, 2 H), 1.75 (m, 3 H), 1.59 (m, 1 H), 1.25 (m, 5 H); ¹³C NMR δ_C 202.95, 150.60, 150.03, 66.66, 56.27, 48.55, 35.68, 28.89, 25.01, 24.73, 21.57, 19.56; HRMS calcd for C₁₂H₁₆O₂ (M)⁺ 192.1150, found: 192.1155

3,4,4b,5,6,7,8,8a-Octahydro-2H-1-oxa-fluoren-9-one (G-037) Cyclization of **9n** in CH₂Cl₂ afforded **10n** as colorless oil in 88% yield. Reaction time: 20 min; Colorless oil. R_f 0.28 (EtOAc: hexanes = 1:4); IR 2931, 2863, 1707, 1644cm⁻¹; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 4.09 (m, 1 H), 4.01 (m, 1 H), 2.69 (q, 1 H, J = 6.9 Hz), 2.35 (m, 2 H), 2.20 (dt, 1 H, J = 18.7, 5.8 Hz), 1.91 (m, 3 H), 1.79 (m, 1 H), 1.67 (m, 1 H), 1.46 (m, 2 H), 1.32 (m, 2 H), 1.15 (m, 1 H); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 202.74, 150.20, 148.31, 66.78, 43.64, 37.45, 26.60, 22.38, 21.91, 21.57, 20.44, 20.29; HRMS calcd for C₁₂H₁₆O₂ (M)⁺ 192.1150, found: 192.1150

2-Ethoxy-5-methyl-cyclopent-2-enone (10p) Cyclization of **9p** in CH₂Cl₂ afforded **10p** as colorless oil in 80% yield. Reaction time: 6 h; R_f 0.23 (EtOAc: hexanes = 1:6); IR 2978, 2929, 1712, 1623cm^{-1} ; ¹H NMR (500 MHz, CDCl₃) δ_{H} 6.28 (t, 1 H, J = 3.0 Hz), 3.90 (dq, 2 H, J = 7.0, 2.5 Hz), 4.85 (dq, 1 H, J = 17.6, 3.2 Hz), 2.39 (m, 1 H), 2.07 (dt, 1 H, J = 17.6, 2.5 Hz), 1.38 (t, 3 H, J = 7.0 Hz), 1.18 (d, 3 H, J = 7.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ_{C} 205.46, 155.55, 125.66, 65.35, 38.49, 31.17, 16.42, 14.31; HRMS calcd for C₈H₁₂O₂ (M)⁺ 140.0837 found: 142.0840; This compound is previously reported. The analysis data matches those reported.

2-Ethoxy-4-phenyl-cyclopent-2-enone (10q) Cyclization of **9q** in MeCN afforded **10q** as colorless oil in 40% yield. Reaction time: 30 h; R_f 0.20 (EtOAc: hexanes = 1:6); IR 3063, 3027, 2980, 2930, 2897, 1713, 1621, 1604cm⁻¹; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.34 (t, 2 H, J = 7.2 Hz), 7.26 (m, 1 H), 7.18 (d, 2 H, J = 7.2 Hz), 6.37 (d, 1 H, J = 3.0 Hz), 3.99 (m, 3 H), 2.96 (dd, 1 H, J = 19.3, 6.7 Hz), 2.35 (dd, 1 H, J = 19.3, 2.1 Hz),1.43 (t, 3 H, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 202.30, 156.41, 143.03, 130.11, 128.86, 127.07, 126.89, 65.80, 43.08, 39.98, 14.31; HRMS calcd for $C_{13}H_{14}O_{2}$ (M)⁺ 202.0994, found: 202.0997

2-Ethoxy-2,3,4,5,6,7-hexahydro-inden-1-one (10r) Cyclization of **9r** in MeCN afforded **10r** as colorless oil in 91% yield. Reaction time: 6 h; R_f 0.31 (EtOAc: hexanes = 1:6); IR 2973, 2930, 2864, 1707, 1644 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 3.96 (dd, 1 H, J = 6.3, 2.3 Hz), 3.88 (m, 1 H), 3.63 (m, 1 H), 2.79 (dd, 1 H, J = 7.6, 5.2 Hz), 2.39 (d, 1 H, J = 7.6 Hz), 2.24 (m, 2 H), 2.12 (m, 2 H), 1.73 (m, 2 H), 1.63 (m, 2 H), 1.24 (t, 3 H, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 205.70, 170.73, 137.12, 77.54, 65.79, 37.56, 28.46, 21.94, 21.49, 19.79, 15.28; HRMS calcd for $C_{11}H_{16}O_{2}$ (M)⁺ 180.1150, found: 180.1148

2-Ethoxy-5,5-dimethyl-4,5,6,6a-tetrahydro-3aH-pentalen-1-one (10s) Cyclization of **9s** in refluxing MeCN afforded **10s** as colorless oil in 75% yield. Reaction time: 3 h; R_f 0.20 (EtOAc: hexanes = 1:9); IR 2952, 2933, 2902, 2864, 1711, $1618cm^{-1}$; ¹H NMR δ_H 6.28 (d, 1 H, J = 3.2 Hz), 3.86 (q, 2 H, J = 7.0 Hz), 3.25 (m, 1 H), 2.91 (m, 1 H), 1.76 (m, 2 H), 1.43 (dd, 1 H, J = 12.9, 7.7 Hz), 1.35 (t, 3 H, J = 7.0 Hz), 1.13 (dd, 1 H, J = 12.6, 7.4 Hz), 0.95 (d, 6 H, J = 3.6 Hz); ¹³C NMR δ_C 205.65, 154.16, 130.92, 65.35, 49.16, 45.09, 43.64, 41.87, 40.34, 28.72, 27.90, 14.30; HRMS calcd for $C_{12}H_{18}O_2$ (M)⁺ 194.1307, found: 194.1311

6-Isopropyl-2,3,6,7-tetrahydro-cyclopenta[1,4]dioxin-5-one (10t) Cyclization of 9t in CH₂Cl₂ afforded 10t as colorless oil in 75% yield. Reaction time: 2 min; R_f 0.22 (EtOAc: hexanes = 1:2); IR 2957, 2930, 2873, 1707, 1641 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 4.30 (m, 2 H), 4.12 (t, 2 H, J = 4.0 Hz), 2.48 (dd, 1 H, J = 17.0, 6.6 Hz), 2.40 (m, 1H), 2.28 (m, 2 H), 0.95 (d, 3 H, J = 7.0 Hz), 0.76 (d, 3 H, J = 6.8 Hz); ¹³C NMR $\delta_{\rm C}$ 196.92, 165.08, 134.31, 66.88, 63.84, 47.66, 28.06, 24.78, 20.40, 16.54; HRMS calcd for $C_{10}H_{14}O_3$ (M)⁺ 182.0943, found: 182.0944

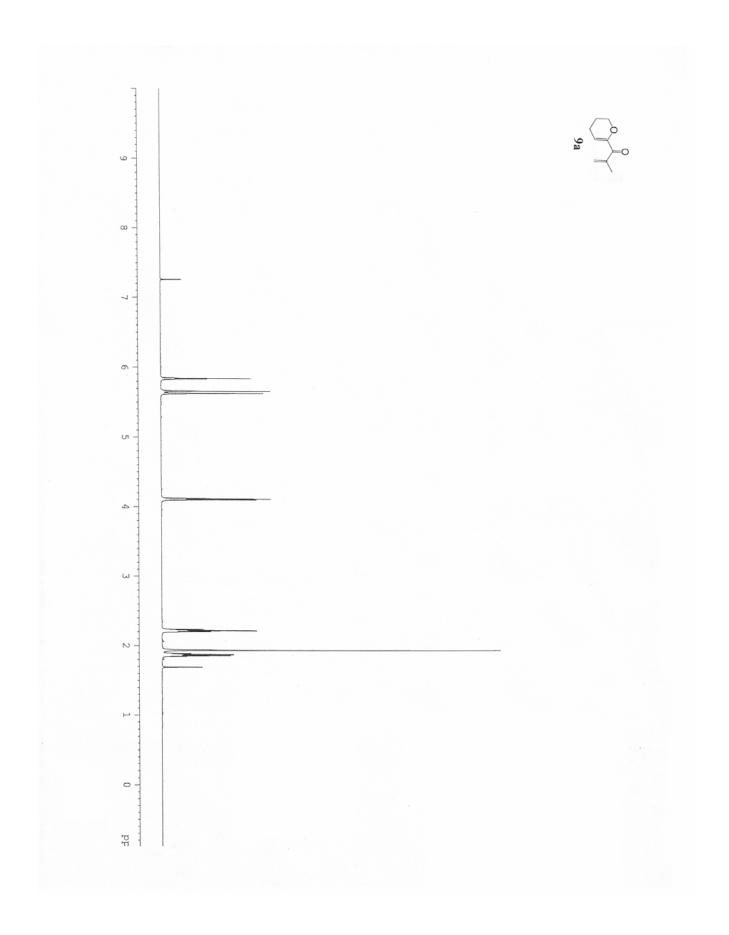
Cyclization of **9h** in CH₂Cl₂ afforded **11a** and **11b** as colorless oil in 89% combined yield with a ratio of 3:2. Reaction time: 5 min; **11a** and **11b** were separated by HPLC.

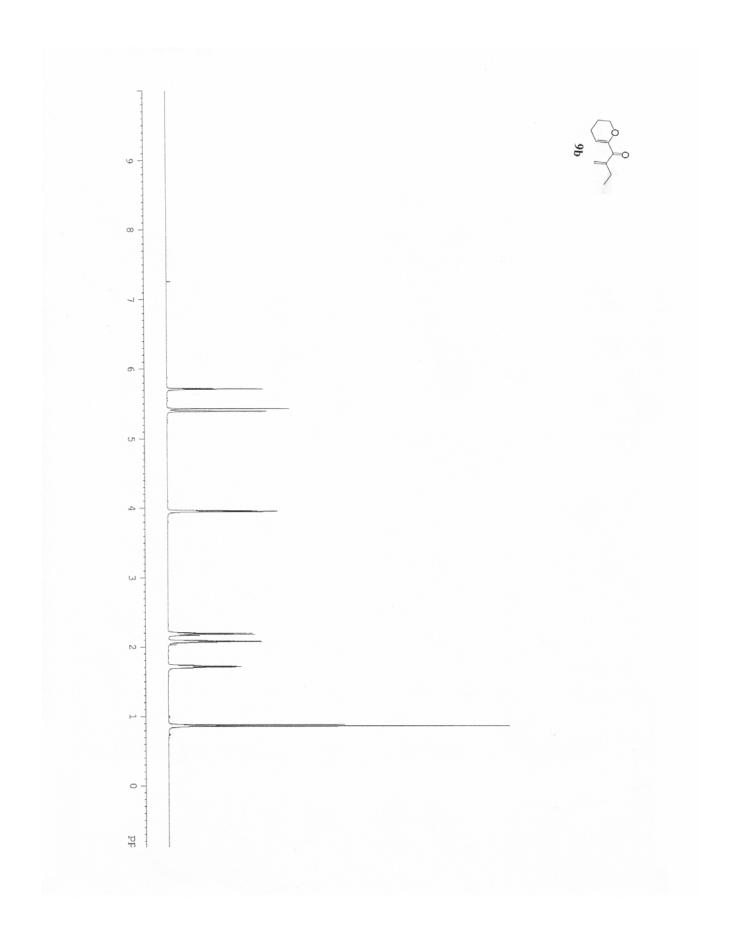
Cis-5,6-Dimethyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (11a) R_f 0.20 (EtOAc: hexanes = 1:4); Retention time: 28.3 min, IR 2967, 1705, 1647 cm ⁻¹; ¹H NMR $\delta_{\rm H}$ 4.13, (m, 1 H), 4.01 (m, 1 H), 2.80 (m, 1 H), 2.48 (m, 1 H), 2.40 (m, 1 H), 2.20 (m, 1 H), 1.94 (m, 2 H), 1.08 (d, 3 H, J = 7.6 Hz), 1.03 (d, 3 H, J = 7.2 Hz); ¹³C NMR $\delta_{\rm C}$ 203.27, 149.70, 148.69, 66.81, 42.13, 36.06, 21.97, 21.66, 14.79, 11.22; HRMS calcd for C₁₀H₁₄O₂ (M)⁺ 166.0994, found: 166.0994.

