Supporting Information

Investigation of Lewis Acid Catalyzed Asymmetric Aza-Diels-Alder Reactions of $\mathbf{2 H} \mathbf{H}$-Azirines

Åsa Sjöholm Timén, and Peter Somfai*
KTH Chemistry, Organic Chemistry, SE-100 44 Stockholm, Sweden
somfai@kth.se
Phone (+46)-8-790 6960. Fax: (+46)-8-791 2333

Content:
S2-S6: Experimental data for compounds 25a,b, 26a,b, 1a,b
S7-S28: $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $\mathbf{3 b}, \mathbf{4 b}, \mathbf{3 a}, 4 \mathbf{4}, \mathbf{6}, 7,9 \mathrm{a}, \mathbf{1 0}, \mathbf{9 b}$, 10b, 12, 13, 14b, 14a, 14c, 25a, 25b, 26a, 26b, 1a, 1b

General Methods.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} with the residual peak of $\mathrm{CHCl}_{3}\left({ }^{1} \mathrm{H}\right.$ NMR $\delta 7.26$ and ${ }^{13} \mathrm{C}$ NMR $\delta 77.0$) as internal standard. The chemical shifts are reported in the δ-scale with multiplicity ($\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quarte}$, $\mathrm{m}=$ multiplet , coupling constant (Hz), and integration. Optical rotations, $[\alpha]_{\mathrm{D}}$, were measured at the sodium D-line. Analytical TLC plates were visualized with UV light, iodine in methanol or phosphomolybdic acid (5\% in ethanol). Air- and moisture sensitive reactions were performed with oven- or flame-dried equipment under an atmospheric pressure of nitrogen or argon. All liquid reagents were transferred using oven-dried cannulas. The solvents were dried by distillation immediately before use, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from CaH_{2} and toluene from sodium/benzophenone. The DMF was dried over $4 \AA$ molecular sieves.
(1R,2S,4S)-N-(2,3-dibromopropionyl)-bornane-2,10-sultam 25a: Following a literature procedure ${ }^{1}$ compound 25a was obtained in 81% yield as colorless crystals. Analytical data for the diastereomeric mixture: mp: decomposition before melting; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.13(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=11.1,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=7.6$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$, major isomer), $3.94(\mathrm{dd}, J=8.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}$, minor isomer), $3.72(\mathrm{dd}, J=9.6$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}$, minor isomer), $3.67(\mathrm{dd}, J=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}$, major isomer), $3.52(\mathrm{~m}, 2 \mathrm{H})$, $2.05-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}$, minor isomer), 1.17(s, 3 H , major isomer), $0.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,65.6,64.9$, $52.9,48.9,47.9,44.4,40.0,39.5,37.8,37.3,32.8,32.6,30.5,28.2,26.41,26.36,20.7$, 20.5, 19.91, 19.86 HRMS (FAB+) calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})$: 427.9531, found: 427.9534.

(1R,2S,5R)-2-(1-methyl-1-phenylethyl)-5-methylcyclohexyl-(2,3-dibromo)-

propionate 25b: To a solution of 24a ($0.46 \mathrm{~g}, 1.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added $\mathrm{Br}_{2}(90 \mu \mathrm{~L}, 1.8 \mathrm{mmol})$. The reaction mixture was heated to $50^{\circ} \mathrm{C}$ in a sealed tube for 30 min and then allowed to reach room temperature before addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$ until no color remained. The resulting bi-phase mixture was filtered through an Extrelute ${ }^{\circledR}$ tube, which was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The resulting organic phase was concentrated before purification by filtration through a plug of SiO_{2} (pentane- $\mathrm{Et}_{2} \mathrm{O}$). Dibromide 25b was obtained as a mixture of diastereomers in 95% yield $(0.68 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{br} \mathrm{d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.18(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{td}, J=10.6,4.3$ $\mathrm{Hz}, 1 \mathrm{H}$, major isomer), $3.97(\mathrm{dd}, J=9.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}$, minor isomer), 3.61-3.73(m, 2H), $3.47-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.0-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.0(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.53(\mathrm{~m}$, $1 \mathrm{H})$, 1.36(s, 3 H , minor isomer), $1.34(\mathrm{~s}, 3 \mathrm{H}$, major isomer), $1.25(\mathrm{~s}, 3 \mathrm{H}$, minor isomer), $1.24(\mathrm{~s}, 3 \mathrm{H}$, major isomer), $0.97-1.15(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$, major isomer), $0.88\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right.$, minor isomer), $0.84-0.93(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.73,166.68,151.3,151.1,128.0,125.6,125.5,125.2,125.1,78.1,77.05,50.4,50.2$, $43.3,41.3,41.1,40.2,39.9,39.6,34.4,31.3,31.2,30.9,29.7,27.6,26.8,26.53,26.49$, 25.2, 21.7 HRMS (FAB+) calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{Br}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})$: 445.0378, found: 445.0363.
(1R,2S,4S)-N-(2-azidopropenoyl)-bornane-2,10-sultam 26a: A solution of dibromide 25a ($190 \mathrm{mg}, 0.44 \mathrm{mmol}$) in DMF (2.5 mL) was added to a pre-heated $\left(60{ }^{\circ} \mathrm{C}\right.$) suspension of $\mathrm{NaN}_{3}(58 \mathrm{mg}, 0.89 \mathrm{mmol})$ in dry DMF $(2.5 \mathrm{~mL})$. The reaction mixture was heated at $60{ }^{\circ} \mathrm{C}$ for 8 min before addition of an ice and water mixture (20 mL). The
resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic phase then washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and then dried over MgSO_{4}, filtered and evaporated. Purification by chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane- $\left.-\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave 26a as a white semi-solid in 56% yield (76 mg). $[\alpha]_{\mathrm{D}}{ }^{25}=+185\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat): $v_{\max }=2111,1679,1616,1340$, 1171,$1134 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.55(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11(\mathrm{dd}, J=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~A}-\mathrm{part}$ of $\mathrm{ABq}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~B}-\mathrm{part}$ of $\mathrm{ABq}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-2.11(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.47(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 163.9,138.2,111.3,65.7,53.7,48.1,47.8,45.3,38.1$, 33.3, 26.4, 21.3, 19.8; HRMS (FAB+) calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})$: 311.1178, found: 311.1179 .

