Efficient Nazarov Cyclizations of 2-Alkoxy-1,4-pentadien-3-ones

Guangxin Liang, Stefan N. Gradl and Dirk Trauner*
Center for New Directions in Organic Synthesis, Department of Chemistry, University of California-Berkeley, Berkeley, California 94720

Supporting Information

General. Unless otherwise noted, infrared spectra (IR) were obtained on NaCl plates with a ATI Mattson Gemini FTIR spectrometer. Proton NMR spectra (${ }^{1} \mathrm{H}$ NMR) were recorded at 400 MHz in CDCl_{3} and carbon NMR spectra (${ }^{13} \mathrm{C}$ NMR) were recorded at 100 MHz in CDCl_{3} on Bruker AMX- 400 spectrometer. High resolution mass spectra (HRMS) were obtained on VG ProSpec Mass Spectrometer using electron impact (EI) at 70 eV unless otherwise noted. Preparative HPLC was performed on a Varian preparative HPLC instrument with a dynamax Microsorb Si column (ID: 21.4 mm , particle size $8 \mu \mathrm{~m}$, length: 25 cm , pore size: $60 \AA$) with a linear gradient of 8% EtOAc in hexanes to 25% EtOAc in hexanes over a course of 30 min with a flow rate of $21.6 \mathrm{~mL} / \mathrm{min}$. Enantioselectivities were measured on chiral analytical HPLC with a CHIRALPAK AD column (250 X 4.6 mm) with a linear gradient of 2% isopropanol in hexanes to 20% isopropanol in hexanes over a course of 18 min with a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$. The products of the Nazarov electrocyclizations were purified and confirmed by NMR spectra before enantioselectivities were measured. The peaks of two enantiomers were located based on the retention times derived from racemic mixture. Integration was done manually and the estimated error of e.e. is $\pm 1 \%$.

All reaction mixtures were magnetically stirred in oven-dried glassware under a blanket of nitrogen. External bath temperatures were used to record all reaction mixture temperatures. Analytical thin layer chromatography (TLC) was carried out on Merck silica gel $60 \mathrm{~F}_{254}$ TLC plates. TLC visualization was accomplished using 254 nm UV light or charring solutions of KMnO_{4} Flash chromatography was performed on ICN siliTech 32-63 D $60 \AA$ silica gel according to the procedure of Still. ${ }^{1}$

Tetrahydrofuran (THF), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were dried according to the procedure described by Bergman. ${ }^{2}$ Benzene was distilled from CaH_{2} immediately prior to use. Acetonitrile (MeCN) was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ immediately prior to use. Extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvents were removed with a rotary evaporator at aspirator pressure.

The preparation of compounds $\mathbf{8 a}, \mathbf{8 b}, \mathbf{8 c}, \mathbf{8 e}, \mathbf{8 g}, \mathbf{8 h}, \mathbf{8 j}, \mathbf{8 k}, \mathbf{8 1}, \mathbf{8 m}$ and $\mathbf{8 n}$ followed the same general procedure. A representative procedure was demonstrated below.

8a
1-(5,6-Dihydro-4H-pyran-2-yl)-2-methyl-prop-2-en-1-ol (8a) To 0.500 g (5.94 mmol) of dihydropyrone in 0.3 mL of THF was added 3.84 mL of a 1.7 M solution of $t-\mathrm{BuLi}$ in pentane dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was warmed to $0^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and treated with 0.2 mL of THF, the reaction mixture was cooled back to $-78^{\circ} \mathrm{C}$ and was treated with $0.480 \mathrm{~g}(6.53 \mathrm{mmol})$ of 2-methylpropenal dropwise. The reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$. Upon reaching 0 ${ }^{\circ} \mathrm{C}$, the reaction was quenched with water $(50 \mathrm{~mL})$ and diluted with EtOAc (100 mL). The two layers were separated and the aqueous layer was extracted with EtOAc (2 X 40 mL). The combined organic layers were washed with brine (80 mL), dried, filtered and concentrated in vacuo. The product was purified by column chromatography (EtOAc: hexanes $=1: 6)$ to afford $0.503 \mathrm{~g}(55 \%)$ of 8 a as colorless oil. $\mathrm{R}_{f} 0.20\left(\mathrm{EtOAc}^{2}\right.$: hexanes $=$ 1:6); IR 3427(br), 2928, 2873, 2849, $1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 5.08(\mathrm{~s}$, $1 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{t}, 1 \mathrm{H}, J=3.8 \mathrm{~Hz}), 4.34(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}), 3.98(\mathrm{~m}, 2 \mathrm{H})$, $2.22(\mathrm{~d}, 1 \mathrm{H}, J=6.1 \mathrm{~Hz}), 2.03(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 152.87,144.67,111.46,98.01,76.00,66.49,22.28,19.92,18.80$; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})^{+}$154.0994, found: 154.0990.

8b
1-(5,6-Dihydro-4H-pyran-2-yl)-2-ethyl-prop-2-en-1-ol (8b) Yield: 83\%; Colorless oil. $\mathrm{R}_{f} 0.14$ (EtOAc: hexanes = 1:9); IR 3434(br), 2965, 2932, 2876, 2849, 1675, 1650 cm^{-1}; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{t}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 4.35$ $(\mathrm{d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.01(\mathrm{~m}, 4 \mathrm{H})$, $1.76(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 153.12$, 150.34, 108.99, 98.02, 75.45, 66.41, 24.82, 22.25, 19.92, 12.12; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+}$ 168.1150, found: 168.1153.

8c
1-(5,6-Dihydro-4H-pyran-2-yl)-2-isopropyl-prop-2-en-1-ol (8c) Yield: 75\%; Colorless oil; $\mathrm{R}_{f} 0.21$ (EtOAc: hexanes = 1:9); IR 3433(br), 2959, 2930, 2871, 2850, 1675, 1649 cm^{-} ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{t}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz})$, $4.34(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 2.22(\mathrm{~m}$, $1 \mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.96(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 155.23,153.40,107.73,98.04,74.60,66.29,29.93$, 22.92, 22.22, 19.93; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})^{+} 182.1307$ found: 182.1305.

8e
1-(5,6-Dihydro-4H-pyran-2-yl)-4-methyl-pent-2-en-1-ol (8e) Yield: 91\%; Colorless oil. $\mathrm{R}_{f} 0.21$ (EtOAc: hexanes = 1:9); IR 3440(br), 2957, 2931, 2869, 2851, $1677 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 5.67$ (ddd, $1 \mathrm{H}, J=15.4,6.4,1.0 \mathrm{~Hz}$), 5.48 (ddd, $1 \mathrm{H}, J=15.4,6.4,1.0 \mathrm{~Hz}$), 4.73 (t, $1 \mathrm{H}, J=3.7 \mathrm{~Hz}$), $4.36(\mathrm{t}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}), 4.00(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~d}, 1$ $\mathrm{H}, J=4.8 \mathrm{~Hz}), 2.00(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{dd}, 6 \mathrm{H}, J=6.8,1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ_{C} 154.37, 140.30, 126.16, 96.87, 73.22, 66.41, 30.66, 22.34, 22.19, 22.13, 19.90; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})^{+}$182.1307, found: 182.1308

1-(5,6-Dihydro-4H-pyran-2-yl)-3-methyl-but-2-en-1-ol (8g) Yield: 87\%; Colorless oil. $\mathrm{R}_{f} 0.21$ (EtOAc: hexanes = 1:6); IR 3412 (br), 2967, 2928, 2875, 2850, $1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 5.32(\mathrm{dt}, 1 \mathrm{H}, J=8.6,1.3 \mathrm{~Hz}), 4.75(\mathrm{t}, 1 \mathrm{H}, J=3.8 \mathrm{~Hz}), 4.65(\mathrm{q}, 1 \mathrm{H}, J=4.3$ $\mathrm{Hz}), 4.03(\mathrm{t}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}), 2.00(\mathrm{~m}, 3 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~d}, 3 \mathrm{H}, J=1.0 \mathrm{~Hz})$, $1.69(\mathrm{~d}, 3 \mathrm{H}, J=1.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 154.45$, 136.75, 124.17, 96.43, 69.24, 66.46, 25.88, 22.36, 19.90, 18.19; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}(M)^{+}$168.1150, found: 168.1155

8h

1-(5,6-Dihydro-4H-pyran-2-yl)-2-methyl-but-2-en-1-ol (8h) Yield: 92\%; Colorless oil. $\mathrm{R}_{f} 0.23$ (EtOAc: hexanes $=1: 6$); IR 3435 (br), 2928, 2861, $1677 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.56(\mathrm{q}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 4.76(\mathrm{t}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 4.29(\mathrm{~d}, 1 \mathrm{H}, J=4.7$ $\mathrm{Hz}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H})$, $1.61(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 153.41$, 135.18, 121.37, 96.99, 77.10, 66.34, 22.34, 19.88, 13.21, 12.08; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+}$ 168.1150, found: 168.1149 .