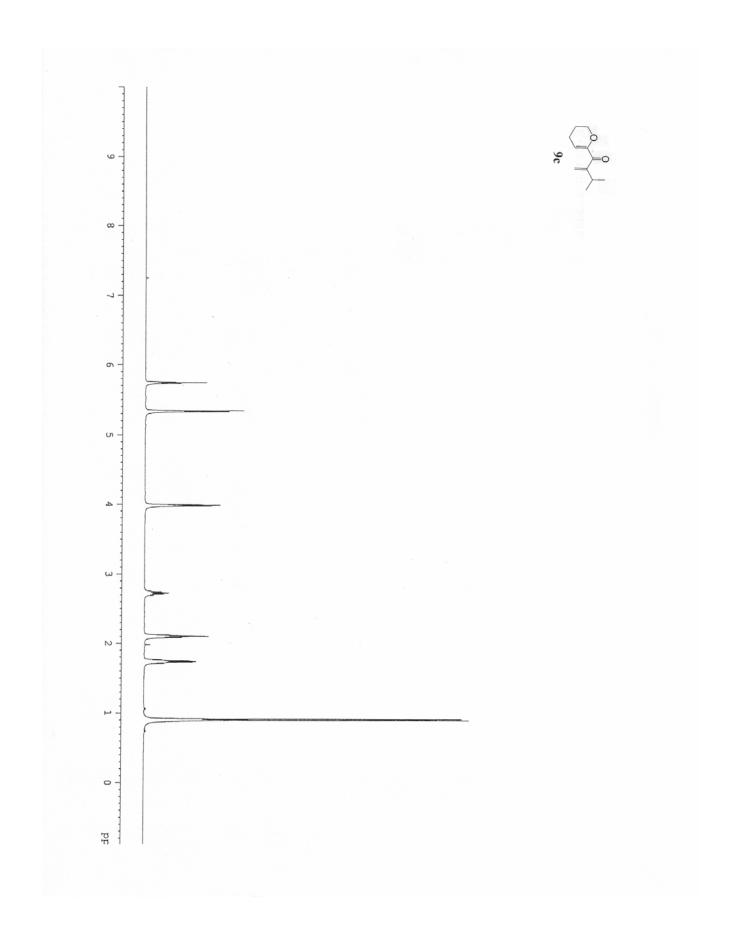
Trans-5,6-Dimethyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (11b) R_f 0.20 (EtOAc: hexanes = 1:4); Retention time: 26.5 min, IR 2927, 1707, 1644 cm $^{-1}$; 1 H NMR $\delta_{\rm H}$ 4.09, (m, 2 H), 2.40 (m, 1 H), 2.25 (m, 1 H), 2.18 (m, 1 H), 1.95 (m, 2 H), 1.22 (m, 1 H), 1.17 (d, 3 H, J = 7.4 Hz), 1.16 (d, 3 H, J = 7.1 Hz); 13 C NMR $\delta_{\rm C}$ 202.63, 149.56, 147.43, 70.90, 66.64, 47.34, 41.31, 21.60, 17.84, 14.71; HRMS calcd for C₁₀H₁₄O₂ (M)⁺ 166.0994, found: 166.0996.

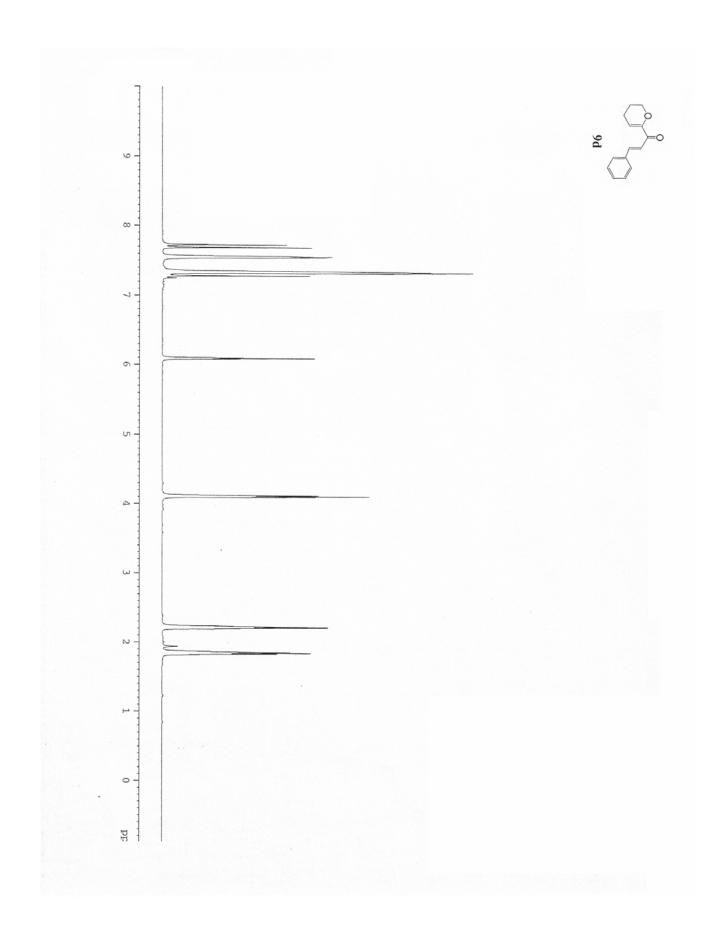
6-Methyl-5-phenyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (12) Cyclization of **9i** in CH₂Cl₂ afforded **12** as white solid in 88% yield. Reaction time: 5 min; R_f 0.22 (EtOAc: hexanes = 1:4); IR 3026, 2972, 2932, 2876, 1710, 1650 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 7.24 (m, 3 H), 7.00 (d, 2 H, J = 7.1 Hz), 4.16 (m, 2 H), 3.99 (d, 1 H, J = 6.6 Hz), 2.73 (m, 1 H), 2.16 (t, 2 H, J = 6.2 Hz), 1.93 (m, 2 H), 0.65 (d, 3 H, J = 7.6 Hz); ¹³C NMR $\delta_{\rm C}$ 202.97, 151.51, 144.91, 138.55, 128.81, 128.44, 127.08, 67.05, 48.78, 43.22, 22.46, 21.60, 12.27; HRMS calcd for C₁₅H₁₆O₂ (M)⁺ 228.1150, found: 228.1148; m.p. 93.8-94.8 °C

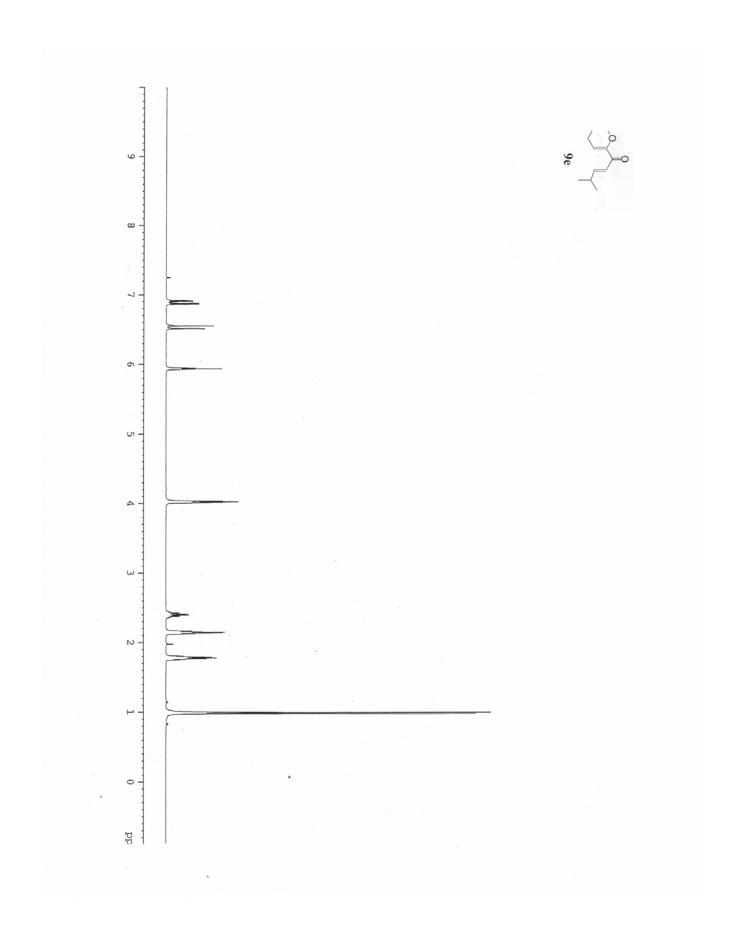
Cyclization of **9m** in CH₂Cl₂ afforded **13a** and **13b** as colorless oil in 85% combined yield with 60% d.r.. Reaction time: 15 min; **13a** and **13b** were separated by HPLC.

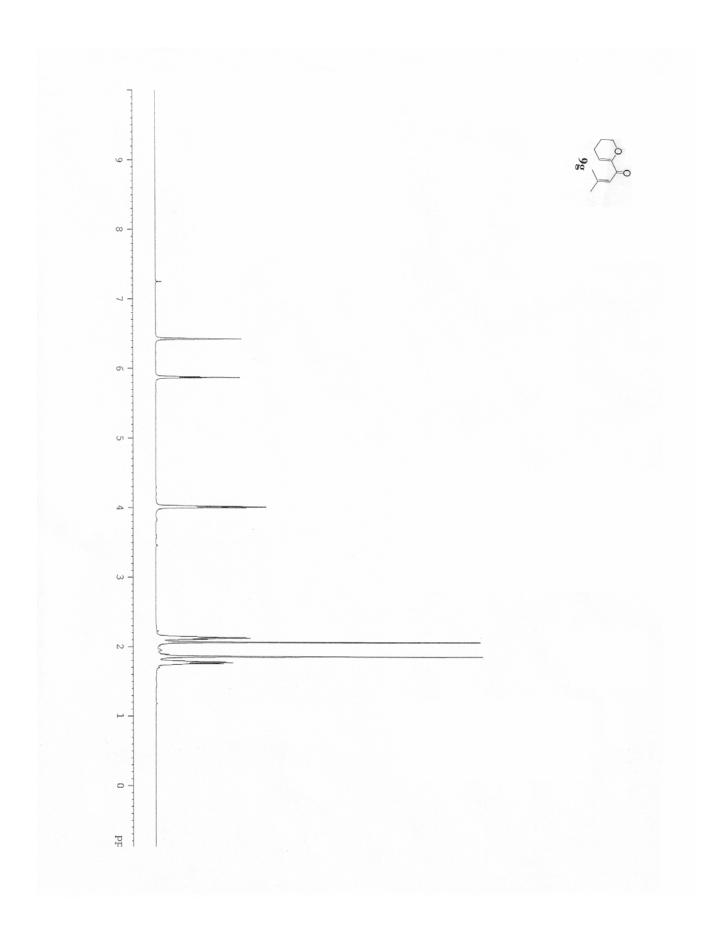

6-Isopropenyl-3,4,4b,5,6,7,8,8a-octahydro-2H-1-oxa-fluoren-9-one (Major) R_f 0.21 (EtOAc: hexanes = 1:4); Retention time: 26.2 min; IR 2931, 2865, 1704, 1643cm⁻¹; ¹H NMR δ_H 4.65 (m, 2 H), 4.10 (m, 2 H), 2.96 (m, 1 H), 2.45 (q, 1 H, J = 6.2 Hz), 2.34 (dt, 1 H, J = 18.8, 6.6 Hz), 2.21 (dt, 1 H, J = 18.8, 5.8 Hz), 1.94 (m, 3 H), 1.77 (m, 8 H), 1.25 (m, 1 H); ¹³C NMR δ_C 203.30, 150.83, 149.75, 146.87, 108.56, 66.81, 43.00, 36.86, 36.65, 28.20, 25.68, 22.89, 21.84, 21.55, 20.62; HRMS calcd for C₁₅H₂₀O₂ (M)⁺ 232.1463, found: 232.1462, [α]²⁰_D 72.2 (c 0.9, CHCl₃).

