Stereospecific Construction of $\boldsymbol{\beta}$-Isopropenyl Alcohol Moiety at the $C(2)$ and (3) of Kallolide A and Pinnatin A
 Using [2,3] Wittig Rearrangement of Cyclic Furfuryl Ethers

Masayoshi Tsubuki,* Kazunori Takahashi, and Toshio Honda* Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142-8501, Japan

Supporting Information

Table of Contents
Experimental Procedures Pages S2-S11
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra Pages S 12 -S 19

General Information. All reactions were performed under argon atmosphere unless otherwise indicated. Analytical thin-layer chromatography was performed on glass plates bearing 0.25 mm layer of silica gel $60 \mathrm{~F}_{254}$. All chromatographic purifications were performed on silica gel 60 (230-400 mesh) using the indicating solvent systems. IR spectra were obtained on a FT/IR spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 270 and 67.8 MHz or 500 and 125 MHz , respectively. Chemical shifts are reported on the δ scale from internal TMS. Mass spectra were measured with a mass spectrometer. Optical rotations were taken with a polarimeter. HPLC was taken with a UV detector, pump, column oven and integrator.

Materials. Commercial grade reagents were used as received except as indicated below. Bromofuran was prepared according to the literature procedure. Chiral bis(oxazoline)s $\mathbf{1 1}$ and $\mathbf{1 3}$ were prepared according to the literature procedure. ${ }^{1}$ Other chiral bis(oxazoline)s $\mathbf{1 2}$ and $\mathbf{1 4}$ were purchased and used without further purification.

Methyl 5-(6'-cyanohexyl)-3-methyl-2-furoate $\mathbf{2}$

To a solution of bromofuran $\mathbf{1}^{2}(9.12 \mathrm{~g}, 41.6 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}(2.40 \mathrm{~g}, 2.08$ mmol) in THF (94.6 mL) was added 6-cyanohexylzinc bromide (0.5 M in THF, 100 mL , 50.0 mmol) at room temperature. After stirring for 1 hr , the reaction mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq., the precipitate was filtered and the filtrate was extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave an oil, which was purified by silica gel chromatography using hexane-EtOAc ($8: 2, \mathrm{v} / \mathrm{v}$) as eluent to give compound $2(8.7 \mathrm{~g}, 84 \%)$ as a yellow oil. IR $v \max 1712$ and $2245 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) \delta 1.24-1.54\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$, $1.60-1.74\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.31\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CCH}_{3}\right), 2.34\left(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, 6^{\prime}-\mathrm{CH}_{2}\right), 2.64$ $\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1{ }^{\prime}-\mathrm{CH}_{2}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.00(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 67.8\right.$ $\mathrm{MHz}) \delta 11.6,17.0,25.1,27.3,27.9,28.1,28.2,51.3,111.1,119.6,132.5,138.5,159.2$, 159.9; MS (EI): $249\left(\mathrm{M}^{+}\right)$; HRMS (EI): calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}$: 249.1365. Found; 249.1363 .

5-(6'-Formylhexyl)-2-hydroxymethyl-3-methylfuran 3

To a solution of compound $2(1.07 \mathrm{~g}, 4.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise DIBAL (0.93 M in hexane, $18.9 \mathrm{~mL}, 17.6 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 1 hr at the same temperature, the reaction mixture was quenched with sat. potassium sodium tartrate aq. and stirred for 2 hr at room temperature. The precipitate was filtered
and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave an oil, which was purified by silica gel chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\operatorname{EtOAc}(7: 3, \mathrm{v} / \mathrm{v})$ as eluent to give compound $3(767.6 \mathrm{mg}$, 80%) as a colorless oil. IR v max 1720 and $3400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) \delta$ 1.32-1.42 (4H, m, $\left.2 \times \mathrm{CH}_{2}\right), 1.56-1.74\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.56-1.74(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.00(3 \mathrm{H}$, $\left.\mathrm{s}, 3-\mathrm{CH}_{3}\right), 2.42\left(2 \mathrm{H}, \mathrm{dt}, J=1.8\right.$ and $\left.5.6 \mathrm{~Hz}, 6^{\prime}-\mathrm{CH}_{2}\right), 2.55\left(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{2}\right), 4.53$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 5.81(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 9.76(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}, \mathrm{CHO}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 67.8\right.$ $\mathrm{MHz}) \delta 9.8,21.9,27.7,27.8,28.8(2), 43.8,55.3,108.3,118.3,147.4,155.4,202.9$; MS (EI): $224\left(\mathrm{M}^{+}\right)$; HRMS (EI): calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}: 224.1412$. Found; 224.1382 .