8 j

Cyclopent-1-enyl-(5,6-dihydro-4H-pyran-2-yl)-methanol (8j) Yield: 90\%; Colorless oil. $\mathrm{R}_{f} 0.10$ (EtOAc: hexanes $=1: 6$); IR $3434(\mathrm{br}), 2945,2847 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) \delta_{\mathrm{H}} 5.76(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{t}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 3.67(\mathrm{~m}, 2 \mathrm{H})$, $2.42(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{H}_{6}$) $\delta_{\mathrm{C}} 154.73,145.34,126.19,96.26,72.22,66.14,32.69,32.43,23.75,22.65,20.17$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}(M)^{+} 180.1150$, found: 180.1150 .

8k
(5,6-Dihydro-4H-pyran-2-yl)-(4,4-dimethyl-cyclopent-1-enyl)-methanol (8k) Yield: 85%; Colorless oil. $\mathrm{R}_{f} 0.27$ (EtOAc: hexanes = 1:6); IR 3432 (br), 2947, 2864, $1675 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.53(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{t}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 3.96$ (m, 2 H), $2.32(\mathrm{~d}, 1 \mathrm{H}, J=4.3 \mathrm{~Hz}), 2.13(\mathrm{~d}, 2 \mathrm{H}, J=1.7 \mathrm{~Hz}), 2.07(\mathrm{~s}, 2 \mathrm{H}), 1.99(\mathrm{~m}, 2 \mathrm{H})$, $1.76(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 153.37$, 142.79, 124.74, $97.18,72.22,66.28,47.34,47.09,38.55,29.69,29.64,22.34,19.89$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}(\mathrm{M})^{+}$208.1463, found: 208.1460 .

81
(5,6-Dihydro-4H-pyran-2-yl)-(2-methyl-cyclopent-1-enyl)-methanol (81) Yield: 85\%; Colorless oil. $\mathrm{R}_{f} 0.32$ (EtOAc: hexanes $=1: 6$); IR $3428(\mathrm{br}), 2944,2928,2847,1678 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR} \delta_{\mathrm{H}} 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{t}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 4.02(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}$, $3 \mathrm{H}), 2.14(\mathrm{~s}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 4 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 153.75$, 136.61, 134.32, $95.66,68.75,66.33,38.90,31.79$, 22.42, 21.58, 19.88, 13.96; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})^{+}$194.1307, found: 194.1311

8m
(5,6-Dihydro-4H-pyran-2-yl)-(4-isopropenyl-cyclohex-1-enyl)-methanol (8m) Yield: 88%; Colorless oil. $\mathrm{R}_{f} 0.27$ (EtOAc: hexanes = 1:6); IR 3434(br), 2917, 1676, 1643 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 5.83(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{q}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~d}, 1 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 4.02(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 8 \mathrm{H}), 1.84(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 153.38,153.22,149.89,137.13,136.83,123.34,122.57,108.49,97.48,97.12,75.90$, $75.74,66.36,41.05,30.48,27.49,25.29,24.89,22.35,20.69$, 19.91; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}(\mathrm{M})^{+} 234.1620$, found: 234.1618

8n

Cyclohex-1-enyl-(5,6-dihydro-4H-pyran-2-yl)-methanol (8n) Yield: 94\%; Colorless oil. $\mathrm{R}_{f} 0.27$ (EtOAc: hexanes = 1:6); IR 3425(br), 2927, 2854, 1677 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.76(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{t}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 4.26(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 4.02(\mathrm{~m}$, $1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 2.03(\mathrm{~m}, 4 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H})$, $1.57(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 153.35,137.25,123.50,97.23,76.15$, 66.34, 24.97, 24.56, 22.57, 22.36, 19.91; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})^{+}$194.1307, found: 194.1305

The preparation of compounds $\mathbf{8 d}, \mathbf{8 f}$, and $\mathbf{8 i}$ followed the same general procedure. A representative procedure was demonstrated below.

8d
1-(5,6-Dihydro-4H-pyran-2-yl)-3-phenyl-prop-2-en-1-ol (8d) To 0.500 g (5.94 mmol) of dihydropyrone in 0.3 mL of THF was added 3.84 mL of a 1.7 M solution of $t-\mathrm{BuLi}$ in pentane dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, it was treated with $0.862 \mathrm{~g}(6.53 \mathrm{mmol})$ of 3-phenyl-propenal in 1 mL of THF dropwise. The reaction mixture was kept at $0^{\circ} \mathrm{C}$ for 1 h before it was quenched with water $(50 \mathrm{~mL})$ and diluted with EtOAc $(100 \mathrm{~mL})$. The two layers were separated and the aqueous layer was extracted with EtOAc (2 X 40 mL). The combined organic layers were washed with brine (80 mL), dried, filtered and concentrated in vacuo. The product was purified by column chromatography (EtOAc:
hexanes $=1: 6)$ to afford $0.770 \mathrm{~g}(60 \%)$ of $\mathbf{8 d}$ as lightly yellow oil. $\mathrm{R}_{f} 0.17$ (EtOAc: hexanes $=1: 6$); IR 3432(br), 3081, 3057, 3026, 2930, 2876, 2848, $1674 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ_{H} $7.39(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.31(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.23(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 6.66(\mathrm{~d}, 1 \mathrm{H}$, $J=6.0 \mathrm{~Hz}), 6.31(\mathrm{dd}, 1 \mathrm{H}, J=15.9,6.3 \mathrm{~Hz}), 4.85(\mathrm{t}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 4.62(\mathrm{t}, 1 \mathrm{H}, J=5.4$ $\mathrm{Hz}), 4.05(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ_{C} $153.78,136.62,131.23,128.78,128.48,127.63,126.57,97.47,73.24,66.51,22.29,19.89$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}(M)^{+} 216.1150$, found: 216.1153

1-(5,6-Dihydro-4H-pyran-2-yl)-hexa-2,4-dien-1-ol (8f) Yield: 45\%; Colorless oil. R_{f} 0.19 (EtOAc: hexanes = 1:6); IR $3440(\mathrm{br}), 3017,2930,2876,2850,1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 6.25(\mathrm{dd}, 1 \mathrm{H}, J=15.2,10.4 \mathrm{~Hz}), 6.07(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{t}, 1 \mathrm{H}, J=3.8$ $\mathrm{Hz}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 2.03(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H})$, $1.76(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 154.03,131.86,130.80,130.24,129.57$, 97.13, 73.02, 66.47, 22.33, 19.91, 18.11; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+} 180.1150$ found: 180.1149

$8 i$

1-(5,6-Dihydro-4H-pyran-2-yl)-2-methyl-3-phenyl-prop-2-en-1-ol (8i) Yield: 68\%; Colorless oil. $\mathrm{R}_{f} 0.24$ (EtOAc: hexanes = 1:6); IR 3429(br), 3080, 3054, 3023, 2945, 2930, 2870, 2849, $1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 7.32(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{t}, 1$ $\mathrm{H}, J=3.7 \mathrm{~Hz}), 4.51(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 4.03(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 2.06(\mathrm{~m}$, $2 \mathrm{H}), 1.88(\mathrm{~d}, 3 \mathrm{H}, J=1.1 \mathrm{~Hz}), 1.82(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 153.16,137.69$, 137.40, 129.03, 128.00, 126.33, 126.23, 97.85, 66.47, 22.34, 19.99, 14.49; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})^{+} 230.1307$, found: 230.1310

The preparation of compounds $\mathbf{8 p}, \mathbf{8 r}$ and $\mathbf{8 s}$ followed the same general procedure. A representative procedure was demonstrated below.