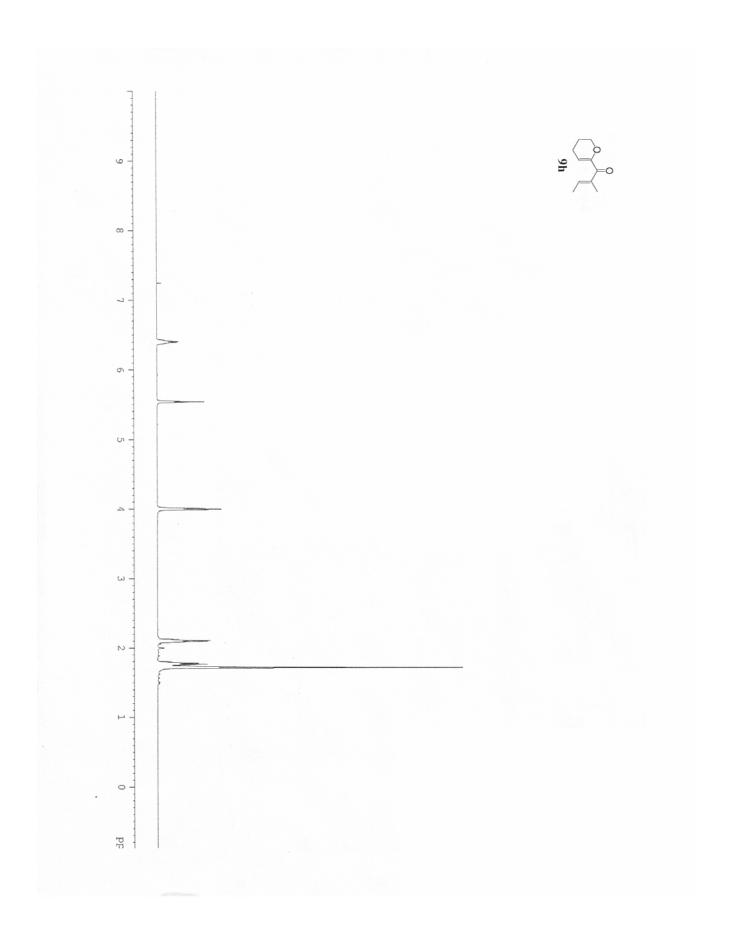

6-Isopropenyl-3,4,4b,5,6,7,8,8a-octahydro-2H-1-oxa-fluoren-9-one (Minor) R_f 0.21 (EtOAc: hexanes = 1:4); Retention time: 23.1 min; IR 2924, 2857, 1706, 1634cm⁻¹; ¹H NMR δ_H 4.64 (m, 2 H), 4.13 (m, 1 H), 4.03 (m, 1 H), 2.75 (m, 1 H), 2.39 (m, 2 H), 2.25 (dt, 1 H, J = 18.8, 5.7 Hz), 1.98 (m, 5 H), 1.69 (m, 5 H), 1.14 (m, 1 H), 0.87 (m, 1 H); ¹³C NMR δ_C 201.81, 149.88, 149.61, 148.39, 108.64, 66.85, 43.7, 42.14, 38.44, 35.35, 27.89, 22.58, 22.01, 21.67, 20.46; HRMS calcd for C₁₅H₂₀O₂ (M)⁺ 232.1463, found: 232.1466, [α]²⁰_D -48.3 (c 0.4, CHCl₃).

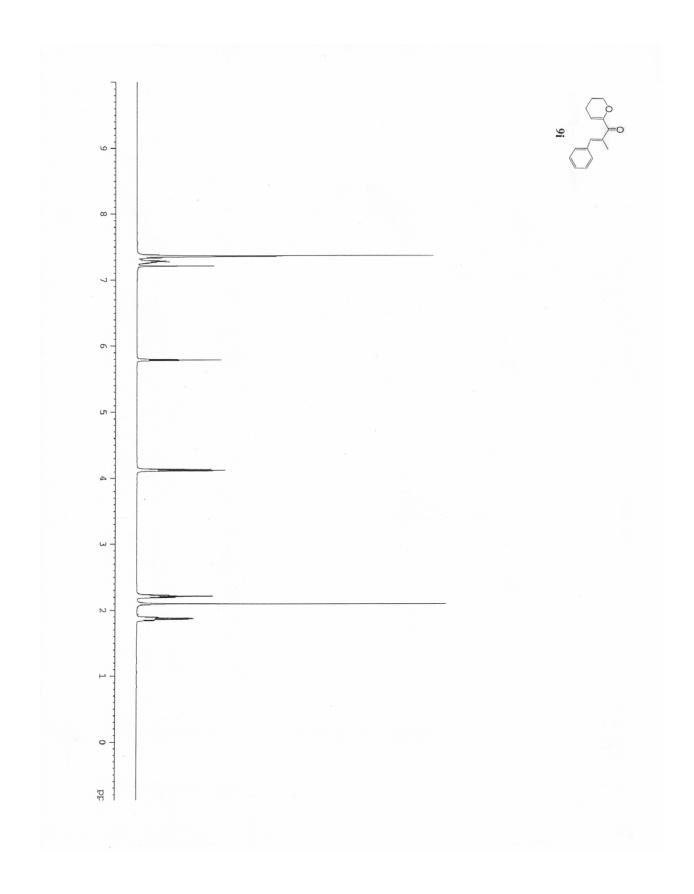

¹ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.

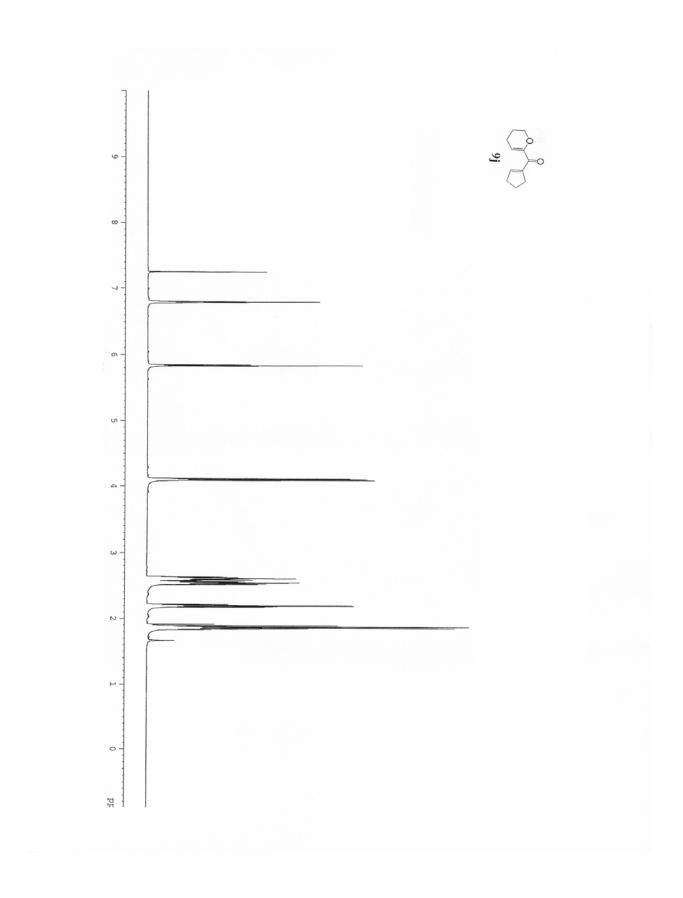

² Alaimo, P. J.; Peters, D. W.; Arnold, J.; Bergman, R. G. J. Chem. Ed. **2001**, 78, 64.

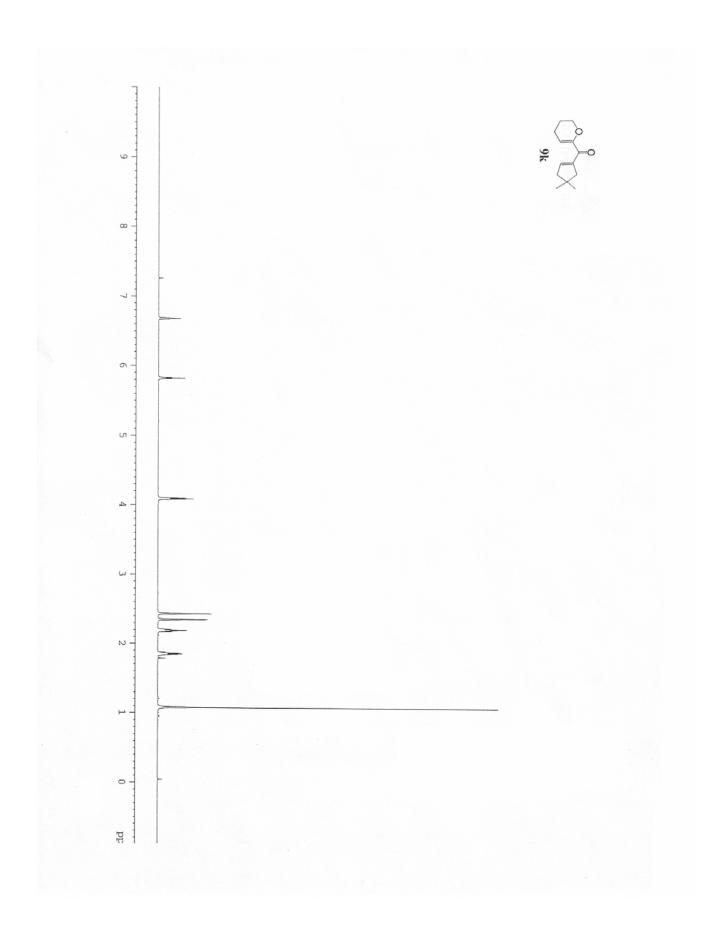

³ Stille, J. K., Kwon, H. B., McKee, B. H.; *J. Org. Chem.* **1990**,*55*, 3114-3118 ⁴ Katritzky, A. R., Zhang, G., Jiang, J.; *J. Org. Chem.* **1995**, *60*, 7605-7611