2-tert-Butyldimethylsiloxymethyl-5-[(7'E)-8'-ethoxycarbonyl-7'-nonenyl]-3-methylfuran (E)-4

To a solution of compound $3(657.3 \mathrm{mg}, 2.9 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(12 \mathrm{~mL})$ was added $\mathrm{Ph}_{3} \mathrm{PCH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{Et}(1.05 \mathrm{~g}, 2.9 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 13 hr at room temperature, the solvent was removed under vacuum. The precipitate was dissolved $\mathrm{Et}_{2} \mathrm{O}$-pentane (1:1) and filtered. Evaporation of the filtrate gave an oil (803 mg). For the analysis a small amount of the crude product was purified by silica gel chromatography using hexane-EtOAc (93:7, v/v) as eluent to give 5-[(7'E)-8'-ethoxycarbonyl-7'-nonenyl]-2-hydroxymethyl-3-methylfuran as a colorless oil. IR $v \max 1710$ and 3440 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) \delta 1.29\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.33-1.49(6 \mathrm{H}$, $\mathrm{m}, 3 \times \mathrm{CH}_{2}$), $1.61\left(2 \mathrm{H}\right.$, quintet, $\left.J=7.3 \mathrm{~Hz}, 2^{\prime}-\mathrm{CH}_{2}\right), 1.82\left(3 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, 9^{\prime}-\mathrm{CH}_{3}\right), 2.00$ $\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 2.16\left(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}, 6^{\prime}-\mathrm{CH}_{2}\right), 2.55\left(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, 1{ }^{\prime}-\mathrm{CH}_{2}\right), 4.18(2 \mathrm{H}$, $\left.\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 5.81(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}), 6.80(1 \mathrm{H}, \mathrm{tq}, J=1.5$ and $\left.7.4 \mathrm{~Hz}, 7{ }^{\prime}-\mathrm{CH}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 67.8 \mathrm{MHz}\right) \delta 9.7,12.2,14.2,27.7,27.9,28.3$, $28.5,28.9,29.0,55.1,60.3,108.2,118.1,127.6,142.2,147.3,155.4,168.3$; MS (CI): $308(\mathrm{M}+1)$; HRMS (CI): calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{4}+\mathrm{H}: 308.1987$. Found; 308.2004. The crude product was used for the next reaction due to its instability.

To a solution of the above product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ were added γ-collidine (1.2 $\mathrm{mL}, 9.1 \mathrm{mmol})$ and $\operatorname{TBSOTf}(0.99 \mathrm{~mL}, 4.3 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After stirring for 1 hr at same temperature, the reaction mixture was quenched with sat. NaHCO_{3} aq. and allowed to warm to room temperature and then extracted with $\mathrm{Et}_{2} \mathrm{O}$-pentane (1:1). The extract was washed with brine, sat. NaHSO_{3} aq. and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave an oil, which was purified by silica gel chromatography using hexane-EtOAc (92.5:7.5, v/v) as eluent to give compound (E)-4 ($1.015 \mathrm{~g}, 82 \%$ in two steps) as a colorless oil. IR v max 1070 and $1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) \delta$ $0.04\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.28\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1.24-1.48 ($\left.6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 1.59\left(2 \mathrm{H}\right.$, quintet, $\left.J=7.3 \mathrm{~Hz}, 2^{\prime}-\mathrm{CH}_{2}\right), 1.80(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}$,
$\left.9^{\prime}-\mathrm{CH}_{3}\right), 1.96\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CCH}_{3}\right), 2.14\left(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}, 6{ }^{\prime}-\mathrm{CH}_{2}\right), 2.52(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}$, $\left.1^{\prime}-\mathrm{CH}_{2}\right), 4.17\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.54\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OTBS}\right), 5.75(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$, $6.73\left(1 \mathrm{H}, \mathrm{tq}, J=1.3\right.$ and $\left.6.1 \mathrm{~Hz}, 7{ }^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 67.8 \mathrm{MHz}\right) \delta-5.2(2), 9.9,12.3$, $14.2,18.4,25.9$ (3), 27.9 (2), $28.4,28.6,28.9,29.1,56.0,60.3,108.1,117.5,127.7$, $142.2,147.3,154.9,168.2$; MS (EI): $422\left(\mathrm{M}^{+}\right)$; HRMS (EI): calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}$: 422.2852. Found; 422.2824.

2-tert-Butyldimethylsiloxymethyl-5-[(7, $E)$-9'-hydroxy-8'-methyl-7'-nonenyl]-3methylfuran (E)-5

To a solution of compound $(E)-4(1.45 \mathrm{~g}, 3.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ was added dropwise DIBAL (0.95 M in hexane, $7.95 \mathrm{~mL}, 7.6 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 1 hr , the reaction mixture was quenched with sat. potassium sodium tartrate aq. and stirred for 2 hr at room temperature. The precipitate was filtered and extracted with EtOAc. The extract was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave an oil, which was purified by silica gel chromatography using hexane-EtOAc (9:1, v/v) as eluent to give compound (E)-5 (1.15 g, 89\%) as a colorless oil. IR v max $3340 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) \delta 0.05\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.31(6 \mathrm{H}, \mathrm{br}$ $\left.\mathrm{s}, 3 \times \mathrm{CH}_{2}\right), 1.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.59\left(2 \mathrm{H}\right.$, quintet, $\left.J=7.3 \mathrm{~Hz}, 2{ }^{\prime}-\mathrm{CH}_{2}\right), 1.65(3 \mathrm{H}, \mathrm{s}$, $\left.8^{\prime}-\mathrm{CCH}_{3}\right), 1.96\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CCH}_{3}\right), 2.00\left(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}, 6^{\prime}-\mathrm{CH}_{2}\right), 2.50(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}$, $\left.1^{\prime}-\mathrm{CH}_{2}\right), 4.00\left(2 \mathrm{H}, \mathrm{s}, 9^{\prime}-\mathrm{CH}_{2}\right), 4.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OTBS}\right), 5.40(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, 7 \mathrm{l}-\mathrm{H}), 5.80$ $(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 67.8 \mathrm{MHz}\right) \delta-5.2(2), 9.9,13.6,18.5,25.9$ (3), 27.5, 28.0 (2), 29.0 (2), 29.4, 56.0, 69.0, 108.1, 117.5, 126.5, 134.6, 147.3, 155.1; MS (EI): $380\left(\mathrm{M}^{+}\right)$; HRMS (EI): calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si}: 380.2747$. Found; 380.2727.