(1R,2S,5R)-2-(1-methyl-1-phenylethyl)-5-methylcyclohexyl-(2-azido)-acrylate 26b:

A solution of dibromide $\mathbf{2 5 b}(640 \mathrm{mg}, 1.43 \mathrm{mmol})$ in DMF $(6 \mathrm{~mL})$ was added to a preheated $\left(85{ }^{\circ} \mathrm{C}\right.$) suspension of $\mathrm{NaN}_{3}(196 \mathrm{mg}, 3.0 \mathrm{mmol})$ in dry DMF $(10 \mathrm{~mL})$. The reaction mixture was heated at $85^{\circ} \mathrm{C}$ for exactly 20 min before addition of an ice and water mixture $(50 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the resulting organic phase was then washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over MgSO_{4} before filtration and concentration. Purification by chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane- $\left.-\mathrm{Et}_{2} \mathrm{O}\right)$ gave 26b as a colorless oil in 65% yield (305 mg). $[\alpha]_{\mathrm{D}}{ }^{25}=-63\left(\mathrm{c}=0.42, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (film): $v_{\max }=2955,2923,2125,1716,1615,1254 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.29(\mathrm{~m}$, $4 \mathrm{H}), 7.08-7.13(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{td}, J=$ $10.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{ddd}, J=12.3,10.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{dq}, J=$ 13.3, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H})$, $1.15(\operatorname{app} \mathrm{qd}, J=13.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\operatorname{app} \mathrm{q}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.85-0.86(\mathrm{~m}, 1 \mathrm{H})$,
$0.89(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.1,151.3,135.6$, 128.1, $125.3,125.1,110.8,76.3,50.3,41.4,39.6,34.4,31.3,28.4,26.5,24.6,21.7$; HRMS (FAB+) calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}): 328.2025$, found: 328.2024.

General Procedure for the Synthesis of 3-Substituted-2H-azirines 1a and 1b from

Vinyl Azides 26a and 26b. ${ }^{2}$

(1R,2S,5R)-2-(1-methyl-1-phenylethyl)-5-methylcyclohexyl-2H-azirine-3-

carboxylate 1b: Vinyl azide $\mathbf{2 6 b}(70 \mathrm{mg}, 0.21 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0$ mL) and heated in a sealed tube at $150{ }^{\circ} \mathrm{C}$ for 20 min and then cooled to $0{ }^{\circ} \mathrm{C}$. CAUTION! Heating azides may cause explosion. Evaporation gave 1b in quantitative yield and in high purity (no purification necessary). $[\alpha]_{\mathrm{D}}{ }^{25}=+7\left(\mathrm{c}=0.27, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat): $v_{\max }=2923,2955,1746,1716,1210 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.27$ (m, 2 H), 7.19(m, 2 H$), 7.05(\mathrm{tt}, J=7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5,11(\mathrm{td}, J=10.8,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.17 (ddd, $J=12.3,10.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.87(\operatorname{app} \mathrm{dq}, J=13.6,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.68-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~A}-\mathrm{part}$ of $\mathrm{ABq}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~B}-\mathrm{part}$ of $\mathrm{ABq}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.18-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{app}$ $\mathrm{q}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.88-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 164.7,157.5,150.8,127.9,125.3,125.2,77.2,50.3,41.4,39.5,34.2,31.4,29.0$, 26.3, 24.2, 23.7, 21.7.
(1R,2S,4S)-N-(2H-azirine-3-carbonyl)-bornane-2,10-sultam 1a: Prepared from 26a as described for $\mathbf{1 b}$ and obtained in quantitative yield and in high purity (no purification necessary). $[\alpha]_{\mathrm{D}}{ }^{25}=+93\left(\mathrm{c}=0.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat): $v_{\max }=1723,1678,1341,1169$, 1142; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.08(\mathrm{dd}, J=7.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~A}-\mathrm{part}$ of ABq, J
$=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~B}-$ part of $\mathrm{ABq}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.30(\mathrm{~m}, 4 \mathrm{H}), 1.9-2.03(\mathrm{~m}$, $3 \mathrm{H}), 1.37-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.9$, $155.9,65.0,53.2,49.5,47.9,44.9,38.0,33.1,27.7,26.3,21.0,19.8$.
(1) Garner, P.; Dogan, O.; Pillai, S. Tetrahedron Lett. 1994, 35, 1653-1656.
(2) Sjöholm Timén, Å.; Risberg, E.; Somfai, P. Tetrahedron Lett. 2003, 44, 53395341.

\mid

3a or 4a (Major isomer, absolute configuration not determined)

$3 a$ or $4 a, \mathrm{CDCl}_{3}, 125 \mathrm{MHz}$ (absolute configuration not determined)

$$
\text { 14a, } \mathrm{CDCl} 3,100 \mathrm{MHz}
$$