2-Ethoxy-4-methyl-penta-1,4-dien-3-ol (8p) To $0.500 \mathrm{~g}(6.93 \mathrm{mmol})$ of ethyl vinyl ether in 0.4 mL of THF was added 3.71 mL of a 1.7 M solution of t-BuLi in pentane dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was warmed to $0^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and treated with 0.3 mL of THF, the reaction mixture was cooled back to $-78^{\circ} \mathrm{C}$ and was treated with $0.400 \mathrm{~g}(5.73 \mathrm{mmol})$ of 2-methyl-propenal dropwise. The reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$. Upon reaching $0^{\circ} \mathrm{C}$, the reaction was quenched with water (50 mL) and diluted with EtOAc (100 mL). The two layers were separated and the aqueous layer was extracted with EtOAc (2 X 40 mL). The combined organic layers were washed with brine (80 mL), dried, filtered and concentrated in vacuo. The product was purified by column chromatography (EtOAc: hexanes $=1: 15)$ to afford $0.400 \mathrm{~g}(49 \%)$ of $\mathbf{8 p}$ as colorless oil. $\mathrm{R}_{f} 0.23$ (EtOAc: hexanes $=$ 1:9); IR 3436(br), 2979, 2917, 2882, 1658, 1625 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 5.06$ (s, 1 H), 4.92 (dd, $1 \mathrm{H}, J=2.5,1.5 \mathrm{~Hz}), 4.43(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.16(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 4.01(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.3 \mathrm{~Hz}), 3.74(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.33(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}) 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 161.37,144.71,111.89,82.33,76.35,63.09,18.44,14.21$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}(M)^{+}$142.0994, found: 142.0997

1-Cyclohex-1-enyl-2-ethoxy-prop-2-en-1-ol (8r) Yield: 78\%; Colorless oil. $\mathrm{R}_{f} 0.12$ $($ EtOAc: hexanes $=1: 20)$; IR 3410(br), 2978, 2927, 1657, 1623 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 5.71$ (s, $1 \mathrm{H}), 4.33(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 4.11(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 3.96(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 3.71$ $(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.36(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 1.93(\mathrm{~m}, 4 \mathrm{H}), 1.55(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{t}, 3 \mathrm{H}, J$ $=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 162.00,137.36,123.98,81.77,76.62,62.99,25.04,24.26,22.62$, $22.41,14.29$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})^{+}$182.1307, found: 182.1307

8s

1-(4,4-Dimethyl-cyclopent-1-enyl)-2-ethoxy-prop-2-en-1-ol (8s) Yield: 58\%; Colorless oil. $\mathrm{R}_{f} 0.30$ (EtOAc: hexanes = 1:9); IR 3441(br), 2952, 2925, 2901, 2866, 2840, 1717, $1650,1622 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 5.56(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}$), $4.11(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 3.97(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 3.75(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.28(\mathrm{~d}, 1 \mathrm{H}$, $J=6.4 \mathrm{~Hz}), 2.15(\mathrm{~s}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 2 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.06(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 161.78,142.74,125.14,81.74,72.56,62.97,47.35,46.79,38.57$, 29.63, 14.27; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}(\mathrm{M})^{+}$196.1463, found: 196.1463

$8 q$
4-Ethoxy-1-phenyl-penta-1,4-dien-3-ol (8q) To $0.500 \mathrm{~g}(6.93 \mathrm{mmol})$ of ethyl vinyl ether in 0.4 mL of THF was added 3.71 mL of a 1.7 M solution of t-BuLi in pentane dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was warmed to $0^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, it was treated with $0.757 \mathrm{~g}(5.73 \mathrm{mmol})$ of 3-phenylpropenal in 1 mL of THF dropwise. The reaction mixture was kept at $0^{\circ} \mathrm{C}$ for 1 h before it was quenched with water (50 mL) and diluted with EtOAc $(100 \mathrm{~mL})$. The two layers were separated and the aqueous layer was extracted with EtOAc (2 X 40 mL). The combined organic layers were washed with brine (80 mL), dried, filtered and concentrated in vacuo. The product was purified by column chromatography (EtOAc: hexanes $=1: 9$) to afford $0.678 \mathrm{~g}(58 \%)$ of $\mathbf{8 q}$ as colorless oil. $\mathrm{R}_{f} 0.26$ (EtOAc: hexanes $=$ 1:6); IR 3368(br), 3027, 2979, 2360, 2335, 1658, $1625 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 7.43$ (d, $2 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 7.34(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.27(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz})$, 6.35 (dd, $1 \mathrm{H}, J=16.0,6.2 \mathrm{~Hz}), 4.74(\mathrm{t}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 4.25(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 4.06$ $(\mathrm{d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 3.83(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.42(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 1.36(\mathrm{t}, 3 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 162.32,136.71,131.32,129.17,128.54,127.71,126.63,81.99$, 73.64, 63.27, 14.36; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+}$204.1150, found: 204.1153

80
(4,5-Dihydro-furan-2-yl)-(4,4-dimethyl-cyclopent-1-enyl)-methanol (80) To 0.500 g (7.13 mmol) of dihydrofuran in 0.3 mL of THF was added 4.62 mL of a 1.7 M solution of t-BuLi in pentane dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was warmed to $0^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and treated with 0.2 mL of THF, the reaction mixture was cooled back to $-78^{\circ} \mathrm{C}$ and was treated with $0.974 \mathrm{~g}(7.84 \mathrm{mmol})$ of 4,4-dimethyl-cyclopent-1-enecarbaldehyde dropwise. The reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$. Upon reaching $0^{\circ} \mathrm{C}$, the reaction was quenched with water (50 mL) and diluted with EtOAc (100 mL). The two layers were separated and the aqueous layer was extracted with EtOAc (2 X 40 mL). The combined organic layers were washed with brine (80 mL), dried, filtered and concentrated in vacuo. The product was purified by column chromatography (EtOAc: hexanes $=1: 6)$ to afford $1.18 \mathrm{~g}(85 \%)$ of $\mathbf{8 0}$ as colorless oil; R_{f} 0.27 (EtOAc: hexanes = 1:6); IR 3460(br), 2951, 2929, 2892, 2865, 2840, $1714 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 5.61(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 4.86(\mathrm{t}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 4.76(\mathrm{~d}, 1$ $\mathrm{H}, J=5.1 \mathrm{~Hz}), 4.36(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~d}, 2 \mathrm{H}, J=2.0 \mathrm{~Hz}), 2.15(\mathrm{~d}, 2 \mathrm{H}, J=$ $2.0 \mathrm{~Hz}), 2.02\left(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}\right.$), $1.08(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 157.80,141.93,125.76,95.95,70.34,67.64,47.32,46.77,38.58,29.77,29.69$, 29.67; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})^{+}$194.1307, found: 194.1312

8t
1-(5,6-Dihydro-[1,4]dioxin-2-yl)-2-isopropyl-prop-2-en-1-ol (8t) To 0.500 g (5.81 mmol) of 2,3-dihydro-[1,4]dioxine in 0.3 mL of THF was added 3.76 mL of a 1.7 M solution of t - BuLi in pentane dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was warmed to 0 ${ }^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$ and treated with 0.2 mL of THF, the reaction mixture was cooled back to $-78^{\circ} \mathrm{C}$ and was treated with $0.627 \mathrm{~g}(6.39$ mmol) of 2-isopropyl-propenal dropwise. The reaction mixture was allowed to warm to 0 ${ }^{\circ} \mathrm{C}$. Upon reaching $0{ }^{\circ} \mathrm{C}$, the reaction was quenched with water $(50 \mathrm{~mL})$ and diluted with EtOAc (100 mL). The two layers were separated and the aqueous layer was extracted with EtOAc (2 X 40 mL). The combined organic layers were washed with brine (80 mL), dried, filtered and concentrated in vacuo. The product was purified by column chromatography (EtOAc: hexanes $=1: 6)$ to afford $0.696 \mathrm{~g}(65 \%)$ of $\mathbf{8 t}$ as colorless oil; R_{f} 0.21 (EtOAc: hexanes = 1:4); IR 3428(br), 2961, 2931, 2874, 1680, $1649 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}$), $4.08(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.03(\mathrm{~d}, 3 \mathrm{H}, J=6.8$ Hz); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 154.43,136.88,125.18,108.06,72.16,64.62,64.07$, 30.28, 22.97, 22.01; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}(\mathrm{M})^{+} 184.1100$, found: 184.1102

The oxidation of compounds $\mathbf{8}$ to $\mathbf{9}$ was carried out by either Dess-Martin oxidation or MnO_{2}. The representative procedures of both methods were demonstrated below.