2-tert-Butyldimethylsiloxymethyl-5-[(7'E)-9'-chloro-8'-methyl-7'-nonenyl]-3-methyl

 furan (E)-6To a suspension of compound $(E)-5(1.01 \mathrm{~g}, 2.65 \mathrm{mmol}), \mathrm{LiCl}(280.3 \mathrm{mg}, 6.67$ mmol), and 2,6-lutidine ($0.84 \mathrm{~mL}, 7.22 \mathrm{~mol}$) in DMF (20 mL) was added dropwise MsCl $(0.53 \mathrm{~mL}, 6.84 \mathrm{mmol})$ at $-5{ }^{\circ} \mathrm{C}$. After stirring for 2 hr at the same temperature, the reaction mixture was quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$-pentane (1:1). The extract was washed with brine, brine/water (1:1), and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave an oil, which was purified by silica gel chromatography
using hexane-EtOAc $(95: 5, \mathrm{v} / \mathrm{v})$ as eluent to give compound $(E)-6(990.4 \mathrm{mg}, 93 \%)$ as a colorless oil. IR V max $1065 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) \delta 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, $0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.25-1.40\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 1.60(2 \mathrm{H}$, quintet, $\left.J=7.1 \mathrm{~Hz}, \quad 2^{\prime}-\mathrm{CH}_{2}\right), 1.72\left(3 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{CCH}_{3}\right), 1.97\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CCH}_{3}\right), 2.02(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}$, $\left.6^{\prime}-\mathrm{CH}_{2}\right), 2.54\left(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{2}\right), 4.01\left(2 \mathrm{H}, \mathrm{s}, 9^{\prime}-\mathrm{CH}_{2}\right), 4.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OTBS}\right)$, $5.52\left(1 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, 7{ }^{\prime}-\mathrm{H}\right), 5.77(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 67.8 \mathrm{MHz}\right) \delta-5.2(2)$, $9.9,14.1,18.4,25.9$ (3), 27.9 (3), 28.9 (2), 29.0, 52.6, 56.0, 108.1, 117.5, 131.1, 131.5, 147.3, 155.0 ; MS (EI): 398 (M+); HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{ClO}_{2} \mathrm{Si}+\mathrm{H}: 399.2486$. Found; 399.2467.

5-[(7'E)-9'-Chloro-8'-methyl-7'-nonenyl]-2-hydroxymethyl-3-methylfuran (E)-7
To a solution of compound $(E)-6(396.5 \mathrm{mg}, 0.99 \mathrm{mmol})$ in THF (4 mL) was added TBAF (1 M in THF, $1.15 \mathrm{~mL}, 1.09 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring for 3 hr at room temperature, the reaction mixture was quenched with brine and extracted with EtOAc. The extract was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave an oil, which was purified by silica gel chromatography using hexane-EtOAc (8:2, $\mathrm{v} / \mathrm{v})$ as eluent to give compound $(E)-7(277.9 \mathrm{mg}, 98 \%)$ as a colorless oil. IR $v \max 3350$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; \mathrm{CDCl}_{3} ; \mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) \delta 1.28-1.42\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 1.61(2 \mathrm{H}$, quintet, $\left.J=7.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{CH}_{2}\right), 1.72\left(3 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{CCH}_{3}\right), 1.99\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CCH}_{3}\right), 2.03(2 \mathrm{H}, \mathrm{q}$, $\left.J=6.9 \mathrm{~Hz}, 6{ }^{\prime}-\mathrm{CH}_{2}\right), 2.54\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{2}\right), 4.02\left(2 \mathrm{H}, \mathrm{s}, 9^{\prime}-\mathrm{CH}_{2}\right), 4.51(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 5.52\left(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, 7{ }^{\prime}-\mathrm{H}\right), 5.81(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 67.8 \mathrm{MHz}\right) \delta$ $9.7,14.0,27.8,27.9(2), 28.8,28.9,29.0,52.5,55.2,108.2,118.2,131.0,131.5,147.3$, 155.5 ; MS (EI): $284\left(\mathrm{M}^{+}\right)$; HRMS (EI): calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{ClO}_{2}$: 284.1543. Found; 284.1546.