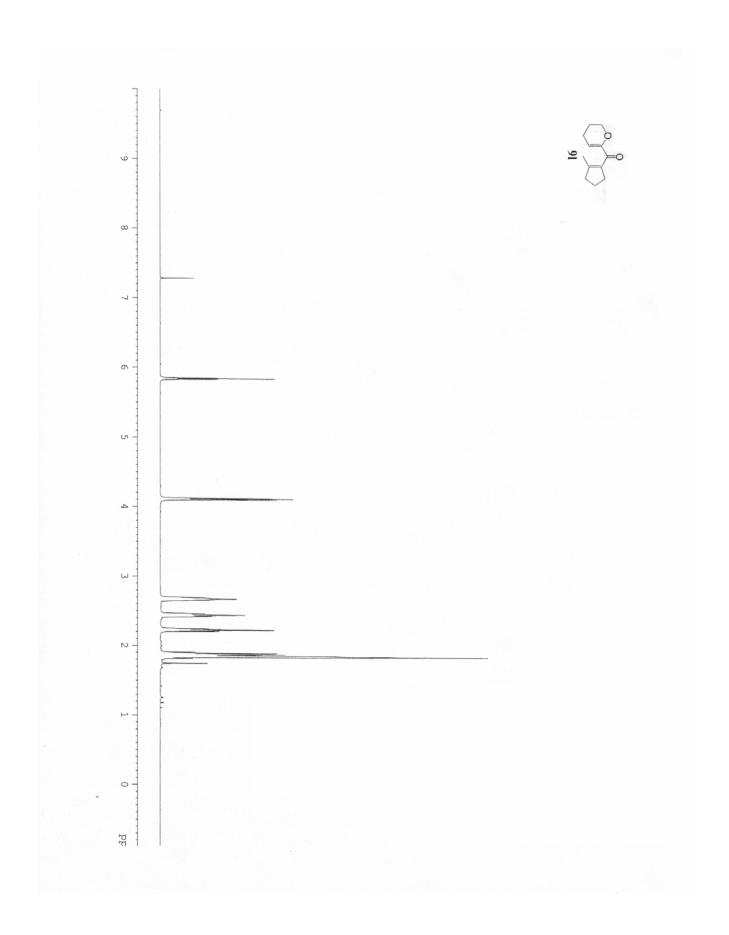


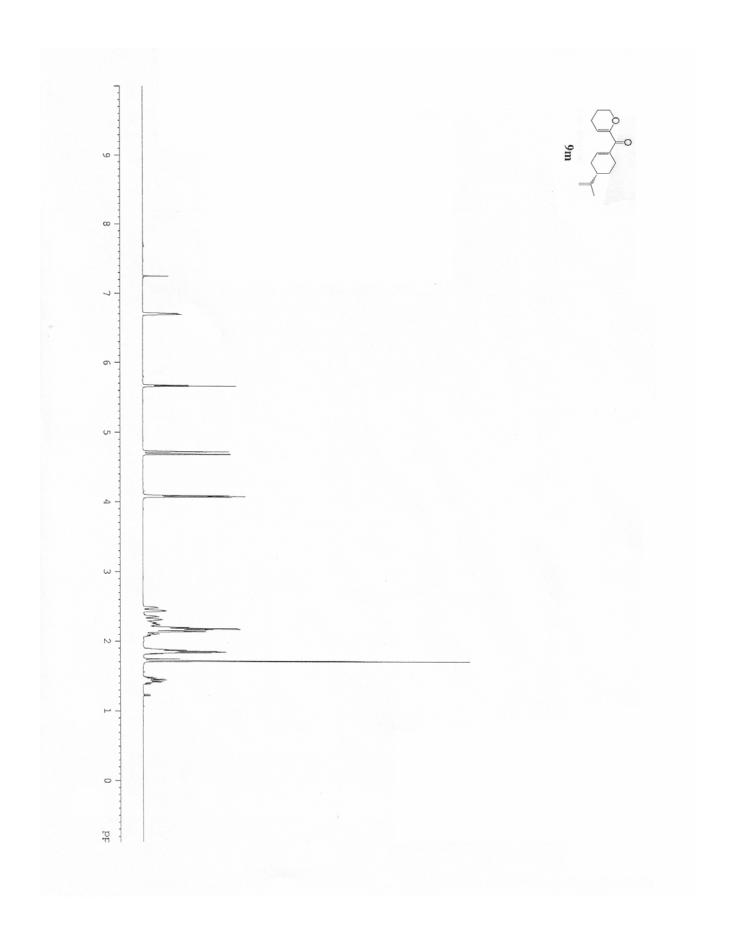


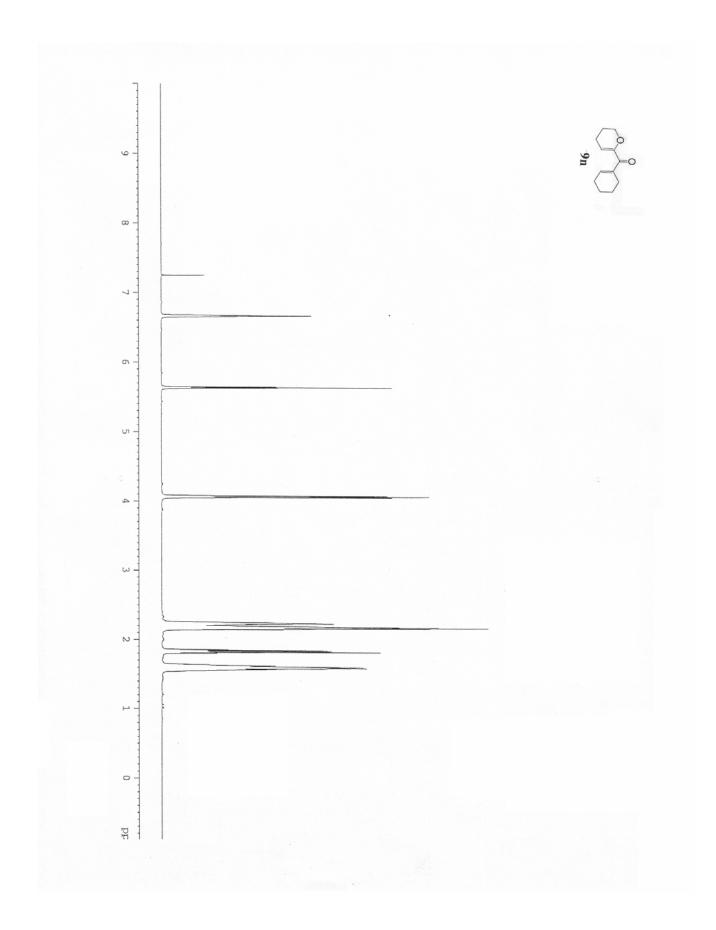


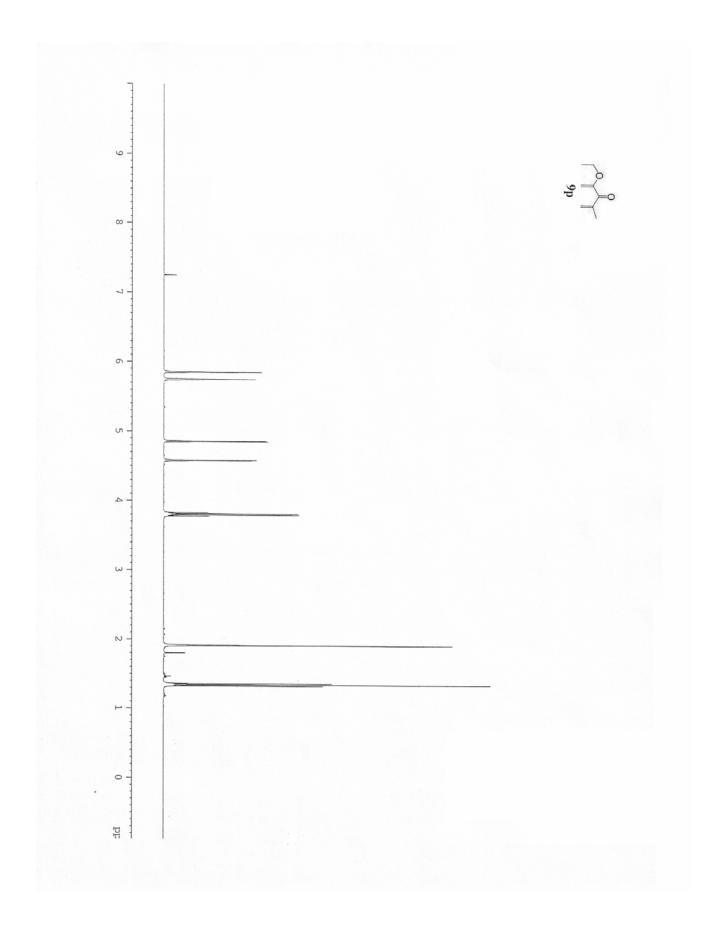


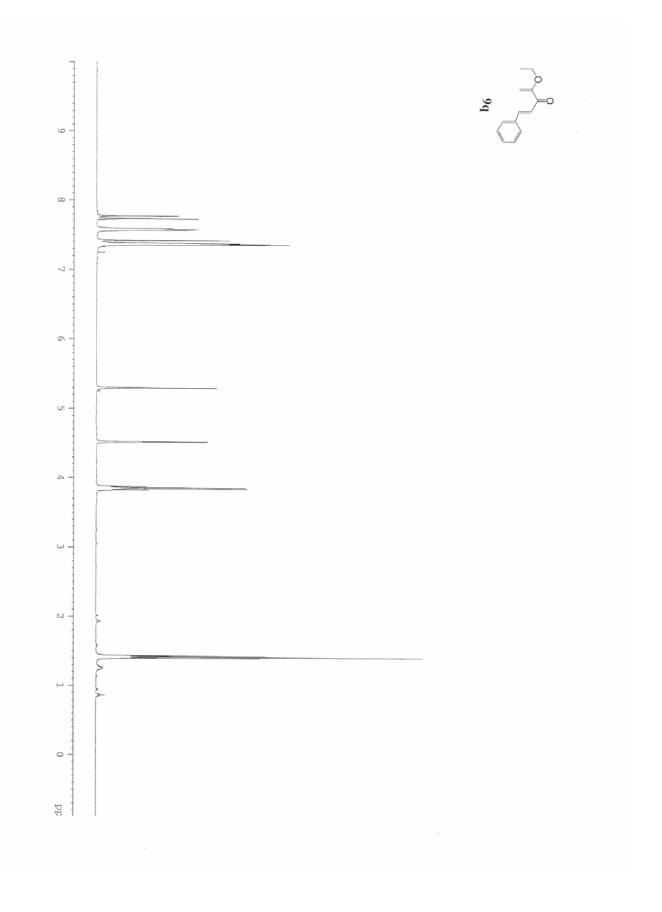


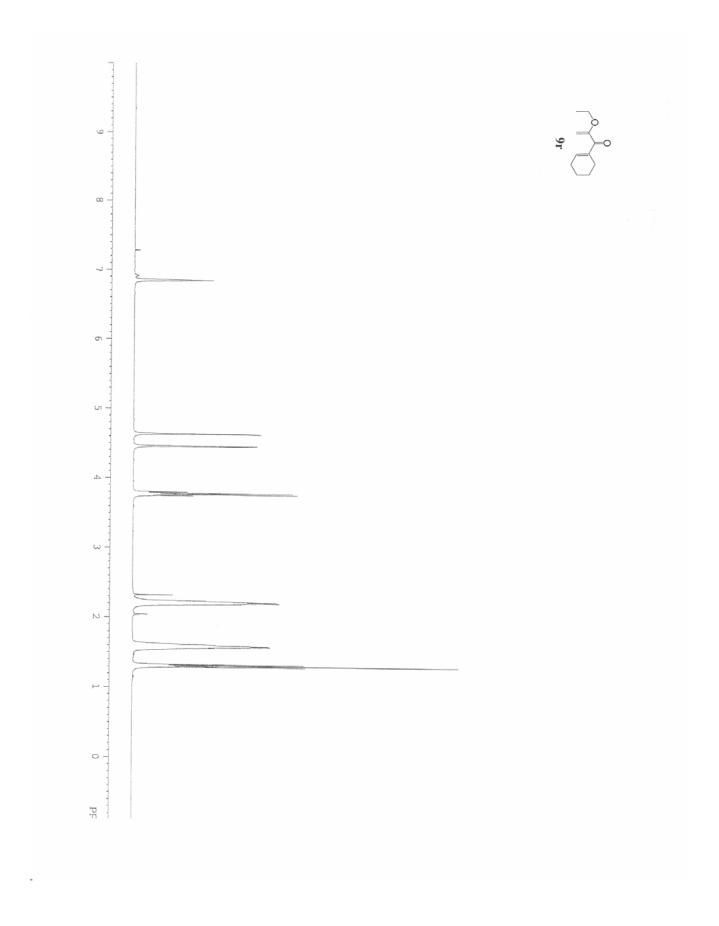


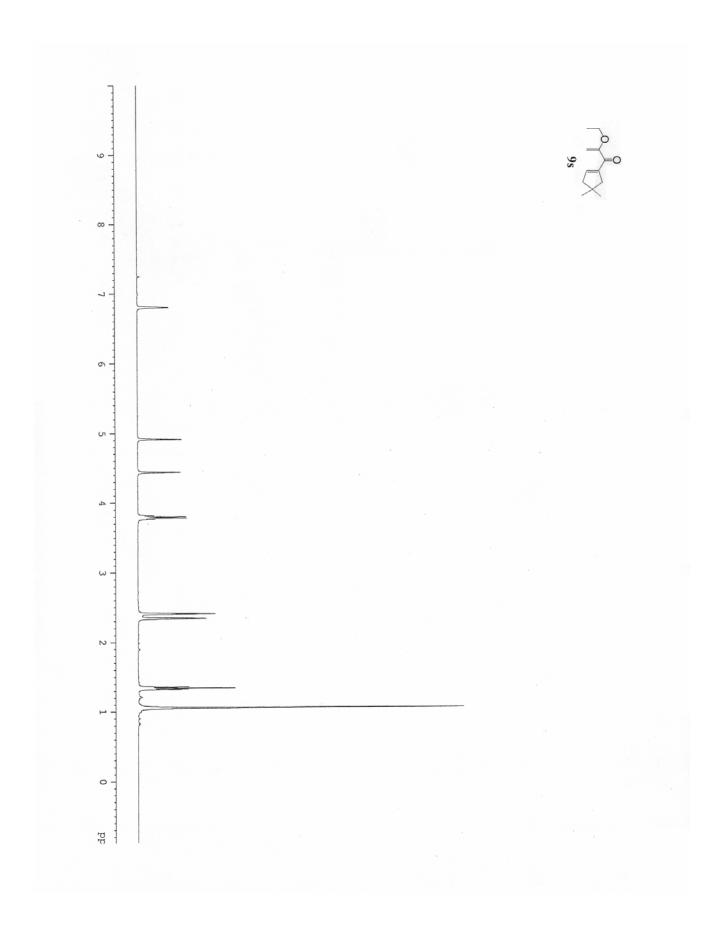


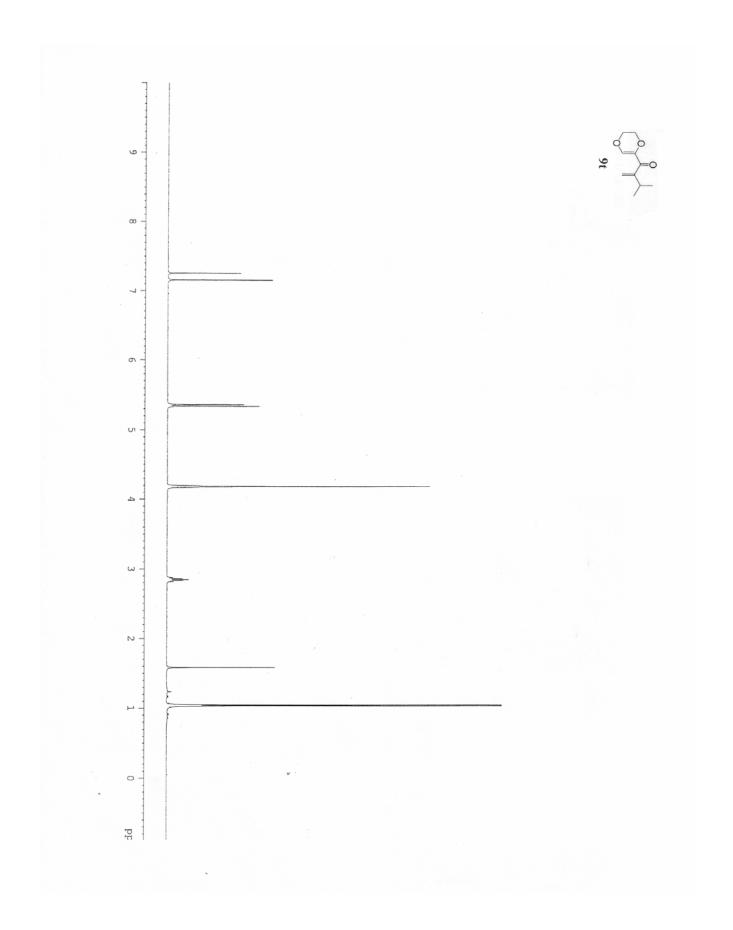


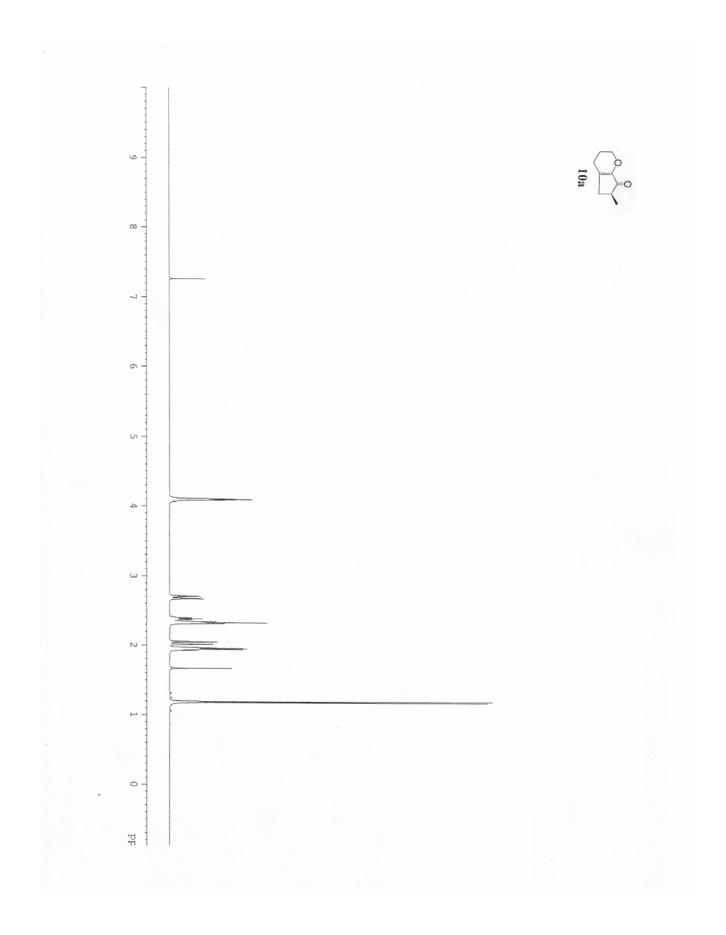


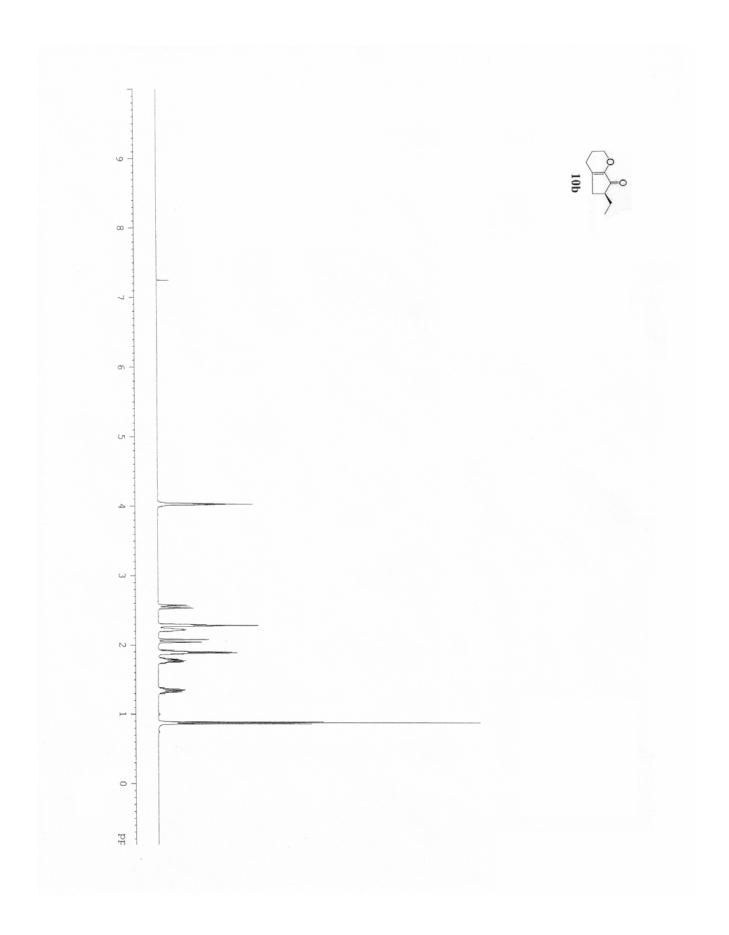


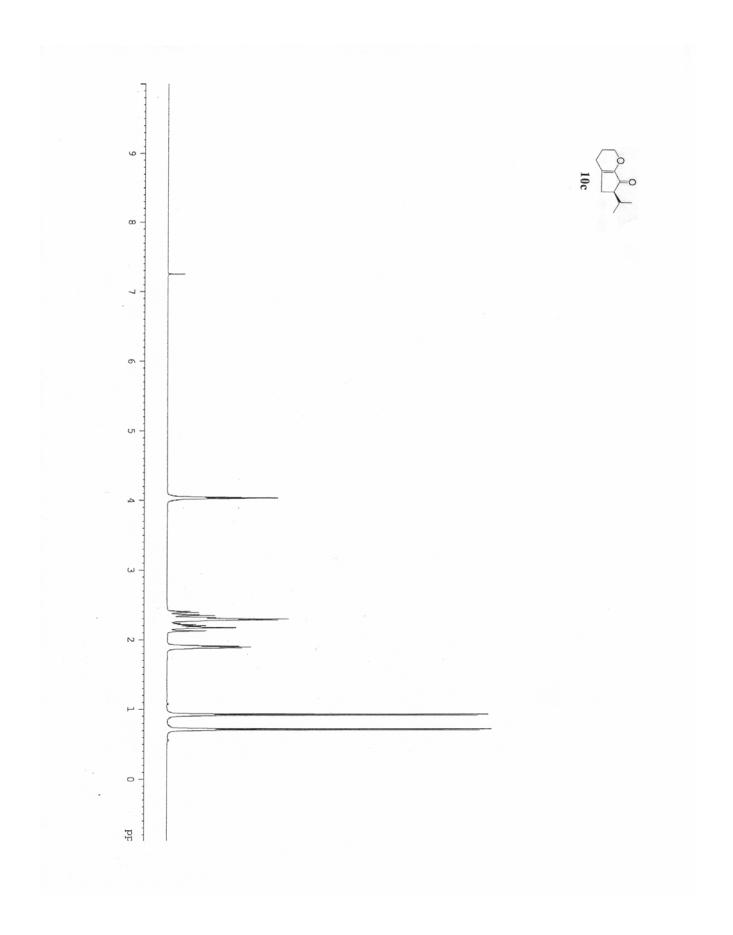


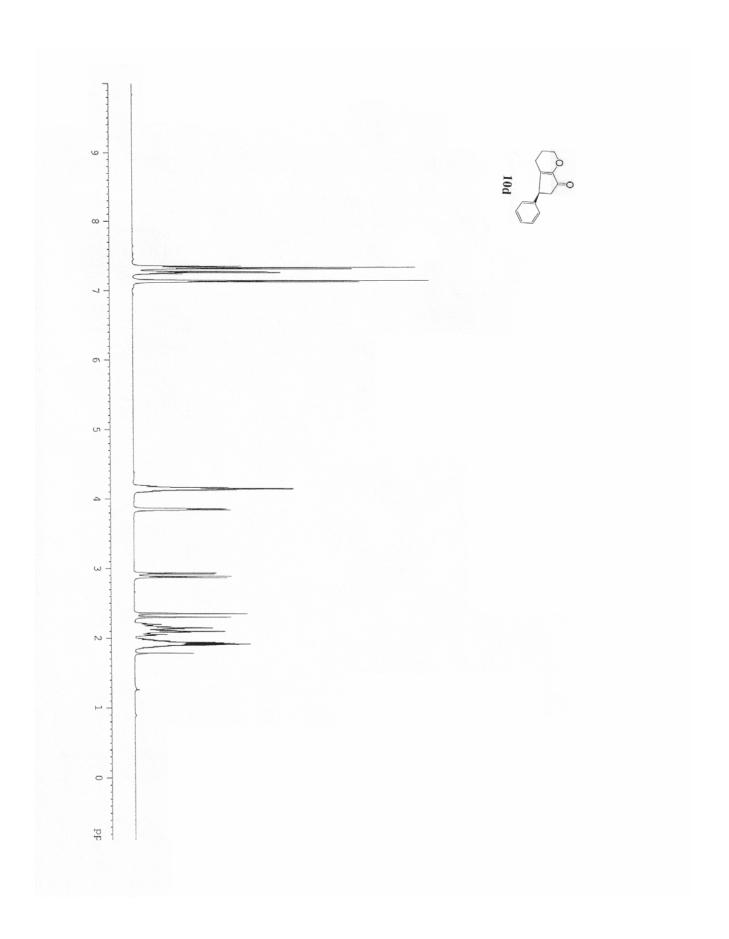


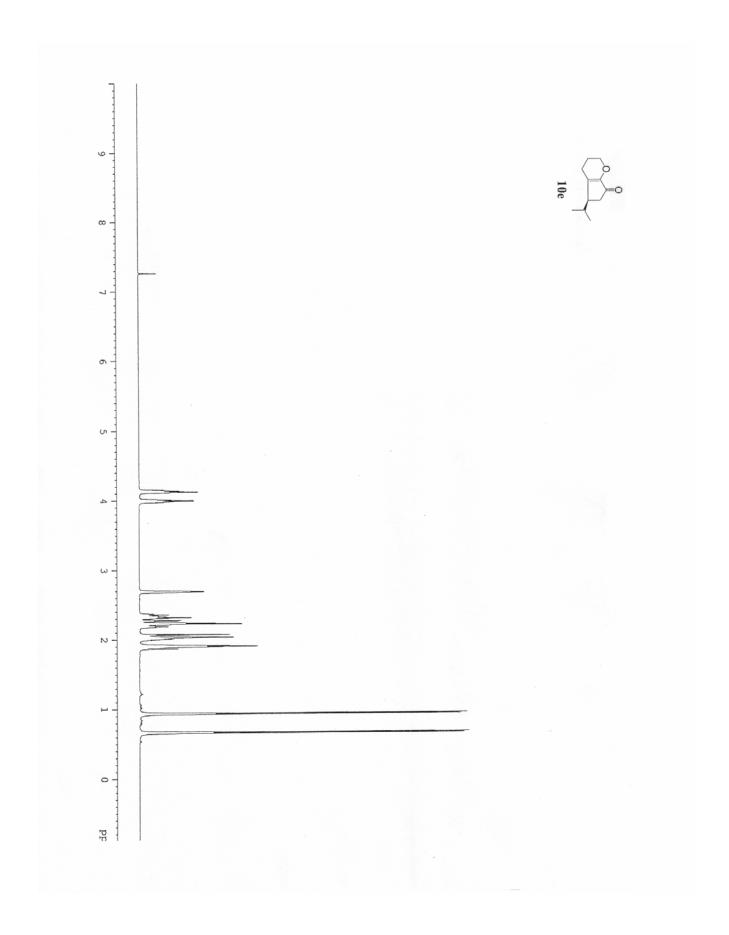


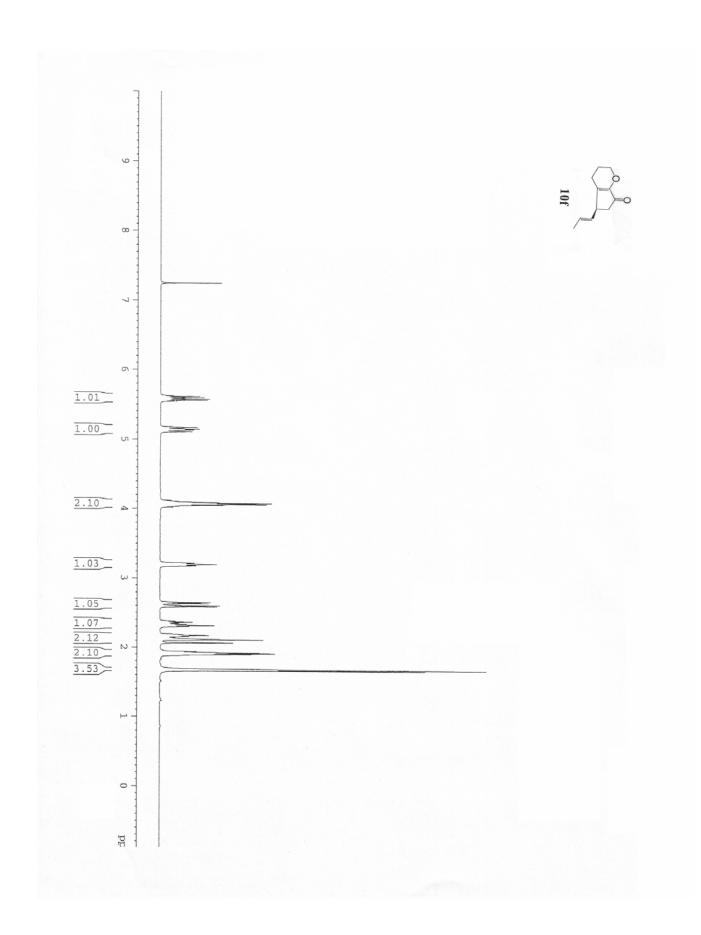


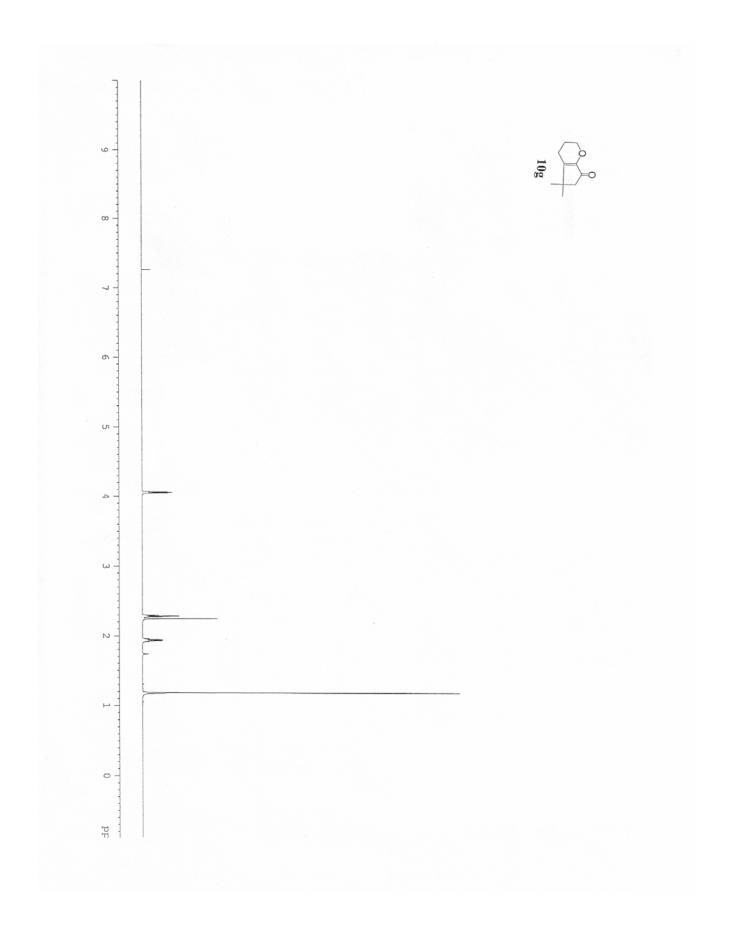


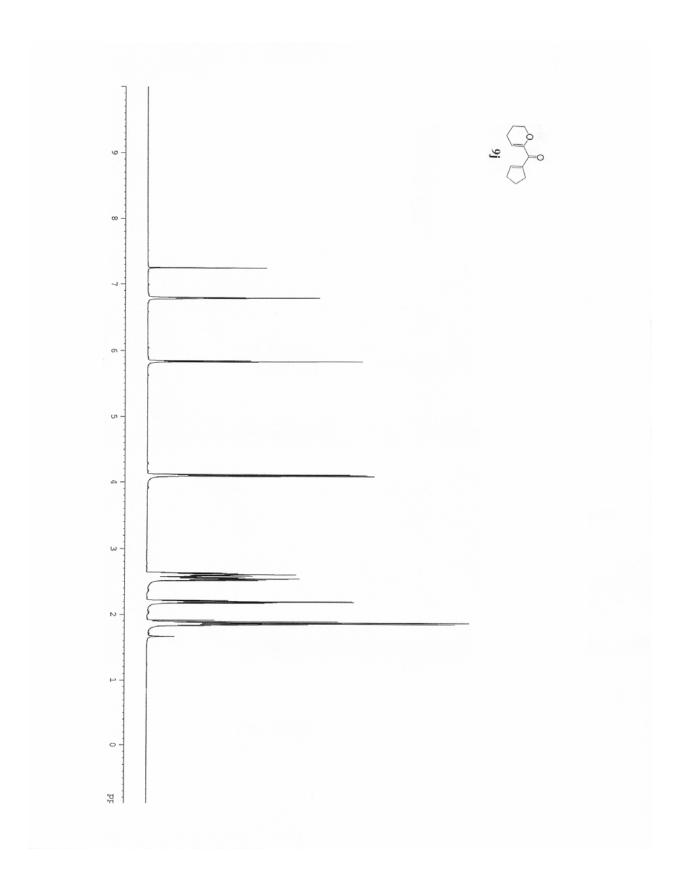


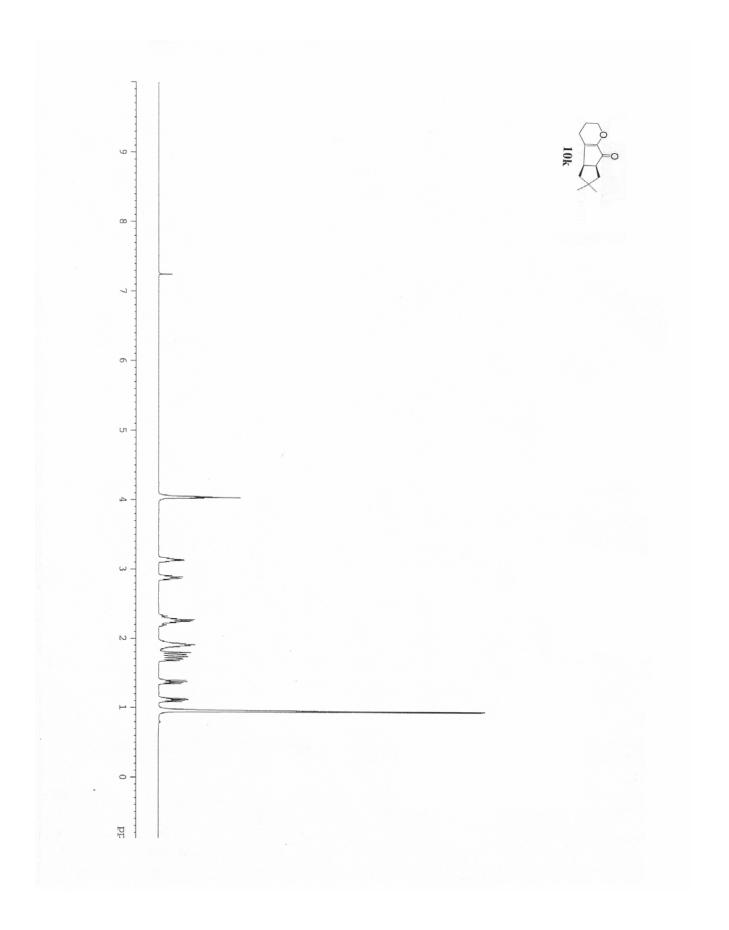