$9 f$
1-(5,6-Dihydro-4H-pyran-2-yl)-hexa-2,4-dien-1-one (9f) Oxidation by Dess-Martin reagent: To $0.250 \mathrm{~g}(1.39 \mathrm{mmol})$ of $\mathbf{8 f}$ and 1 mL pyridine in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.718 \mathrm{~g}(1.46 \mathrm{mmol})$ of Dess-Martin reagent at $23{ }^{\circ} \mathrm{C}$. After 20 min , the reaction was quenched with $20 \mathrm{~mL} \mathrm{1:1} \mathrm{mixture} \mathrm{of} \mathrm{water} \mathrm{and} 6 \mathrm{~N} \mathrm{NaOH}$ solution. The mixture was stirred vigorously for 10 min . The two layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{X} 15 \mathrm{~mL})$. The combined organic layers were washed with brine (30 mL), dried, filtered and concentrated in vacuo. The product was purified by column chromatography (EtOAc: hexanes $=1: 9$) to afford $0.990 \mathrm{~g}(40 \%)$ of 9 f as colorless oil;
Oxidation by MnO_{2} : To a suspension of 7.80 g manganese (IV) oxide in 50 mL benzene was added $0.780 \mathrm{~g}(4.33 \mathrm{mmol})$ of $\mathbf{8 f}$ dissolved in 50 mL benzene. After 5 min , the reaction mixture was filtered through Celite and washed with EtOAc ($4 \times 50 \mathrm{~mL}$). The combined filtrate was concentrate in vacuo. The product was purified by column chromatography (EtOAc: hexanes $=1: 9$) to afford $0.733 \mathrm{~g}(95 \%)$ of $\mathbf{9 f}$ as colorless oil R_{f}
$0.23($ EtOAc: hexanes $=1: 6)$; IR 2991, 2950, 2934, 1671, 1620, $1580 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ_{H} $7.30(\mathrm{~m}, 1 \mathrm{H}), 6.32(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 6.20(\mathrm{~m}, 2 \mathrm{H}), 5.99(\mathrm{t}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}), 4.09(\mathrm{t}$, $2 \mathrm{H}, J=5.1 \mathrm{~Hz}), 2.21(\mathrm{dd}, 2 \mathrm{H}, J=10.7,6.3 \mathrm{~Hz}), 1.84(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 185.78$, 151.94, 144.23, 140.68, 130.65, 121.84, 110.20, 66.31, 21.58, 20.86, 18.83; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})^{+} 178.0994$, found: 178.0998

9 a
1-(5,6-Dihydro-4H-pyran-2-yl)-2-methyl-propenone (9a) Dess-Martin oxidation afforded 9 a as colorless oil in 85% yield. $\mathrm{R}_{f} 0.33$ (EtOAc: hexanes = 1:6); IR 2928, 2878, $1657,1625 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 5.84(\mathrm{t}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}), 5.66(\mathrm{~s}, 1 \mathrm{H})$, $5.64(\mathrm{t}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}), 4.11(\mathrm{t}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}), 2.22(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{t}, 3 \mathrm{H}, J=1.1$ $\mathrm{Hz}), 1.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 192.61,150.89,142.79,123.83,113.83$, 66.28, 21.43, 20.82, 18.92; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}(\mathrm{M})^{+}$152.0837, found: 152.0839

9b
1-(5,6-Dihydro-4H-pyran-2-yl)-2-ethyl-propenone (9b) Dess-Martin oxidation afforded $9 \mathbf{b}$ as colorless oil in 82% yield. $\mathrm{R}_{f} 0.27$ (EtOAc: hexanes = 1:6); IR 2967, 2934, $2876,1656,1625 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 5.72(\mathrm{t}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}$), $5.43(\mathrm{~d}, 1$ $\mathrm{H}, J=1.0 \mathrm{~Hz}), 5.39(\mathrm{~d}, 1 \mathrm{H}, J=1.0 \mathrm{~Hz}), 3.96(\mathrm{t}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}), 2.19(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~m}$, $2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ_{C} 192.80, 151.08, 148.56, 120.87, 114.67, 66.18, 25.39, 21.25, 20.74, 12.02; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})^{+} 166.0994$, found: 166.0993

9c
1-(5,6-Dihydro-4H-pyran-2-yl)-2-isopropyl-propenone (9c) Dess-Martin oxidation afforded 9c as a colorless oil in 88% yield. $\mathrm{R}_{f} 0.23$ (EtOAc: hexanes = 1:9); IR 2961, 2932, 2873, 1660, $1625 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 5.74(\mathrm{t}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}$), 5.33 (d, $2 \mathrm{H}, J=4.4$ $\mathrm{Hz}), 3.98(\mathrm{t}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 0.9(\mathrm{~d}, 6 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 193.60,153.34,151.51,118.34,115.30,66.29,29.92,21.32,21.07$, 20.89; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+} 180.1150$ found: 181.1153

9d
1-(5,6-Dihydro-4H-pyran-2-yl)-3-phenyl-propenone (9d) Oxidation by MnO_{2} afforded 9d as lightly yellow oil in 80% yield. $\mathrm{R}_{f} 0.34$ (EtOAc: hexanes $=1: 6$); IR 3059, 3026, 2950, 2932, 2874, 1664, 1628, 1599, $1575 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 7.70(\mathrm{~d}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz})$, 7.54 (m, 2 H), 7.32 (m, 4 H$), 6.09(\mathrm{t}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}), 4.11(\mathrm{t}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 2.21$ (dd, $2 \mathrm{H}, J=10.6,6.2 \mathrm{~Hz}), 1.84(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 185.28,151.83,143.71,134.88$, $130.32,128.80,128.39,120.5,110.88,66.34,21.49,20.87$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$ $(\mathrm{M})^{+} 214.0994$, found: 214.0989

1-(5,6-Dihydro-4H-pyran-2-yl)-4-methyl-pent-2-en-1-one (9e) Dess-Martin oxidation afforded 9 e as colorless oil in 55% yield. $\mathrm{R}_{f} 0.28$ (EtOAc: hexanes = 1:15); IR 2961, 2933, 2871, 1683, 1671, 1634, 1614 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 6.89$ (dd, $1 \mathrm{H}, J=15.5,6.7 \mathrm{~Hz}$), $6.53(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}), 5.94(\mathrm{t}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}), 4.02(\mathrm{t}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 2.39(\mathrm{~m}, 1$ H), $2.14(\mathrm{dd}, 2 \mathrm{H}, J=10.8,6.2 \mathrm{~Hz}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR δ_{C} $185.69,154.74,151.62,121.0,110.72,66.20,31.27,21.43,21.23,20.75$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+}$180.1150, found: 180.1152

1-(5,6-Dihydro-4H-pyran-2-yl)-3-methyl-but-2-en-1-one (9g) Oxidation by MnO_{2} afforded 9 g as colorless oil in 91% yield. $\mathrm{R}_{f} 0.34$ (EtOAc: hexanes = 1:9); IR 2972, 2934, 2875, 1663, 1631, $1611 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 6.43(\mathrm{t}, 1 \mathrm{H}, J=1 \mathrm{~Hz}), 5.88(\mathrm{t}, 1 \mathrm{H}, J=4.2$ $\mathrm{Hz}), 4.02(\mathrm{t}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 186.56,156.56,152.31,119.50,109.23,66.23,27.93,21.56,20.99,20.74$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})^{+}$166.0994, found: 166.0989

9h
1-(5,6-Dihydro-4H-pyran-2-yl)-2-methyl-but-2-en-1-one (9h) Dess-Martin oxidation afforded 9 h as colorless oil in 70% yield. $\mathrm{R}_{f} 0.26$ (EtOAc: hexanes = 1:6); IR 2931, 2874, $1649 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 6.40(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{t}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}), 4.00(\mathrm{t}, 2 \mathrm{H}, J=5.2 \mathrm{~Hz})$, $2.10(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR δ_{C} 193.07, 151.23, 137.73, 136.13, 111.86, 66.26, 21.53, 20.67, 14.37, 12.35; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})^{+}$166.0994, found: 166.0993.