(5E)-5,15-Dimethyl-3,16-dioxabicyclo[11.2.1]hexadeca-1(15),5,13-triene (E)-8

To a solution of 18 -crown-6 ($1.65 \mathrm{~g}, 6.43 \mathrm{mmol}$), $60 \% \mathrm{NaH}(250 \mathrm{mg}, 6.25 \mathrm{mmol})$ in benzene (93 mL) was added dropwise a solution of compound $(E)-7(252.5 \mathrm{mg}, 0.89$ mmol) in benzene (40 mL) over 4 hr at reflux. After stirring for 30 min at the same temperature, the reaction mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and the precipitate was filtered, extracted with $\mathrm{Et}_{2} \mathrm{O}$-pentane (1:1). The extract was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave an oil, which was purified by silica
gel chromatography using hexane- $\mathrm{Et}_{2} \mathrm{O}(98: 2, \mathrm{v} / \mathrm{v})$ as eluent to give compound (E)-8 $(202.7 \mathrm{mg}, 92 \%)$ as a colorless oil. IR $v \max 1070 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 500 \mathrm{MHz}\right) \delta$ 1.22-1.27 (4H, m, $2 \times \mathrm{CH}_{2}$), 1.37-1.44 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $1.47\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, 5-\mathrm{CCH}_{3}\right), 1.58-1.65$ $\left(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{CH}_{2}\right), 1.97\left(2 \mathrm{H}, \mathrm{q}, J=5.8 \mathrm{~Hz}, 7-\mathrm{CH}_{2}\right), 2.01\left(3 \mathrm{H}, \mathrm{s}, 15-\mathrm{CCH}_{3}\right), 2.58(2 \mathrm{H}, \mathrm{t}$, $\left.J=6.1 \mathrm{~Hz}, 12-\mathrm{CH}_{2}\right), 3.91\left(2 \mathrm{H}\right.$, br s, $\left.4-\mathrm{CH}_{2}\right), 4.44\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 5.24(1 \mathrm{H}, \mathrm{dt}, J=1.5 \mathrm{~Hz}$, $7.0 \mathrm{~Hz}, 6-\mathrm{H}), 5.78(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 125 \mathrm{MHz}\right) \delta 9.9,13.6,26.4,26.7$, $26.8,27.0,27.1,27.2,63.4,75.8,108.7,119.5,125.8,132.7,145.7,155.0$; MS (EI): 248 $\left(\mathrm{M}^{+}\right)$; HRMS (EI): calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}: 248.1776$. Found; 248.1774.

5-[(7'Z)-8'-Ethoxycarbonyl-7'-nonenyl]-2-tert-butyldimethylsiloxymethyl-3-methylfuran (Z)-4

To a solution of $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{Et}^{3}(4.78 \mathrm{~g}, 0.01 \mathrm{mmol})$ in THF (68 mL) was added $60 \% \mathrm{NaH}(690 \mathrm{mg}, 0.03 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred 15 min at the same temperature. The mixture was added dropwise to a solution of compound 3 ($2.91 \mathrm{~g}, 0.01$ mmol) in THF (12 mL) at $-78{ }^{\circ} \mathrm{C}$ and stirring was continued for 1 hr at the same temperature. The reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$ over 1 hr and quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave an oil, which was purified by silica gel chromatography using hexane-EtOAc ($8: 2, \mathrm{v} / \mathrm{v}$) as eluent to give an inseparable mixture of geometrical isomers (Z)- and (E)-5-[(7'Z)-8'-ethoxycarbonyl-7'-nonenyl]-2-hydroxymethyl-3-methylfuran $(2.54 \mathrm{~g}, 69 \%)$ as a colorless oil. The ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture showed the ratio of (Z) - and (E)-unsaturated ester to be $10: 1$. IR $v \max 1715$ and $3420 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) \delta 1.29(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.20-1.42\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 1.60\left(2 \mathrm{H}\right.$, quintet, $\left.J=7.4 \mathrm{~Hz}, 2{ }^{\prime}-\mathrm{CH}_{2}\right), 1.88(3 \mathrm{H}$, $\left.\mathrm{s}, 3-\mathrm{CH}_{3}\right), 1.98\left(3 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, 9^{\prime}-\mathrm{CH}_{3}\right), 2.14-2.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.43(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}$, $\left.6^{\prime}-\mathrm{CH}_{2}\right), 2.54\left(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{2}\right), 4.18\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.50(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 5.79(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}), 5.91\left(1 \mathrm{H}, \mathrm{tq}, J=1.5\right.$ and $\left.7.4 \mathrm{~Hz}, 7{ }^{\prime}-\mathrm{CH}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$; $67.8 \mathrm{MHz}) \delta 9.6,14.1,20.5,27.7,27.8,28.8,28.9,29.2,29.4,55.0,59.9,108.1,118.0$, 127.0, 142.9, 147.3, 155.4, 168.1; MS (EI): $307\left(\mathrm{M}^{+}\right)$; HRMS (EI): calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{4}$: 307.1909. Found; 307.1891.

To a solution of the above alcohol ($2.10 \mathrm{~g}, 7.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(147 \mathrm{~mL})$ were added γ-collidine ($3.1 \mathrm{~mL}, 22.5 \mathrm{mmol}$) and $\operatorname{TBSOTf}(2.6 \mathrm{~mL}, 11.2 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After stirring for 30 min at the same temperature, the reaction mixture was quenched with sat. NaHCO_{3} aq. and warm to room temperature and then extracted with $\mathrm{Et}_{2} \mathrm{O}$-pentane (1:1). The extract was washed with brine, sat. KHSO_{3} aq. and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave an oil, which was purified by silica gel chromatography
using hexane-EtOAc $(95: 5, \mathrm{v} / \mathrm{v})$ as eluent to give an inseparable mixture $(Z / E=10: 1)$ of geometrical isomers $4(2.74 \mathrm{~g}, 87 \%)$ as a colorless oil. IR $v \max 1070$ and $1720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) \delta 0.04\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.28(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.3 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.26-1.44\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 1.59\left(2 \mathrm{H}\right.$, quintet, $\left.J=7.3 \mathrm{~Hz}, 2^{\prime}-\mathrm{CH}_{2}\right)$, $1.87\left(3 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, 9^{\prime}-\mathrm{CH}_{3}\right), 1.96\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 2.42\left(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}, 6\right.$ ' $\left.-\mathrm{CH}_{2}\right), 2.52$ $\left(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{2}\right), 4.18\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.54\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OTBS}\right)$, $5.75(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}), 5.90\left(1 \mathrm{H}, \mathrm{tq}, J=1.5\right.$ and $\left.7.4 \mathrm{~Hz}, 7{ }^{\prime}-\mathrm{CH}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 67.8\right.$ $\mathrm{MHz}) \delta-5.2(2), 9.9,14.3,18.4,20.6,25.9$ (3), 27.9 (2), 29.0, 29.1, 29.3, 29.5, 56.0, 60.0 , $108.1,117.5,127.1,143.0,147.3,155.0,168.2$; MS (EI): 422 (M ${ }^{+}$); HRMS (EI): calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}: 422.2852$. Found; 422.2859 .

