Supporting Information

Convergent Synthesis of a GPI Containing an Acylated Inositol

Jie Xue and Zhongwu Guo*
Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
zxg5@cwru.edu

Table of Contents:

I. Experimental Section 1-5
II. Selected NMR and MS spectra 6-39

Experimental

General methods. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 and 600 MHz with the chemical shifts reported in ppm (δ) downfield from tetramethylsilane (TMS). ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 50 and 150 MHz with chemical shifts reported in $\mathrm{ppm}(\delta)$ in reference to the solvent $\mathrm{CDCl}_{3}(\delta 77.16)$. Coupling constants (J) are reported in hertz (Hz). Thin layer chromatography (TLC) was performed on silica gel plates with detection by charring with phosphomolibdic acid in EtOH or $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in EtOH. Commercial anhydrous solvents and other reagents were used without further purification.

Synthesis of 7. To the freshly dried MS 4A (3.0 g) was added $\mathbf{3}$ ($780 \mathrm{mg}, 0.487 \mathrm{mmol}$) and $\mathbf{6}$ (410 $\mathrm{mg}, 0.348 \mathrm{mmol})$ in dichloromethane/ethyl ether $(1: 1,20 \mathrm{~mL})$. After the mixture was stirred at rt for 1 h , it was cooled down to $0^{\circ} \mathrm{C}$, and NIS ($220 \mathrm{mg}, 0.97 \mathrm{mmol}$) was added. The mixture was stirred for another 30 min and then cooled down to $-10^{\circ} \mathrm{C}$, whereupon $\mathrm{TfOH}(6.1 \mu \mathrm{~L}, 0.035 \mathrm{mmol}$) in dichloromethane was added. The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for another 30 min before triethylamine was added to quench the reaction. The molecular sieves were filtered off and the solution was diluted with ethyl ether. The organic layer was washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated. Column chromatography of the residue gave $7(480 \mathrm{mg}, 51 \%)$. $[\alpha]_{\mathrm{D}}=+36.8$ (c 1.0, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.68-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.00-7.38(\mathrm{~m}, 78 \mathrm{H}), 6.87(\mathrm{~d}, J$
$9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{t}, J 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J 4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 4.91-5.00(\mathrm{~m}, 5 \mathrm{H}), 4.76-$ $4.79(\mathrm{~m}, 3 \mathrm{H}), 4.73(\mathrm{~d}, J 11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J 13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J 9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J 10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J 11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.55(\mathrm{~m}, 17 \mathrm{H}), 4.20(\mathrm{~d}, J 12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.07-4.14(\mathrm{~m}, 4 \mathrm{H}), 4.02$ (dd, $J 11.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70-3.97 (m, 16H), 3.58-3.65 (m, 4H), 3.55 (dd, J 9.6, 3.0 Hz, 1H), 3.49 (t, J $9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.45 (dd, J 10.8, $4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.37-3.41 (m, 2H), 3.31 (dd, J 11.4, 4.2 Hz, 1H), 3.25 (d, J $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.17 (dd, J 10.8, 4.2 Hz, 1H), 2.38-2.41 (m, 2H), $1.60-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.32(\mathrm{~m}, 24 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}): $\delta 173.4,159.5,139.1,139.0,138.9,138.8,138.7,138.6,138.5,138.4,138.3,138.1,138.0$, $137.9,137.7,136.0,135.8,134.1,133.5,130.4,129.5,129.2,129.0,128.8,128.7,128.6,128.5$, $128.4,128.3,128.2,128.1,128.0,127.9,127.8,127.7,127.6,127.5,127.4,127.3,127.2,127.1$, $127.0,100.4,99.2,98.8,97.4,81.8,81.0,80.1,80.0,79.9,79.2,78.4,76.3,76.0,75.9,75.3,75.0$, $74.6,74.4,74.3,73.8,73.5,73.3,73.2,73.0,72.2,72.1,71.9,71.8,71.5,69.7,69.2,69.1,69.0$, $68.9,68.8,66.4,65.4,63.2,63.0,55.3,34.4,32.0,29.8,29.6,29.5,29.4,29.1,26.9,25.3,22.8$, 19.4, 14.2. MALDI-TOF-MS: Calcd for $\mathrm{C}_{168} \mathrm{H}_{191} \mathrm{~N}_{3} \mathrm{O}_{27} \mathrm{Si}$ 2710, Found 2733 ($\mathrm{M}+\mathrm{Na}^{+}$), 2749 $\left(\mathrm{M}+\mathrm{K}^{+}\right)$.