9i
1-(5,6-Dihydro-4H-pyran-2-yl)-2-methyl-3-phenyl-propenone (9i) Dess-Martin oxidation afforded $\mathbf{9 i}$ as colorless oil in 83% yield. $\mathrm{R}_{f} 0.23$ (EtOAc: hexanes $=1: 9$); IR 3055, 3024, 2954, 2929, 2873, 2841, 1654, $1626 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 7.35(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~m}$, $1 \mathrm{H}), 7.21(\mathrm{~d}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}), 5.79(\mathrm{t}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}), 4.12(\mathrm{t}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}), 2.21(\mathrm{~m}$, $2 \mathrm{H}), 2.10(\mathrm{~d}, 3 \mathrm{H}, J=1.4 \mathrm{~Hz}), 1.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 193.68,151.18,138.74$, 135.77, 135.72, 129.54, 128.35, 128.24, 113.27, 66.37, 21.51, 20.84, 14.72; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+} 228.1150$, found: 228.1152

9j

Cyclopent-1-enyl-(5,6-dihydro-4H-pyran-2-yl)-methanone (9j) Dess-Martin oxidation afforded $\mathbf{9 j}$ as colorless oil in 60% yield. $\mathrm{R}_{f} 0.26$ (EtOAc: hexanes = 1:6); IR 2947, 2872, $1644,1609 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 6.79,(\mathrm{~m}, 1 \mathrm{H}), 5.84(\mathrm{t}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}), 4.10(\mathrm{t}, 2 \mathrm{H}, J=$ $5.1 \mathrm{~Hz}), 2.61(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ_{C} 187.61, 152.02, 145.08, 142.97, 111.16, 66.24, 34.32, 32.15, 22.29, 21.58, 20.74; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})^{+}$178.0994, found: 178.0993.

9k
(5,6-Dihydro-4H-pyran-2-yl)-(4,4-dimethyl-cyclopent-1-enyl)-methanone (9k) DessMartin oxidation afforded $9 \mathbf{k}$ as colorless oil in 65% yield. $\mathrm{R}_{f} 0.32($ EtOAc: hexanes $=$ 1:9); IR 2952, 2930, 2867, 2845,, 1646, $1610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 6.68$ (s, 1 H), $5.82(\mathrm{t}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}), 4.09(\mathrm{t}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}), 2.43(\mathrm{~d}, 2 \mathrm{H}, J=1.9 \mathrm{~Hz})$, $2.35(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{dd}, 2 \mathrm{H}, J=10.6,6.3 \mathrm{~Hz}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 187.52,152.00,143.79,141.73,110.99,66.17,48.99,46.74,37.67$, 29.38, 21.55, 20.70; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})^{+}$206.1307, found: 206.1309.

(5,6-Dihydro-4H-pyran-2-yl)-(2-methyl-cyclopent-1-enyl)-methanone (91) DessMartin oxidation afforded 91 as colorless oil in 57% yield. $\mathrm{R}_{f} 0.18$ (EtOAc: hexanes $=$ 1:9); IR 2932, 2869, $2623 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 5.84(\mathrm{t}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}), 4.11(\mathrm{t}, 2 \mathrm{H}, J=5.1$ $\mathrm{Hz}), 2.67(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{dt}, 2 \mathrm{H}, J=7.8,1.0 \mathrm{~Hz}), 2.22(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 191.80,152.20,148.85,135.14,112.74,66.33,30.96,35.56,22.25,21.54,20.90$, 16.27; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+}$192.1150, found: 192.1148

9m
(5,6-Dihydro-4H-pyran-2-yl)-(4-isopropenyl-cyclohex-1-enyl)-methanone (9m) DessMartin oxidation afforded 9 m as colorless oil in 78% yield. $\mathrm{R}_{f} 0.33$ (EtOAc: hexanes $=$ 1:6); IR 3079, 2915, $1642 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 6.70(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{t}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}), 4.71$ (m, 2 H), $4.08(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 5 \mathrm{H}), 1.85(\mathrm{~m}, 3$ H), $1.72(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 191.95,151.33$, 148.83, 139.67, 137.09, 111.91, 109.13, 66.27, 40.16, 31.12, 26.88, 24.59, 21.53, 20.70, 20.65; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}(\mathrm{M})^{+} 232.1463$, found: $232.1459,[\alpha]^{20}{ }_{\mathrm{D}}-82.3\left(\mathrm{c} 0.6, \mathrm{CHCl}_{3}\right)$.

Cyclohex-1-enyl-(5,6-dihydro-4H-pyran-2-yl)-methanone (9n) Dess-Martin oxidation afforded 9 n as colorless oil in 70% yield. $\mathrm{R}_{f} 0.22$ (EtOAc: hexanes = 1:9); IR 2930, 2861, $1648,1630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 6.66(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{t}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}), 4.06(\mathrm{t}, 2 \mathrm{H}, J=5.0$ $\mathrm{Hz}), 2.19(\mathrm{~m}, 6 \mathrm{H}), 1.83(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ_{C} 192.32, 151.29, 140.36, 137.42, 111.79, 66.24, 25.75, 24.09, 21.90, 21.53, 20.67; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+}$ 192.1150, found: 192.1154

2-Ethoxy-4-methyl-penta-1,4-dien-3-one (9p) Dess-Martin oxidation afforded 9p as colorless oil in 75\% yield. $\mathrm{R}_{f} 0.32$ (EtOAc: hexanes = 1:30); IR 2982, 2928, 2882, 1667, $1601 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 5.85(\mathrm{t}, 1 \mathrm{H}, J=1.0 \mathrm{~Hz}), 5.75(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz})$, $4.57(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}), 3.80(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.91(\mathrm{dd}, 3 \mathrm{H}, J=1.4,1.0 \mathrm{~Hz}), 1.34(\mathrm{t}$, $3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 191.13,157.66,142.71,126.45,93.44,63.64,18.36,14.16$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}(\mathrm{M})^{+} 140.0837$ found: 142.0840

4-Ethoxy-1-phenyl-penta-1,4-dien-3-one (9q) Oxidation by MnO_{2} afforded $\mathbf{9 q}$ as colorless oil in 93 \% yield. $\mathrm{R}_{f} 0.28$ (EtOAc: hexanes = 1:15); IR 3080, 3060, 3028, 2981, 1930, 2901, 1736, 1678, 1594 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 7.75(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}), 7.58(\mathrm{~m}, 2 \mathrm{H})$, $7.37(\mathrm{~m}, 4 \mathrm{H}), 5.29(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 4.51(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 3.84(\mathrm{q}, 2 \mathrm{H}, J=7.0$ $\mathrm{Hz}), 1.41(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 186.40,158.17$, 144.46, 134.84, 130.49, 128.83, 128.51, 120.56, 91.68, 63.81, 14.32; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})^{+}$202.0994, found: 202.0993