2-tert-Butyldimethylsiloxymethyl-5-[(7'Z)-9'-hydroxy-8'-methyl-7'-nonenyl]-3methylfuran (Z)-5

To a solution of compound $(Z)-4(1.21 \mathrm{~g}, 2.86 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added dropwise DIBAL (0.93 M in hexane, $6.8 \mathrm{~mL}, 6.3 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 1 hr at the same temperature, the reaction mixture was quenched with sat. potassium sodium tartrate aq. and stirred for 2 hr at room temperature. The precipitate was filtered and extract with EtOAc. The extract was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave an oil, which was purified by silica gel chromatography using hexane-EtOAc ($8: 2, \mathrm{v} / \mathrm{v}$) as eluent to give an inseparable mixture $(Z / E=10: 1)$ of geometrical isomers $5(960.2 \mathrm{mg}, 88 \%)$ as a colorless oil. IR $v \max 3340 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) \delta 0.05\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.20-1.40(7 \mathrm{H}, \mathrm{m}$, $3 \times \mathrm{CH}_{2}$ and OH$), 1.58\left(2 \mathrm{H}\right.$, quintet, $\left.J=7.4 \mathrm{~Hz}, 2^{\prime}-\mathrm{CH}_{2}\right), 1.78\left(3 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{CCH}_{3}\right), 1.96(3 \mathrm{H}, \mathrm{s}$, $\left.3-\mathrm{CCH}_{3}\right), 2.02\left(2 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, 6^{\prime}-\mathrm{CH}_{2}\right), 2.52\left(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{2}\right), 4.10(2 \mathrm{H}, \mathrm{s}$, $\left.9^{\prime}-\mathrm{CH}_{2}\right), 4.54\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OTBS}\right), 5.28\left(1 \mathrm{H}, \mathrm{tq}, J=1.2\right.$ and $\left.7.4 \mathrm{~Hz}, 7^{\prime}-\mathrm{CH}\right), 5.76(1 \mathrm{H}, \mathrm{s}$, $4-\mathrm{CH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 67.8 \mathrm{MHz}\right) \delta-5.2(2), 9.9,18.5,21.2,25.9$ (3), 27.5, 27.9 (2), $28.9,29.0,29.9,56.0,61.6,108.1,117.5,128.7,134.1,147.3,155.0$; MS (EI): $380\left(\mathrm{M}^{+}\right)$; HRMS (EI): calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si}: 380.2747$. Found; 380.2767 .

2-tert-Butyldimethylsiloxymethyl-5-[(7'Z)-9'-chloro-8'-methyl-7'-nonenyl]-3-methyl

 furan (Z)-6To a suspension of compound $5(1.0 \mathrm{~g}, 2.6 \mathrm{mmol}), \mathrm{LiCl}(276.3 \mathrm{mg}, 2.6 \mathrm{mmol})$,
and 2,6-lutidine ($0.84 \mathrm{~mL}, 6.6 \mathrm{~mol}$) in DMF (20 mL) was dropwise $\mathrm{MsCl}(0.84 \mathrm{~mL}, 7.2$ mmol) at $-5^{\circ} \mathrm{C}$. After stirring for 5 hr , the reaction mixture was quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$-pentane (1:1). The extract was washed with water, brine/water (1:1) $(\times 3)$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave an oil, which was purified by silica gel chromatography using hexane-EtOAc (95:5, v/v) as eluent to give an inseparable mixture $(Z / E=10: 1)$ of geometrical isomers $6(990.2 \mathrm{mg}, 94 \%)$ as a colorless oil. IR $V \max 1000 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) \delta 0.05\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right)$, $0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.25-1.40\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 1.60\left(2 \mathrm{H}\right.$, quintet, $\left.J=7.4 \mathrm{~Hz}, 2^{\prime}-\mathrm{CH}_{2}\right)$, $1.81\left(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}, 8^{\prime}-\mathrm{CCH}_{3}\right), 1.97\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CCH}_{3}\right), 2.05\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, 6{ }^{\prime}-\mathrm{CH}_{2}\right)$, $2.53\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{2}\right), 4.05\left(2 \mathrm{H}, \mathrm{s}, 9^{\prime}-\mathrm{CH}_{2}\right), 4.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OTBS}\right), 5.37(1 \mathrm{H}$, $\mathrm{tq}, J=1.3$ and $7.5 \mathrm{~Hz}, 7$ ' -CH), $5.76(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 67.8 \mathrm{MHz}\right) \delta-5.2(2)$, $9.9,18.5,21.5,25.9$ (3), 27.8, 27.9 (2), 28.9, 29.0, 29.4, 43.7, 56.0, 108.1, 117.5, 131.1, $131.4,147.3,155.0$; $\mathrm{MS}(\mathrm{CI}): 399(\mathrm{M}+1)$; $\mathrm{HRMS}(\mathrm{CI}): c \mathrm{calcd}$ for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{ClO}_{2} \mathrm{Si}+\mathrm{H}$: 399.2486. Found; 399.2503.