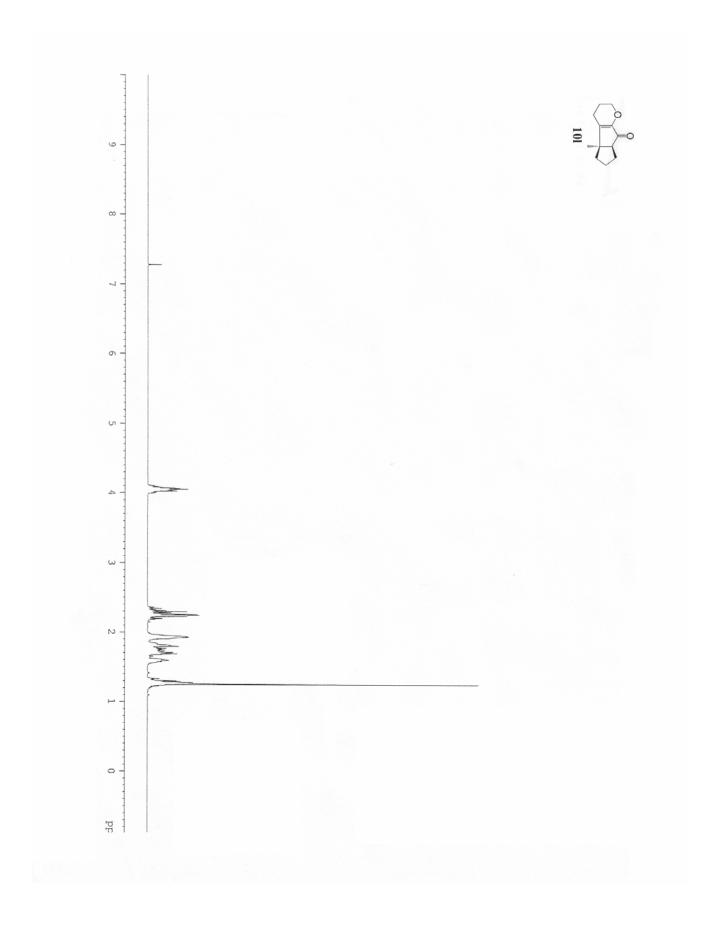


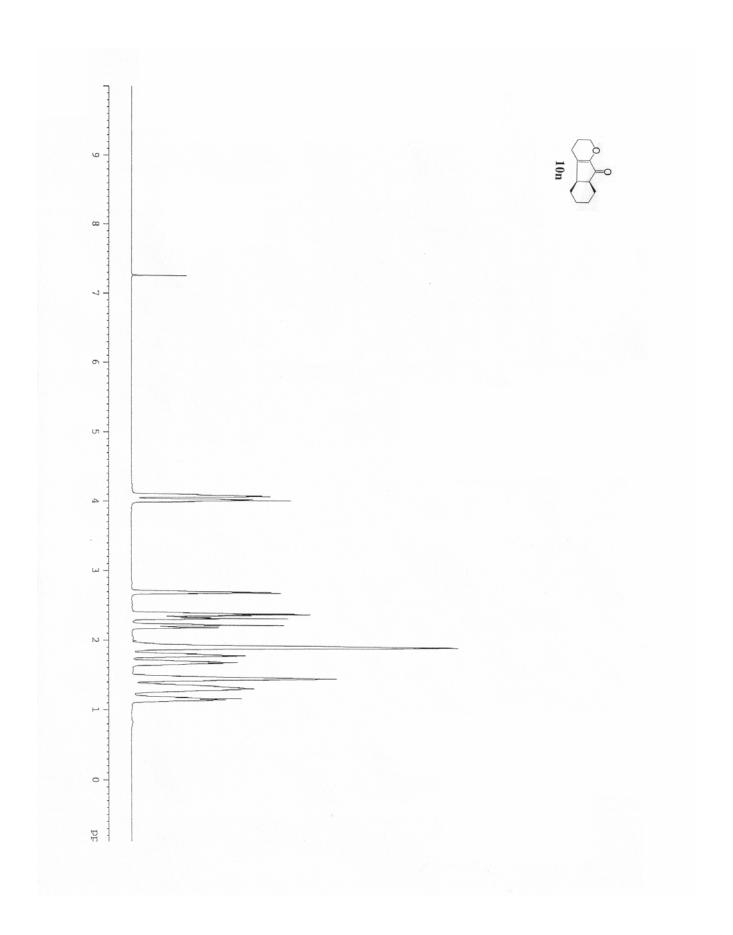


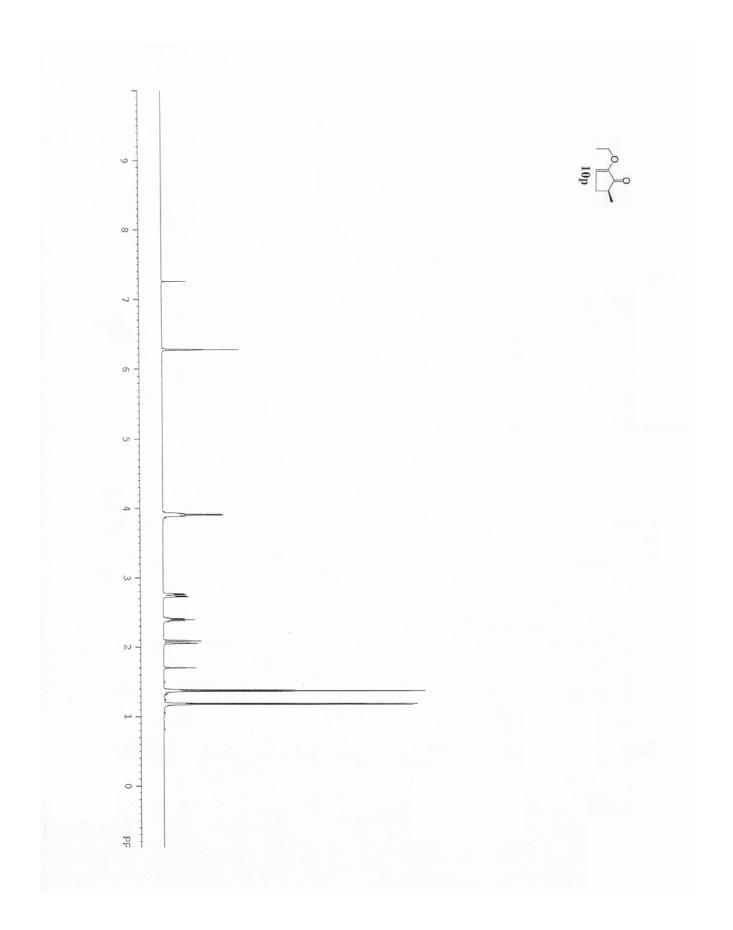


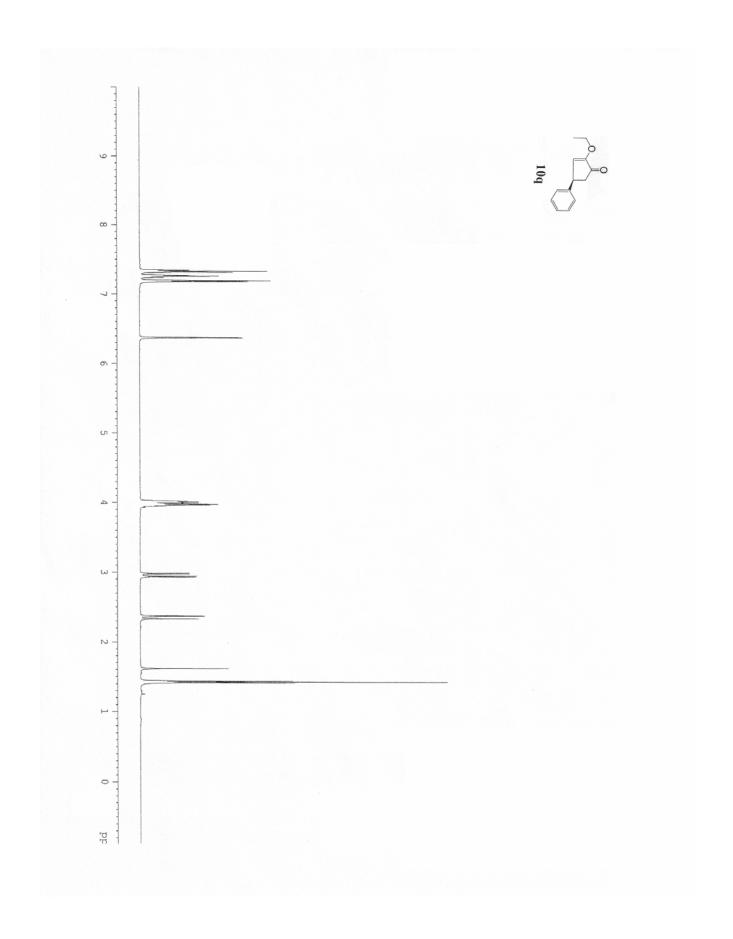


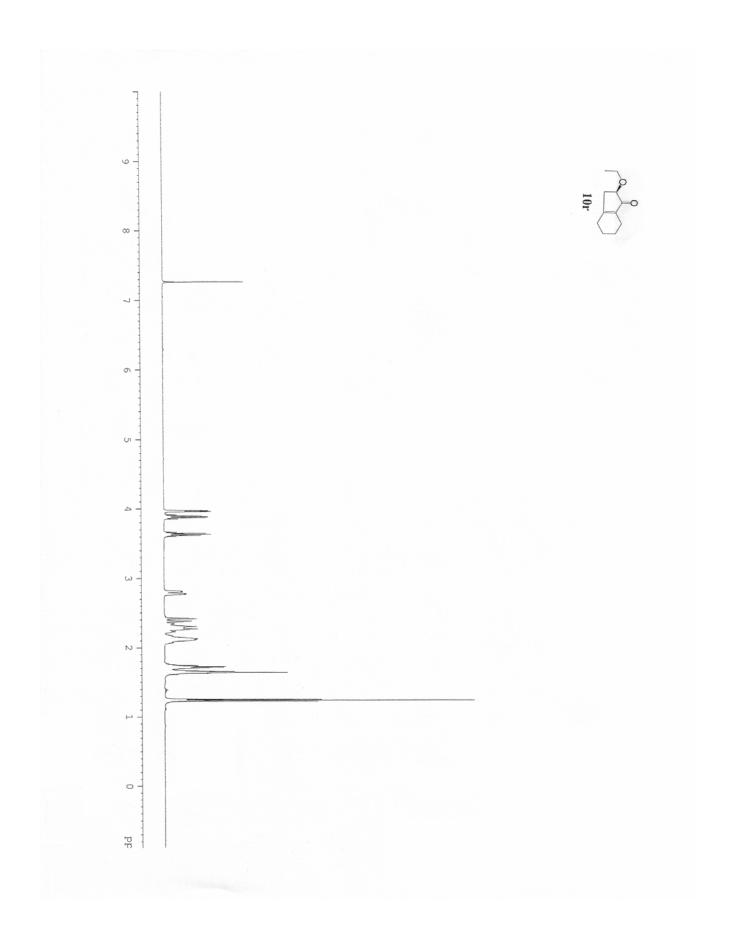


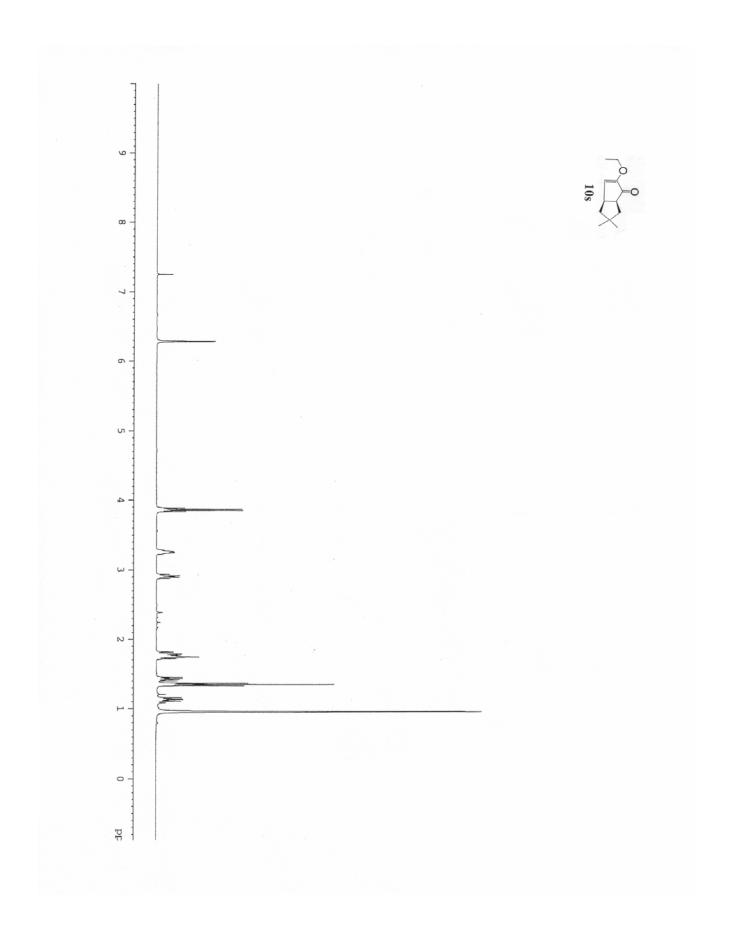


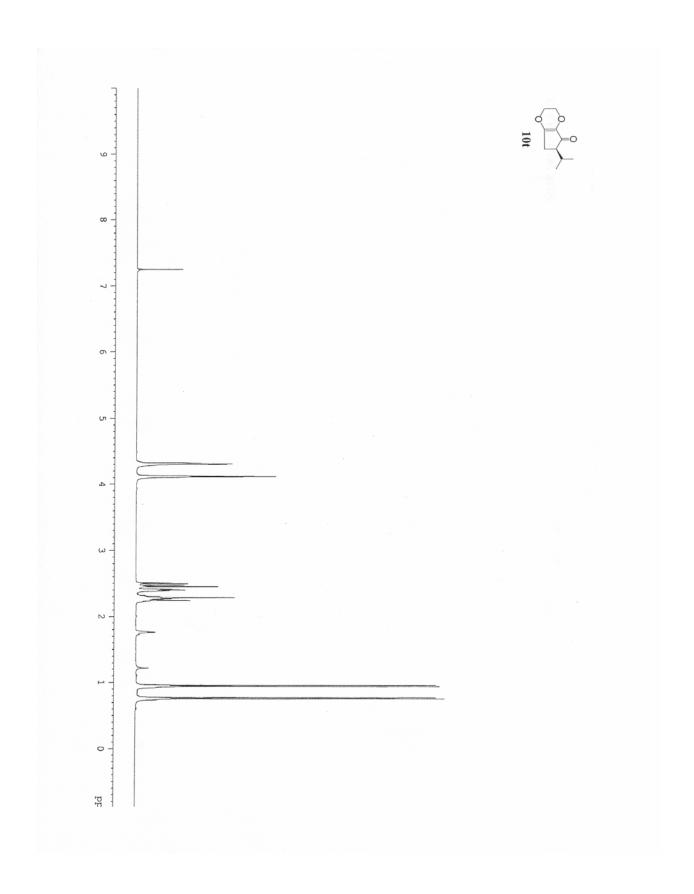


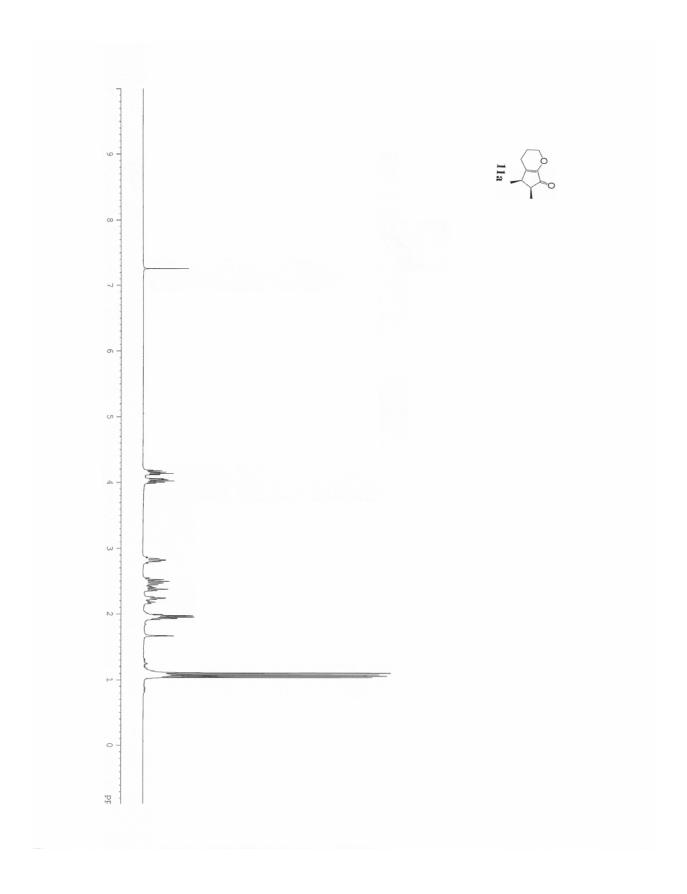


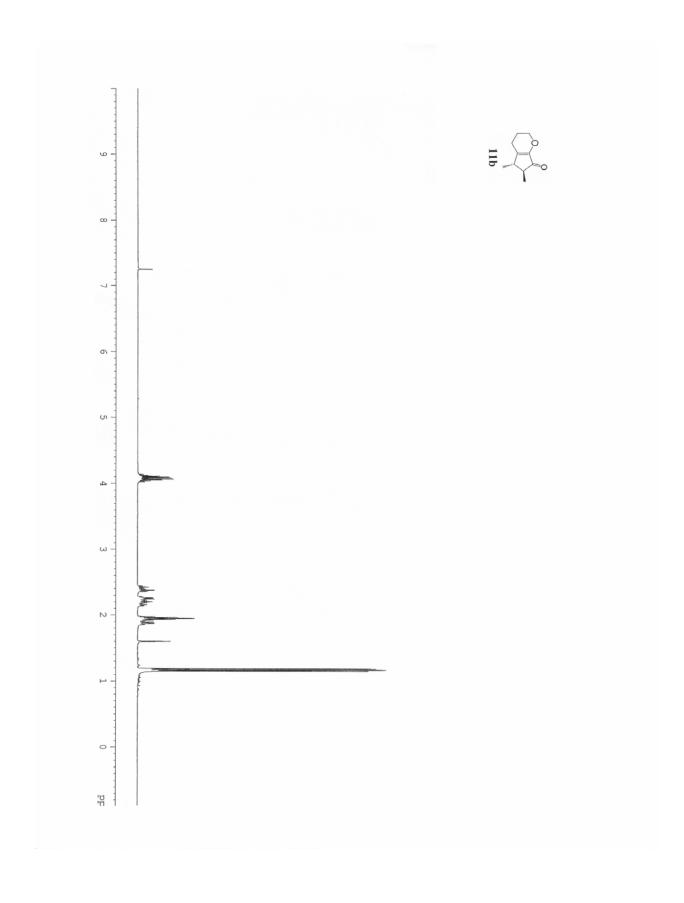


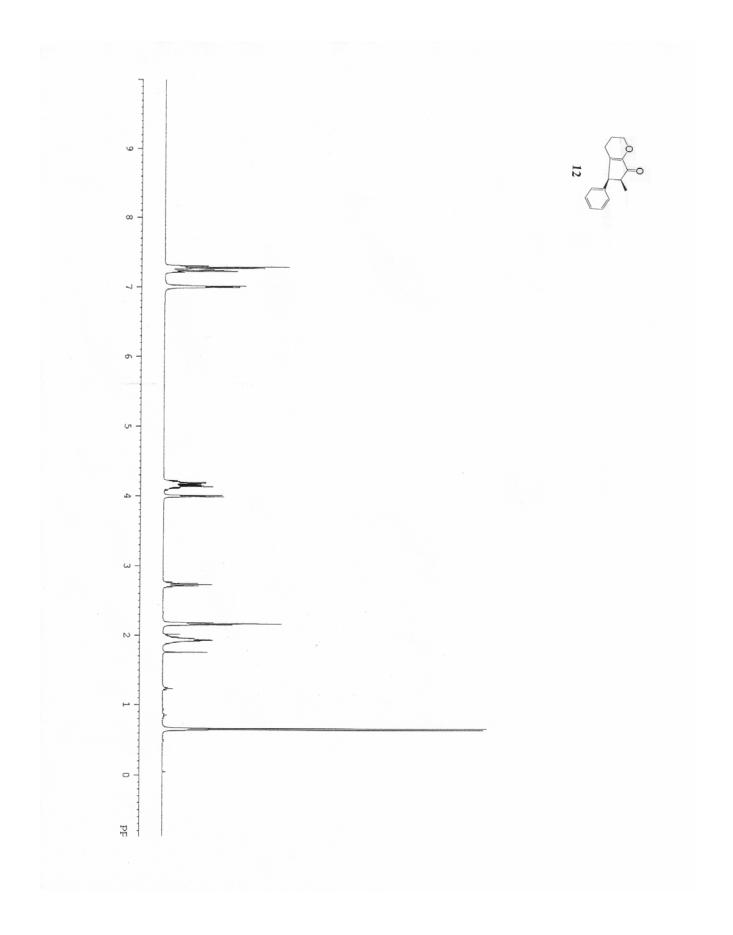


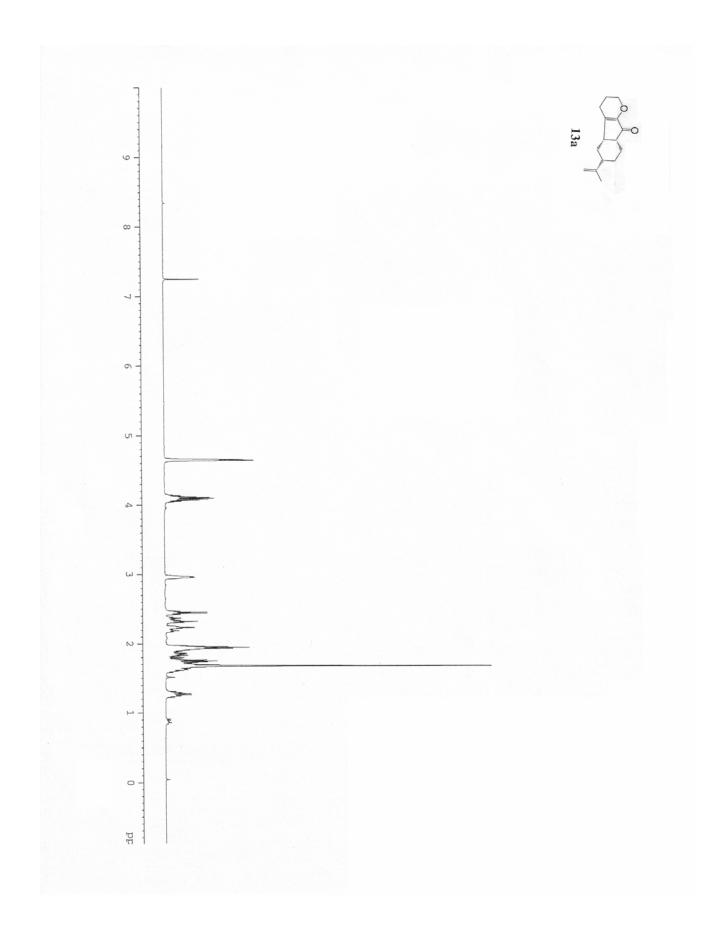


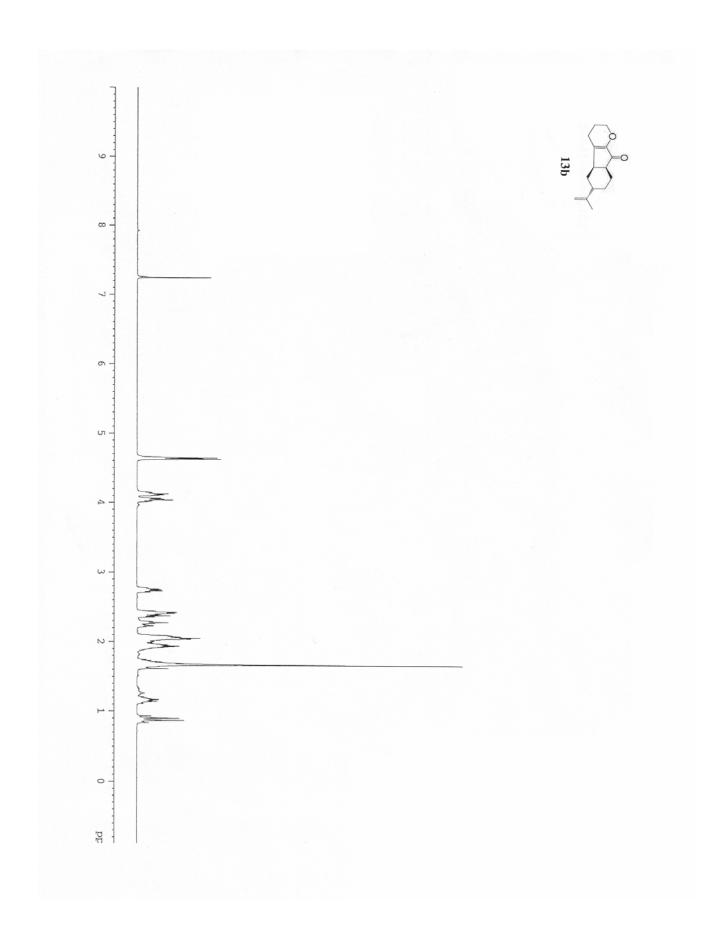












EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula $O_2C_{15}H_{16}$ Formula Weight 228.29

Crystal Color, Habit colorless, blade

Crystal Dimensions 0.43 X 0.22 X 0.08 mm

Crystal System monoclinic