1-Cyclohex-1-enyl-2-ethoxy-propenone (9r) Dess-Martin oxidation afforded 9r as colorless oil in 85% yield. $\mathrm{R}_{f} 0.20$ (EtOAc: hexanes = 1:30); IR 2980, 2932, 2992, 2868, $1657,1632,1607 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 6.85(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 4.45(\mathrm{~d}, 1 \mathrm{H}$, $J=2.5 \mathrm{~Hz}), 3.77(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.19(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{t}, 3 \mathrm{H}, J=7.0$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 192.78,158.36,143.34,137.57,91.44,63.53,26.07,23.59,21.86$, 21.52, 14.24; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+} 180.1150$, found: 180.1153. This compound is previously reported. The analysis data matches those reported. ${ }^{3}$

1-(4,4-Dimethyl-cyclopent-1-enyl)-2-ethoxy-propenone (9s) Dess-Martin oxidation afforded 9 s as colorless oil in 75% yield. $\mathrm{R}_{f} 0.25$ (EtOAc: hexanes = 1:20); IR 2979, 2954, 2930, 2868, 2848, 2831, 1655, $1601 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.44$ (s, $1 \mathrm{H}), 3.79(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.41(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 2 \mathrm{H}), 1.34(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) 1.06$ (s, 6 H) ${ }^{13}{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 187.94,158.87,145.63,141.93,91.72,63.64,49.17,46.50,37.73$, 29.43, 14.29; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})^{+}$194.1307, found: 194.1308

9t
1-(5,6-Dihydro-[1,4]dioxin-2-yl)-2-isopropyl-propenone (9t) Dess-Martin oxidation afforded 9 t as colorless oil in 46% yield. $\mathrm{R}_{f} 0.21$ (EtOAc: hexanes $=1: 4$); IR 3428(br), 2960, 2930, 2875, 1649, $1607 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.15(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~s}$, $1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 4 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, 6 \mathrm{H}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 191.83,153.33,142.36,137.51,116.81,65.14,63.47,30.43,21.05$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}(\mathrm{M})^{+}$182.0943, found: 182.0941

The Nazarov cyclization of compounds 9 was carried out by the catalysis of $10 \mathrm{~mol} \%$ AlCl_{3} in either $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or MeCN . The amount of the substrates used in the cyclization was generally around $90-120 \mathrm{mg}$. The representative procedure was demonstrated below.

6-Methyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (10a) To 0.011 g (0.079 $\mathrm{mmol})$ of AlCl_{3} in $2 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ was added $0.120 \mathrm{~g}(0.788 \mathrm{mmol})$ of $\mathbf{9 a}$ in $2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was stirred for 1 min before it was quenched water (4 mL). The mixture was further diluted with $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The two layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{X} 5 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried, filtered and concentrated in vacuo. The product was purified by column chromatography (EtOAc : hexanes $=1: 4$) to afford $0.110 \mathrm{~g}(92 \%) \mathbf{1 0 a}$ as colorless oil. $\mathrm{R}_{f} 0.14$ (EtOAc: hexanes $=1: 4$); IR 2962, 2928, 2872, 1707, $1648 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.10(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{t}, 2 \mathrm{H}, J$ $=6.2 \mathrm{~Hz}), 2.03(\mathrm{dd}, 1 \mathrm{H}, J=7.4,1.8 \mathrm{~Hz}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~d}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 203.44,150.13,143.82,66.71,37.95,34.80,23.98,21.57$, 16.45; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}(\mathrm{M})^{+} 152.0837$, found: 152.0838

10b
6-Ethyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (10b) Cyclization of 9b in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $\mathbf{1 0 b}$ as colorless oil in 91% yield. Reaction time: $1 \mathrm{~min} ; \mathrm{R}_{f} 0.20$ (EtOAc: hexanes $=1: 4$); IR 2961, 2929, 2875, 1706, $1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ_{H} $4.03(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{dd}, 1 \mathrm{H}, J=$ $17.5,1.8 \mathrm{~Hz}), 1.91(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 202.84,150.57$, 144.38, 66.69, 44.66, 32.14, 24.31, 23.97, 21.54, 11.09; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})^{+}$166.0994, found: 166.0997

6-Isopropyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (10c) Cyclization of 9c in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded 10 c as colorless oil in 93% yield. Reaction time: $1 \mathrm{~min} ; \mathrm{R}_{f} 0.22$ (EtOAc: hexanes = 1:4); IR 2956, 2930, 2872, 1706, $1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 4.03(\mathrm{~m}, 2 \mathrm{H})$, $2.37(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 3 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.71$ $(\mathrm{d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 202.59,151.27,144.74,66.75,49.10,28.55,28.12$, 24.02, 21.63, 20.39, 16.95; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+} 180.1150$ found: 181.1151

10d
5-Phenyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (10d) Cyclization of 9d in MeCN afforded $\mathbf{1 0 d}$ as colorless oil in 86% yield. Reaction time: 10 min ; $\mathrm{R}_{f} 0.26$ (EtOAc: hexanes $=1: 3$); IR 2928, 1710, $1648 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H}), 7.14$ (m, 2 H), 4.15 (m, 2 H), 3.85 (dd, $1 \mathrm{H}, J=6.6,1.6 \mathrm{~Hz}$), 2.91 (dd, $1 \mathrm{H}, J=19.0,6.6 \mathrm{~Hz}$), $2.32(\mathrm{dt}, 1 \mathrm{H}, J=19.0,0.9 \mathrm{~Hz}), 2.12(\mathrm{tq}, 2 \mathrm{H}, J=19.0,6.2 \mathrm{~Hz}), 1.92(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 200.08,151.50,147.39,141.72,129.00,127.17,127.10,66.94,43.66,42.94,22.20$, 21.46; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})^{+} 214.0994$, found: 214.0998

5-Isopropyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (10e) Cyclization of 9e in MeCN afforded $\mathbf{1 0 e}$ as colorless oil in 92% yield. Reaction time: $50 \mathrm{~min} ; \mathrm{R}_{f} 0.13$ (EtOAc: hexanes = 1:6); IR 2955, 2930, 2872, 1709, $1645 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{dd}, 1 \mathrm{H}, J=18.6,6.8 \mathrm{~Hz})$, 2.22 (m, 2 H), 2.03 (m, 2 H), $1.90(\mathrm{~m}, 2 \mathrm{H}), 0.93$ (d, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}$), 0.66 (d, $3 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 200.40,151.34,147.65,66.74,43.06,33.96$, 28.03, 22.61, 21.44, 20.66, 15.52; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+} 180.1150$, found: 180.1151

$10 f$
5-Propenyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (10f) Cyclization of 9 f in MeCN afforded $\mathbf{1 0 f}$ as colorless oil in 90% yield. Reaction time:30 min; $\mathrm{R}_{f} 0.20$ (EtOAc: hexanes $=1: 4$); IR 2933, 1710, $1645 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 5.58(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~m}, 1 \mathrm{H}), 4.07$ (m, 2 H), $3.20(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}$), $2.62(\mathrm{dd}, 1 \mathrm{H}, J=18.8,6.3 \mathrm{~Hz}$), $2.34(\mathrm{dt}, 1 \mathrm{H}, J=18.8$, $6.3 \mathrm{~Hz}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ_{C} 199.87, 150.79, 147.39, 131.41, 127.59, 66.78, 41.11, 40.21, 22.19, 21.42, 17.72; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})^{+}$ 178.0994, found: 178.0996

10 g
5,5-Dimethyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (10g) Cyclization of 9 g in MeCN afforded $\mathbf{1 0 g}$ as colorless oil in 85% yield. Reaction time: $12 \mathrm{~h} ; \mathrm{R}_{f} 0.15$ (EtOAc: hexanes = 1:4); IR 2957, 2928, 2869, 1710, $1645 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 Hz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.07(\mathrm{t}, 2 \mathrm{H}, J=5.2 \mathrm{~Hz}$), $2.28(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 2.25(\mathrm{~s}, 2 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H})$, 1.18 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 199.59,152.70,148.93,66.50,49.17,36.78$, 27.18, 21.41, 18.91; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})^{+}$166.0994, found: 166.0989

10j

2,3,3a,5,6,8a-Hexahydro-1H,4H-7-oxa-cyclopenta[α]inden-8-one (10j) Cyclization of $\mathbf{9} \mathbf{j}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $\mathbf{1 0 j}$ as colorless oil in 88% yield. Reaction time: $40 \mathrm{~min} ; \mathrm{R}_{f} 0.19$ (EtOAc: hexanes =1:4); IR 2945, 2867, 1706, $1644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 4.01$, (m, 2 H), $3.01(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~m}, 2$ H), $1.79(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ_{C} 203.78, 151.41, 147.70, 67.03, 48.74, 43.21, 28.93, 28.18, 24.03, 22.67, 21.84; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})^{+}$178.0994, found: 178.0987.