5-[(7' Z)-9'-Chloro-8'-methyl-7'-nonenyl]-2-hydroxymethyl-3-methylfuran (Z)-7
To a solution of compound $6(990.2 \mathrm{mg}, 2.5 \mathrm{mmol})$ in THF $(8.8 \mathrm{~mL})$ was added TBAF (1 M in THF, $2.7 \mathrm{~mL}, 2.7 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring for 3.5 hr , the reaction mixture was washed with brine and extracted with EtOAc. The extract was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave an oil, which was purified by silica gel chromatography using hexane-EtOAc (9:1, v/v) as eluent to give an inseparable mixture $(Z / E=10: 1)$ of geometrical isomers $7(655.4 \mathrm{mg}, 93 \%)$ as a colorless oil. IR $v \max 3340 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) \delta 1.23-1.42\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 1.60$ $\left(2 \mathrm{H}\right.$, quintet, $\left.J=7.4 \mathrm{~Hz}, 2^{\prime}-\mathrm{CH}_{2}\right), 1.82(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.82\left(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, 8^{\prime}-\mathrm{CCH}_{3}\right)$, $1.99\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 1.99-2.12\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{CH}_{2}\right), 2.55\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{2}\right), 4.06(2 \mathrm{H}$, $\left.\mathrm{s}, 9^{\prime}-\mathrm{CH}_{2}\right), 4.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 5.37\left(1 \mathrm{H}, \mathrm{dt}, J=1.2\right.$ and $\left.7.4 \mathrm{~Hz}, 7^{\prime}-\mathrm{CH}\right), 5.81(1 \mathrm{H}, \mathrm{s}$, $4-\mathrm{CH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 67.8 \mathrm{MHz}\right) \delta 9.7,21.5,27.7,27.8,27.9,28.9,29.4,43.7,55.2$, $108.2,118.3,131.1,131.3,131.4,147.3,155.6$; MS (CI): 283 (M+1); HRMS (CI): calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Cl}+\mathrm{H}: 283.1465$. Found; 283.1472 .

(5Z)-5,15-Dimethyl-3,16-dioxabicyclo[11.2.1]hexadeca-1(15),5,13-triene (Z)-8
To a solution of 18 -crown-6 ($4.3 \mathrm{~g}, 16.3 \mathrm{mmol}$) and $60 \% \mathrm{NaH}(670.2 \mathrm{mg}, 16.8$
mmol) in benzene (221 mL) was added dropwise a solution of compound $7(655.4 \mathrm{mg}, 2.3$ mmol) in benzene (95 mL) over 4 hr at reflux and stirred for 30 min at the same temperature. The reaction mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and the precipitate was filtered and extracted with $\mathrm{Et}_{2} \mathrm{O}$-pentane (1:1). The extract was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave an oil, which was purified by silica gel chromatography using hexane- $\mathrm{Et}_{2} \mathrm{O}(97: 3, \mathrm{v} / \mathrm{v})$ as eluent to give an inseparable mixture $(Z / E=10: 1)$ of geometrical isomers $\mathbf{8}(461.8 \mathrm{mg}, 81 \%)$ as a yellow oil. IR $v \max$ $1060 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 500 \mathrm{MHz}\right) \delta 1.15-1.30\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 1.65-1.70(4 \mathrm{H}, \mathrm{m}$, $7-$ and $\left.11-\mathrm{CH}_{2}\right), 1.79\left(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, 5-\mathrm{CCH}_{3}\right), 1.99\left(3 \mathrm{H}, \mathrm{s}, 15-\mathrm{CCH}_{3}\right), 2.57(2 \mathrm{H}, \mathrm{t}$, $\left.J=5.8 \mathrm{~Hz}, 12-\mathrm{CH}_{2}\right), 3.76\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{2}\right), 4.41\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 5.33(1 \mathrm{H}, \mathrm{dt}, J=1.2 \mathrm{~Hz}, 7.6$ $\mathrm{Hz}, 6-\mathrm{H}), 5.83(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 125 \mathrm{MHz}\right) \delta 9.8,22.3,24.7,24.9,26.2$, $27.0,27.2,27.7,61.4,65.7,109.6,119.8,130.1,131.9,145.3,154.8 ; \mathrm{MS}(\mathrm{EI}): 248\left(\mathrm{M}^{+}\right) ;$ HRMS (EI): calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}: 248.1776$. Found; 248.1768 .

2D NOESY spectra of anti- and syn-9 show the correlations between $\mathrm{H}(2)$ and $\mathrm{H}(3)$ as follows.