Synthesis of 8. After the mixture of $7(400 \mathrm{mg}, 0.148 \mathrm{mmol})$ and CAN ($400 \mathrm{mg}, 0.73 \mathrm{mmol}$) in acetonitrile and water $(9: 1,20 \mathrm{~mL})$ was stirred at rt for 4 h , it was diluted with ethyl acetate, and the organic layer was washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in a vacuum. Column chromatography of the residue gave $8(200 \mathrm{mg}, 0.077 \mathrm{mmol}, 52 \%)$, and 120 mg of 7 was recovered. TLC (acetone/hexane/dichloromethane 4:10:1): $R_{f}=0.50 .[\alpha]_{\mathrm{D}}=+32.8\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.66-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.00-7.34(\mathrm{~m}, 76 \mathrm{H}), 5.70(\mathrm{t}, J 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J 2.4$ Hz, 1H), $5.26(\mathrm{~d}, J 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J 10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J 10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.89(\mathrm{~d}, J 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J 12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.76$ (m, 5H), $4.65(\mathrm{~d}, J 11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.51(\mathrm{~m}, 17 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J 11.4$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.92(\mathrm{~m}, 16 \mathrm{H}), 3.50-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.46(\mathrm{~m}, 3 \mathrm{H}), 3.33-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.24-$ $3.28(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{t}, J 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.34(\mathrm{~m}, 24 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{t}, J 7.2$ $\mathrm{Hz}, 3 \mathrm{H})$. MALDI-TOF-MS: Calcd for $\mathrm{C}_{160} \mathrm{H}_{183} \mathrm{~N}_{3} \mathrm{O}_{26} \mathrm{Si} 2590$, Found $2614\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Synthesis of 9. To a solution of $\mathbf{8}(70 \mathrm{mg}, 0.027 \mathrm{mmol})$ and freshly prepared $\mathbf{5}$ in dry $\mathrm{DCM} / \mathrm{CH}_{3} \mathrm{CN}$ ($3: 1,6 \mathrm{~mL}$) was added $1 H$-tetrazole ($0.38 \mathrm{mmol}, 0.8 \mathrm{~mL}$ of 0.48 M solution in $\mathrm{CH}_{3} \mathrm{CN}$). After the mixture was stirred for 6 h at rt , MCPBA ($100 \mathrm{mg}, 0.58 \mathrm{mmol}$) was added. The mixture was stirred
for another 2 h and then concentrated. Column chromatography of the residue afforded $9(70 \mathrm{mg}$, 83%) as a mixture of two diastereoisomers (1.6:1). TLC (acetone/hexane/DCM 4:10:1): $R_{f}=0.45$. $[\alpha]_{\mathrm{D}}=+16.5\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta$ (isomer-a) 7.58-7.68(m, 4H), $5.74(\mathrm{t}, J$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02$ (d, J $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ (m, 2H), $0.96(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta$ (isomer-b) $7.58-7.68(\mathrm{~m}, 4 \mathrm{H}), 5.60(\mathrm{t}, J 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J$ $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{t}, J 7.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.98$, 1.27. MALDI-TOF-MS: Calcd for $\mathrm{C}_{188} \mathrm{H}_{232} \mathrm{NO}_{30} \mathrm{PSi} 3043$, Found $3066\left(\mathrm{M}+\mathrm{Na}^{+}\right), 3082\left(\mathrm{M}+\mathrm{K}^{+}\right)$.