10k
2,2-Dimethyl-2,3,3a,5,6,8a-hexahydro-1H,4H-7-oxa-cyclopenta[a]inden-8-one (10k) Cyclization of $9 \mathbf{k}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $\mathbf{1 0 k}$ as colorless oil in 92% yield. Reaction time: 30 $\mathrm{min} ; \mathrm{R}_{f} 0.29$ (EtOAc: hexanes = 1:3); IR 2950, 2864, 1708, $1644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 4.03$ (m, 2 H), $3.13(\mathrm{q}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}$), $2.87(\mathrm{dd}, 1 \mathrm{H}, J=16.6,7.1 \mathrm{~Hz}), 2.24(\mathrm{~m}, 2 \mathrm{H}), 1.91$ (m, 2 H), 1.73 (m, 2 H), 1.37 (dd, $1 \mathrm{H}, J=12.9,7.6 \mathrm{~Hz}$), $1.11(\mathrm{dd}, 1 \mathrm{H}, J=12.6,7.4 \mathrm{~Hz}$), $0.95(\mathrm{~d}, 6 \mathrm{H}, J=4.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 203.45,148.63,148.44,66.64,48.89,43.47,43.43$, 43.27, 41.23, 28.65, 27.81, 22.62, 21.55; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})^{+}$206.1302, found: 206.1309.

101
3a-Methyl-2,3,3a,5,6,8a-hexahydro-1H,4H-7-oxa-cyclopenta[a]inden-8-one
(101)

Cyclization of $\mathbf{9 1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $\mathbf{1 0 1}$ as colorless oil in 91% yield. Reaction time: 12 $\mathrm{h} ; \mathrm{R}_{f} 0.27$ (EtOAc: hexanes = 1:4); IR 2948, 2866, 1706, $1644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 4.05(\mathrm{~m}$, $2 \mathrm{H}), 2.28(\mathrm{~m}, 3 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\text {C }} 202.95,150.60,150.03,66.66,56.27,48.55,35.68,28.89,25.01,24.73,21.57,19.56 ;$ HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+}$192.1150, found: 192.1155

3,4,4b,5,6,7,8,8a-Octahydro-2H-1-oxa-fluoren-9-one (G-037) Cyclization of 9n in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $\mathbf{1 0 n}$ as colorless oil in 88% yield. Reaction time: 20 min ; Colorless oil. $\mathrm{R}_{f} 0.28$ (EtOAc: hexanes = 1:4); IR 2931, 2863, 1707, 1644 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.09(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{q}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.35(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{dt}$, $1 \mathrm{H}, J=18.7,5.8 \mathrm{~Hz}), 1.91(\mathrm{~m}, 3 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 1.32$ (m, 2 H), $1.15(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 202.74,150.20,148.31,66.78$, $43.64,37.45,26.60,22.38,21.91,21.57,20.44,20.29$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+}$ 192.1150, found: 192.1150

10p
2-Ethoxy-5-methyl-cyclopent-2-enone (10p) Cyclization of $\mathbf{9 p}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded 10p as colorless oil in 80% yield. Reaction time: $6 \mathrm{~h} ; \mathrm{R}_{f} 0.23$ (EtOAc: hexanes $=1: 6$); IR $2978,2929,1712,1623 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.28(\mathrm{t}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz})$, $3.90(\mathrm{dq}, 2 \mathrm{H}, J=7.0,2.5 \mathrm{~Hz}), 4.85(\mathrm{dq}, 1 \mathrm{H}, J=17.6,3.2 \mathrm{~Hz}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{dt}, 1$ $\mathrm{H}, J=17.6,2.5 \mathrm{~Hz}), 1.38(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.18(\mathrm{~d}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 205.46,155.55,125.66,65.35,38.49,31.17,16.42,14.31$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}(\mathrm{M})^{+} 140.0837$ found: 142.0840; This compound is previously reported. The analysis data matches those reported. ${ }^{4}$

$10 q$
2-Ethoxy-4-phenyl-cyclopent-2-enone (10q) Cyclization of $\mathbf{9 q}$ in MeCN afforded $\mathbf{1 0 q}$ as colorless oil in 40% yield. Reaction time: $30 \mathrm{~h} ; \mathrm{R}_{f} 0.20$ (EtOAc: hexanes $=1: 6$); IR 3063, 3027, 2980, 2930, 2897, 1713, 1621, $1604 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ_{H} 7.34 (t, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}$), $7.26(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.37(\mathrm{~d}, 1 \mathrm{H}, J=3.0$ $\mathrm{Hz}), 3.99(\mathrm{~m}, 3 \mathrm{H}), 2.96(\mathrm{dd}, 1 \mathrm{H}, J=19.3,6.7 \mathrm{~Hz}), 2.35(\mathrm{dd}, 1 \mathrm{H}, J=19.3,2.1 \mathrm{~Hz}), 1.43$ $(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ_{C} 202.30, 156.41, 143.03, 130.11, 128.86, 127.07, 126.89, 65.80, 43.08, 39.98, 14.31; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})^{+}$ 202.0994, found: 202.0997

10r
2-Ethoxy-2,3,4,5,6,7-hexahydro-inden-1-one (10r) Cyclization of $\mathbf{9 r}$ in MeCN afforded 10 r as colorless oil in 91% yield. Reaction time: $6 \mathrm{~h} ; \mathrm{R}_{f} 0.31$ (EtOAc: hexanes $=1: 6$); IR 2973, 2930, 2864, 1707, $1644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 3.96$ (dd, $1 \mathrm{H}, J=6.3$, $2.3 \mathrm{~Hz}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{dd}, 1 \mathrm{H}, J=7.6,5.2 \mathrm{~Hz}), 2.39(\mathrm{~d}, 1 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 2.24(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 205.70,170.73,137.12,77.54,65.79,37.56,28.46$, 21.94, 21.49, 19.79, 15.28; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+} 180.1150$, found: 180.1148

10s
2-Ethoxy-5,5-dimethyl-4,5,6,6a-tetrahydro-3aH-pentalen-1-one (10s) Cyclization of 9s in refluxing MeCN afforded 10s as colorless oil in 75% yield. Reaction time: $3 \mathrm{~h} ; \mathrm{R}_{f}$ 0.20 (EtOAc: hexanes = 1:9); IR 2952, 2933, 2902, 2864, 1711, $1618 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ_{H} $6.28(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}), 3.86(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}$, 2 H), 1.43 (dd, $1 \mathrm{H}, J=12.9,7.7 \mathrm{~Hz}$), $1.35(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}$), 1.13 (dd, $1 \mathrm{H}, J=12.6$, $7.4 \mathrm{~Hz}), 0.95(\mathrm{~d}, 6 \mathrm{H}, J=3.6 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 205.65,154.16,130.92,65.35,49.16$, 45.09, 43.64, 41.87, 40.34, 28.72, 27.90, 14.30; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})^{+}$ 194.1307, found: 194.1311

6-Isopropyl-2,3,6,7-tetrahydro-cyclopenta[1,4]dioxin-5-one (10t) Cyclization of 9t in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $\mathbf{1 0 t}$ as colorless oil in 75% yield. Reaction time: $2 \mathrm{~min} ; \mathrm{R}_{f} 0.22$ (EtOAc: hexanes $=1: 2)$; IR 2957, 2930, 2873, 1707, $1641 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 4.30(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{t}$, $2 \mathrm{H}, J=4.0 \mathrm{~Hz}$), $2.48(\mathrm{dd}, 1 \mathrm{H}, J=17.0,6.6 \mathrm{~Hz}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, 3$ $\mathrm{H}, J=7.0 \mathrm{~Hz}), 0.76(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 196.92,165.08,134.31,66.88$, 63.84, 47.66, 28.06, 24.78, 20.40, 16.54; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}(\mathrm{M})^{+}$182.0943, found: 182.0944

11a

11b

Cyclization of $\mathbf{9 h}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded 11a and 11b as colorless oil in 89% combined yield with a ratio of $3: 2$. Reaction time: 5 min ; 11a and 11b were separated by HPLC.