($2 R^{\prime}, 2 R, 3 S$)-3-Isopropenyl-2-[2'-methoxyphenylacetoxy]-12-methyl-13-oxabicyclo[8. 2.1]trideca-1(12),10-diene

To a solution of syn-9 $(5.5 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added portionwise (R)-2-methoxyphenylacetic acid [(R)-MPA] ($18.4 \mathrm{mg}, 0.1 \mathrm{mmol}$), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (WSC) ($34 \mathrm{mg}, 0.2 \mathrm{mmol}$) and DMAP ($13.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring for 1 hr at the room temperature, the reaction mixture was quenched with brine and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave an oil, which was purified with silica gel chromatography by using hexane- $\mathrm{NEt}_{3}(95: 5, \mathrm{v} / \mathrm{v})$ as eluent to give compound the corresponding (R)-MPA ester ($7.8 \mathrm{mg}, 89 \%$) as a colorless oil. IR $\vee \max 1750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 500 \mathrm{MHz}\right) \delta 0.50-0.68(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{CHH})$, 1.04-1.15 ($1 \mathrm{H}, \mathrm{m}, 8-\mathrm{CH} H), 1.18-1.30\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 1.54(2 \mathrm{H}, \mathrm{dt}, J=7.0$ and 11.9 Hz ,
$\left.6-\mathrm{CH}_{2}\right), 1.38(1 \mathrm{H}, \mathrm{ddd}, J=4.6,10.4$ and $14.0 \mathrm{~Hz}, 4-\mathrm{CHH}), 1.62-1.77(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{CHH})$, $1.72\left(3 \mathrm{H}, \mathrm{s}, 3{ }^{\prime}-\mathrm{CH}_{3}\right), 1.88-1.94(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{CHH}), 1.93\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{CCH}_{3}\right), 2.04(1 \mathrm{H}, \mathrm{dt}$, $J=1.2$ and $4.6 \mathrm{~Hz}, 3-\mathrm{CH}), 2.29(1 \mathrm{H}, \mathrm{dt}, J=4.0$ and $14.3 \mathrm{~Hz}, 9-\mathrm{CHH}), 2.38(1 \mathrm{H}, \mathrm{ddd}, J=4.6$, 10.4 and $14.0 \mathrm{~Hz}, 4 \mathrm{CHH}), 2.50(1 \mathrm{H}, \mathrm{dt}, J=4.0$ and $14.3 \mathrm{~Hz}, 9-\mathrm{CHH}), 3.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.69\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{CHH}\right), 4.71\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{CHH}\right), 4.79(1 \mathrm{H}, \mathrm{s}, 2 "-\mathrm{CH}), 5.66(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{CH})$, $5.78(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, 2-\mathrm{CH}), 7.24-7.47(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}: 125 \mathrm{MHz}\right) \delta 9.4$, $21.5,24.3,25.1,27.2,27.5,27.7,29.0,52.2,57.5,69.3,82.4,107.5,111.2,117.3,127.1$, 128.2 (2), 128.3 (2), 136.3, 145.7, 147.7, 155.6, 170.1; MS (EI): 396 (M^{+}); HRMS (EI): calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{4}: 396.2300$. Found; 396.2319 .

($2 S^{\prime}, \mathbf{2 R}, \mathbf{3 S}$)-3-Isopropenyl-2-[2'-methoxyphenylacetoxy]-12-methyl-13-oxabicyclo[8. 2.1]trideca-1(12),10-diene

Esterification was performed as described above by treatment of syn-9, (S)-MPA, WSC, and DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford (S)-MPA ester (91%) as a colorless oil. IR v max $1750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 500 \mathrm{MHz}\right) \delta 0.82-1.01(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CHH}, 6-\mathrm{CHH}), 1.10-1.45$ $(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{CH} H), 1.18-1.30\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 1.54\left(1 \mathrm{H}, \mathrm{dt}, J=7.0\right.$ and $\left.11.9 \mathrm{~Hz}, 6-\mathrm{CH}_{2}\right), 1.38$ $(1 \mathrm{H}$, ddd, $J=4.6,10.4$ and $14.0 \mathrm{~Hz}, 4-\mathrm{CHH}), 1.62-1.77(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{CHH}), 1.72(3 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime}-\mathrm{CH}_{3}\right), 1.88-1.94(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{CHH}), 1.93\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{CCH}_{3}\right), 2.04(1 \mathrm{H}, \mathrm{dt}, J=1.2$ and 4.6 $\mathrm{Hz}, 3-\mathrm{CH}), 2.29(1 \mathrm{H}, \mathrm{dt}, J=4.0$ and $14.3 \mathrm{~Hz}, 9-\mathrm{CHH}), 2.38(1 \mathrm{H}, \mathrm{ddd}, J=4.6,10.4$ and 14.0 $\mathrm{Hz}, 4-\mathrm{CHH}), 2.50(1 \mathrm{H}, \mathrm{dt}, J=4.0$ and $14.3 \mathrm{~Hz}, 9-\mathrm{CHH}), 3.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.69(1 \mathrm{H}, \mathrm{s}$, $\left.1^{\prime}-\mathrm{CH} H\right), 4.71(1 \mathrm{H}, \mathrm{s}, 1 ’-\mathrm{CH} H), 4.79(1 \mathrm{H}, \mathrm{s}, 2 "-\mathrm{CH}), 5.66(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{CH}), 5.78(1 \mathrm{H}, \mathrm{d}$, $J=1.2 \mathrm{~Hz}, 2-\mathrm{CH}), 7.25-8.0(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}: 125 \mathrm{MHz}\right) \delta 9.4,21.5,24.3$, $25.1,27.2,27.5,27.7,29.0,52.2,57.5,69.3,82.4,107.5,111.2,117.3,127.1,128.2$ (2), 128.3 (2), 136.3, 145.7, 147.7, 155.6, 170.1; MS (EI): 396 (${ }^{+}$); HRMS (EI): calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{4}: 396.2300$. Found; 396.2319 .