Lattice Type Primitive

Lattice Parameters a = 6.4685(7) Å b = 11.794(1) Å c = 15.938(2) Å $\beta = 100.876(2)^{\circ}$ $V = 1194.1(2) \text{ Å}^{2}$

Space Group $P2_1/c$ (#14)

Z value 4

 $\begin{array}{ll} {\rm D}_{eale} & 1.270 \ {\rm g/cm^3} \\ {\rm F}_{000} & 488.00 \\ {\rm \mu(MoK}\alpha) & 0.83 \ {\rm cm^{-1}} \end{array}$

B. Intensity Measurements

Diffractometer Bruker SMART CCD Radiation MoK α ($\lambda = 0.71069 \text{ Å}$)

graphite monochromated

Detector Position 60.00 mm

Exposure Time 10.0 seconds per frame. Scan Type ω (0.3 degrees per frame)

 $2\theta_{max}$ 49.4°

No. of Reflections Measured Total: 5115

Unique: $2090 (R_{int} = 0.041)$

Corrections Lorentz-polarization

Absorption (Tmax = 0.98 Tmin = 0.52)

C. Structure Solution and Refinement

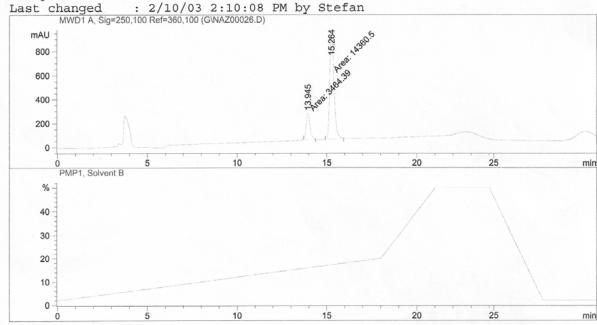
Structure Solution Direct Methods (SIR97)
Refinement Full-matrix least-squares

Function Minimized $\Sigma w(|Fo| - |Fe|)^2$

Least Squares Weights $w = \frac{1}{\sigma^2(Fo)} = [\sigma_s^2(Fo) + \frac{p^2}{4}Fo^2]^{-1}$

p-factor 0.0300

Anomalous Dispersion All non-hydrogen atoms


No. Observations (I>3.00 σ (I))	1350
No. Variables	154
Reflection/Parameter Ratio	8.77
Residuals: R; Rw; Rall	0.050 ; 0.057; 0.079
Goodness of Fit Indicator	1.80
Max Shift/Error in Final Cycle	0.00
Maximum peak in Final Diff. Map	$0.21 \ \epsilon^{-}/{\rm \AA}^{3}$
Minimum peak in Final Diff. Map	$-0.27 e^{-}/{\rm \AA}^{3}$

Sample Name: 2-Sc-py-THF-rt

_____ Injection Date : 4/7/03 11:50:50 AM Seq. Line: 1 Sample Name : 2-Sc-py-THF-rt Acq. Operator : G(Trauner) Vial : 51

Inj : Acq. Instrument : analytical HPLC Inj Volume : 5 μ l

Acq. Method : C:\HPCHEM\1\METHODS\ST160.M Last changed : 3/11/03 4:11:47 PM by G(Trauner) Analysis Method: C:\HPCHEM\1\METHODS\GRAD150S.M

_____ Area Percent Report

Signal Sorted By : 1.0000 Multiplier

: 1.0000 Dilution

Totals :

Signal 1: MWD1 A, Sig=250,100 Ref=360,100

Peak RetTime Type Width Area Height # [min] [min] [mAU*s] [mAU] -----1 13.945 MM T 0.2554 3464.39429 226.11496 2 15.264 MM T 0.2763 1.43605e4 866.36719 19.4357 866.36719 80.5643

61% e.e.

Results obtained with enhanced integrator! _____

*** End of Report ***

1.78249e4 1092.48215