Cis-5,6-Dimethyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (11a) $\mathrm{R}_{f} 0.20$ (EtOAc: hexanes = 1:4); Retention time: 28.3 min , IR 2967, 1705, $1647 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 4.13,(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1$ H), $1.94(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~d}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.03(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ_{C} 203.27, 149.70, 148.69, 66.81, 42.13, 36.06, 21.97, 21.66, 14.79, 11.22; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})^{+} 166.0994$, found: 166.0994.

Trans-5,6-Dimethyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (11b) $\mathrm{R}_{f} 0.20$ $($ EtOAc: hexanes $=1: 4)$; Retention time: 26.5 min , IR 2927, 1707, $1644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 4.09,(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~m}, 1$ H), $1.17(\mathrm{~d}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 202.63,149.56$, $147.43,70.90,66.64,47.34,41.31,21.60,17.84,14.71$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})^{+}$ 166.0994, found: 166.0996.

12

6-Methyl-5-phenyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one (12) Cyclization of $\mathbf{9 i}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $\mathbf{1 2}$ as white solid in 88% yield. Reaction time: $5 \mathrm{~min} ; \mathrm{R}_{f} 0.22$ $($ EtOAc: hexanes $=1: 4)$; IR 3026, 2972, 2932, 2876, 1710, $1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 7.24$ $(\mathrm{m}, 3 \mathrm{H}), 7.00(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 4.16(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.73(\mathrm{~m}, 1 \mathrm{H})$, $2.16(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 1.93(\mathrm{~m}, 2 \mathrm{H}), 0.65(\mathrm{~d}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 202.97$, $151.51,144.91,138.55,128.81,128.44,127.08,67.05,48.78,43.22,22.46,21.60,12.27$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+}$228.1150, found: 228.1148; m.p. 93.8-94.8 ${ }^{\circ} \mathrm{C}$

13a

13b

Cyclization of $\mathbf{9 m}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded 13a and 13b as colorless oil in 85% combined yield with 60% d.r.. Reaction time: 15 min ; $\mathbf{1 3 a}$ and $\mathbf{1 3 b}$ were separated by HPLC.

6-Isopropenyl-3,4,4b,5,6,7,8,8a-octahydro-2H-1-oxa-fluoren-9-one (Major) $\mathrm{R}_{f} 0.21$ (EtOAc: hexanes = 1:4); Retention time: 26.2 min ; IR 2931, 2865, 1704, $1643 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}} 4.65(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{q}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 2.34(\mathrm{dt}, 1$ $\mathrm{H}, J=18.8,6.6 \mathrm{~Hz}$), $2.21(\mathrm{dt}, 1 \mathrm{H}, J=18.8,5.8 \mathrm{~Hz}), 1.94(\mathrm{~m}, 3 \mathrm{H}), 1.77(\mathrm{~m}, 8 \mathrm{H}), 1.25$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 203.30,150.83,149.75,146.87,108.56,66.81,43.00,36.86,36.65$, 28.20, 25.68, 22.89, 21.84, 21.55, 20.62; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}(\mathrm{M})^{+}$232.1463, found: 232.1462, $[\alpha]^{20} 72.2\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right)$.

6-Isopropenyl-3,4,4b,5,6,7,8,8a-octahydro-2H-1-oxa-fluoren-9-one (Minor) $\mathrm{R}_{f} 0.21$ (EtOAc: hexanes =1:4); Retention time: 23.1 min ; IR 2924, 2857, 1706, $1634 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta_{H} 4.64(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 2 \mathrm{H}), 2.25$ $(\mathrm{dt}, 1 \mathrm{H}, J=18.8,5.7 \mathrm{~Hz}), 1.98(\mathrm{~m}, 5 \mathrm{H}), 1.69(\mathrm{~m}, 5 \mathrm{H}), 1.14(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}} 201.81,149.88,149.61,148.39,108.64,66.85,43.7,42.14,38.44,35.35,27.89$, 22.58, 22.01, 21.67, 20.46; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}(\mathrm{M})^{+}$232.1463, found: 232.1466, $[\alpha]^{20}{ }_{\mathrm{D}}-48.3\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right)$.

[^0]

A. Crystal Data

Empirical Formula	$\mathrm{O}_{2} \mathrm{C}_{15} \mathrm{H}_{16}$
Formula Weight	228.29
Crystal Color, Habit	colorless, blade
Crystal Dimensions	$0.43 \times 0.22 \times 0.08 \mathrm{~mm}$
Crystal System	monorlinic
Lattice Type Lattice Parameters	Primitive $\begin{aligned} & \mathrm{a}=6.4685(7) \AA \\ & \mathrm{b}=11.794(1) \AA \\ & \mathrm{c}=15.938(2) \AA \\ & \beta=100.876(2)^{a} \\ & \mathrm{~V}=1194.1(2) \AA^{3} \end{aligned}$
Space Group	$\mathrm{P} 2_{1} / \mathrm{c}(\# 14)$
Z value	4
$\mathrm{D}_{\text {eabe }}$	$1.270 \mathrm{~g} / \mathrm{cm}^{3}$
T_{000}	488.00
$\mu(\mathrm{MoK} \alpha)$	$0.83 \mathrm{~cm}^{-1}$
B. Intensity Measurements	
Diffractometer	Brulser SMART CCD
Radiation	MaKn $(\lambda=0.71069 \AA)$ graphite monochromated
Detector Position	60.000 mm
Exposure Time	10.0 seaonds per frame.
Scan Type	u (0.3 degrees per frame)
$2 \theta_{\text {smax }}$	49.4 ${ }^{3}$
No. of Reflections Measured	Total: 5115 Unique: $2000\left(\mathrm{R}_{\dot{d n t}}=0.041\right)$
Carrections	Lorenta-polarization Absorption ($\operatorname{Tmax}=0.98 \mathrm{Tmin}=0.52$)
C. Structure Solution and Refinement	
Structure Solution	Dinect Methods (SIR.97)
Refinement	Ful-matrix least-squaves
Tunction Minimized	$\Sigma v e(\|F o\|-\|F c\|)^{2}$
Least Squares Weights	$w=\frac{1}{\sigma^{3}(F o)}=\left[\sigma_{n}^{2}(F \alpha)+\frac{p^{3}}{4} F \omega^{2}\right]^{-1}$
p -factor	0.0300
Anomalous Dispersion	All non-hydrogen atams

No. Obeervations (I>-3.00б(I))	1350
No. Variables	154
Reflection/Parameter Ratio	8.77
Residuals: R: Rw; Rall	$0.0550=0.057 ; 0.079$
Gondnese of Fit Indicator	1.80
Max Shift/Ermor in Final Cycle	0.00
Maximum peak in Final Diff. Map	$0.21 e^{-} / \AA^{3}$
Minimum Jeak in Final Diff. Map	$-0.27 e^{-} / \AA^{3}$


```
    Area Percent Report
```



```
\begin{tabular}{lll} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}
```

Signal 1: MWD1 A, Sig=250,100 Ref $=360,100$

Totals :
1.78249 e 41092.48215

61\% e.e.
Results obtained with enhanced integrator!
 *** End of Report ***

[^0]: ${ }^{1}$ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
 ${ }^{2}$ Alaimo, P. J.; Peters, D. W.;Arnold, J.; Bergman, R. G. J. Chem. Ed. 2001, 78, 64.
 ${ }^{3}$ Stille, J. K., Kwon, H. B., McKee, B. H.; J. Org. Chem. 1990,55, 3114-3118
 ${ }^{4}$ Katritzky, A. R., Zhang, G., Jiang, J.; J. Org. Chem. 1995, 60, 7605-7611