($2 R^{\prime}, 2 R, 3 R$)-3-Isopropenyl-2-[2'-methoxyphenylacetoxy]-12-methyl-13-oxabicyclo[8. 2.1]trideca-1(12),10-diene

Esterification was performed as described above by treatment of anti-9, (R)-MPA, WSC, and DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford (R)-MPA ester (73%) as a colorless oil. IR v max $1750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 500 \mathrm{MHz}\right) \delta 1.05-1.20\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2}, 5-\mathrm{CHH}\right), 1.25-1.40$ $\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{CH}_{2}\right), 1.50-1.75\left(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{CH}_{2}, 8-\mathrm{CH}_{2}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 1.75-1.88(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{CHH}), 1.95\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{CCH}_{3}\right), 2.59(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{CHH}), 2.69(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{CHH}), 3.00(1 \mathrm{H}$,
ddd, $J=2.7,6.4$ and $11.3 \mathrm{~Hz}, 3-\mathrm{CH}), 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.71(1 \mathrm{H}, \mathrm{s}, 2 "-\mathrm{CH}), 4.73(1 \mathrm{H}, \mathrm{s}$, $\left.1^{\prime}-\mathrm{CHH}\right), 4.85\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{CHH}\right), 5.76(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{CH}), 5.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.3 \mathrm{~Hz}, 2-\mathrm{CH})$, 7.13-7.41 (5H, m, Ar); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}: 125 \mathrm{MHz}\right) \delta 9.5,18.4,23.2,23.3,25.2,25.4$ (2), 27.1, 48.5, 57.3, 68.8, 82.9, 109.2, 113.3, 121.9, 127.2 (2), 128.3 (3), 136.1, 143.9, $145.4,155.3,170.2$; MS (EI): $396\left(\mathrm{M}^{+}\right)$; HRMS (EI): calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{4}$: 396.2300. Found; 396.2294.

($2 S^{\prime}, 2 R, 3 R$)-3-Isopropenyl-2-[2'-methoxyphenylacetoxy]-12-methyl-13-oxabicyclo[8. 2.1]trideca-1(12),10-diene

Esterification was performed as described above by treatment of anti-9, (S)-MPA, WSC, and DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford (S)-MPA ester (54%) as a colorless oil. IR v max $1750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 500 \mathrm{MHz}\right) \delta 0.58-0.69(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{CHH}), 0.80-0.88(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{CHH}), 0.89-1.00(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{CHH}), 1.00-1.09(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{C} H \mathrm{H}), 1.10-1.20(2 \mathrm{H}, \mathrm{m}$, $6-\mathrm{CHH}, 7-\mathrm{CHH}), 1.24\left(3 \mathrm{H}, \mathrm{s}, 3{ }^{\prime}-\mathrm{CH}_{3}\right), 1.28-1.39(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{CHH}), 1.55-1.74(2 \mathrm{H}, \mathrm{m}$, $\left.8-\mathrm{CH}_{2}\right), 1.75-1.84(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{CHH}), 2.09\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{CCH}_{3}\right), 2.65(1 \mathrm{H}, \mathrm{ddd}, J=4.3,7.0$ and $15.0 \mathrm{~Hz}, 9-\mathrm{CHH}), 2.75(1 \mathrm{H}, \mathrm{ddd}, J=6.7,9.2$ and $15.0 \mathrm{~Hz}, 9-\mathrm{CHH}), 2.91(1 \mathrm{H}, \mathrm{ddd}, J=2.4$, 6.7 and $11.5 \mathrm{~Hz}, 3-\mathrm{CH}), 3.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.34\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{CHH}\right), 4.57\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{C} H \mathrm{H}\right)$, $4.69(1 \mathrm{H}, \mathrm{s}, 2 "-\mathrm{CH}), 5.65(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, 2-\mathrm{CH}), 5.84(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{CH}), 7.30-7.42(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}: 125 \mathrm{MHz}\right) \delta 9.8,17.9,22.8,23.4,25.1,25.2,25.5,27.1,48.1$, $57.1,68.5,82.2,109.5,113.2,122.6,127.4$ (2), 128.3 (2), 128.5, 136.3, 144.1, 144.7, 155.4, 170.1; MS (EI): $396\left(\mathrm{M}^{+}\right)$; HRMS (EI): calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{4}: 396.2300$. Found; 396.2294 .

References

1. Denmark, S. E.; Nakajima, N.; Nicaise, O. J.-C.; Faucher, A.-M.; Edwards, J.-P. J. Org. Chem. 1995, 60, 4884-4892.
2. (a) Knight, D. W.; Rustidge, D. C. J. Chem. Soc., Perkin Trans. 1 1981, 679-683. (b) Grigg, R.; Knight, J. A.; Sargent, M. V. J. Chem. Soc. 1966, 976-981.
3. Ando, K. J. Org. Chem. 1998, 63, 8411-8416.