Synthesis of 10a and 10b. After the solution of sodium methoxide in methanol ($1 \mathrm{M}, 1 \mathrm{~mL}$) and 9 $(10 \mathrm{mg}, 0.0033 \mathrm{mmol})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ was stirred at rt for 2 days, the reaction mixture was diluted with ethyl acetate. The organic layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified with preparative TLC to give two products $\mathbf{1 0 a}$ and 10 b (1:1.6) in a quantitative yield. 10a: TLC (acetone/hexane/DCM 3:10:3): $R_{f}=0.50 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$: $\delta 5.38$ (d, J $3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.31 (s, 1H), 5.24 (s, 1H), 4.73 (s, 1H). MALDI-TOF-MS: Calcd for $\mathrm{C}_{172} \mathrm{H}_{202} \mathrm{NO}_{29} \mathrm{PSi}$ 2804, Found $2827\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, $2843\left(\mathrm{M}+\mathrm{K}^{+}\right)$. 10b: TLC (acetone/hexane/DCM 3:10:3): $R_{f}=0.25 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 5.36(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J 3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.66(\mathrm{~d}, J 1.8 \mathrm{~Hz}, 1 \mathrm{H})$. $\mathrm{HMQC} \operatorname{data}^{13} \mathrm{C}(150 \mathrm{MHz}){ }^{1} \mathrm{H}(600 \mathrm{MHz}): 102.9 / 4.96$ (1-Glu), 99.3/5.36 (1Man), 99.1/4.66 (1-Man), 98.8/5.23 (1-Man). MALDI-TOF-MS: Calcd for $\mathrm{C}_{172} \mathrm{H}_{202} \mathrm{NO}_{29} \mathrm{PSi} 2804$, Found $2828\left(\mathrm{M}+\mathrm{Na}^{+}\right), 2843\left(\mathrm{M}+\mathrm{K}^{+}\right)$.

Synthesis of 11. After a mixture of 6-O-[(2,3,4-tri-O-benzyl- α-D-mannopyranosyl)-(1 $\rightarrow 2$)-O-(3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-(1 $\rightarrow 6$)- O-(2,3,4-tri- O-benzyl- α-D-mannopyranosyl)$(1 \rightarrow 4)$ - O-(2-azido-3,6-di- O-benzyl-2-deoxy- α-D-glucopyranosyl)]-2- O-hexadecanoyl-3,4,5-tri- O -benzyl-myo-inositol ($109 \mathrm{mg}, 0.046 \mathrm{mmol}$), imidazole ($14 \mathrm{mg}, 0.20 \mathrm{mmol}$), DMAP ($2 \mathrm{mg}, 0.018$ $\mathrm{mmol})$ and TBDMSCl ($15 \mathrm{mg}, 0.10 \mathrm{mmol}$) in anhydrous DMF (3 mL) was stirred at rt overnight, it was diluted with ethyl acetate. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated. Column chromatography of the residue gave $6-O$-[(2,3,4-tri- O-benzyl-6- O-tert-butyl-dimethylsilyl- α-D-mannopyranosyl)-(1 $\rightarrow 2$)- O-(3,4,6-tri- O-benzyl- α-D-mannopyranosyl)$(1 \rightarrow 6)$-O-(2,3,4-tri- O-benzyl- α-D-mannopyranosyl)-($1 \rightarrow 4$)-O-(2-azido-3,6-di- O-benzyl-2-deoxy-α-D-glucopyranosyl)]-2- O-hexadecanoyl-3,4,5-tri- O-benzyl-myo-inositol as a syrup ($93 \mathrm{mg}, 0.038$
$\mathrm{mmol}, 82 \%) .[\alpha]_{\mathrm{D}}=+34.8\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.10-7.32(\mathrm{~m}, 70 \mathrm{H}), 5.74$ (t, J $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{br}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J 10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.92(\mathrm{~d}, J 10.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J 11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J 1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.79 (d, J $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77$ (d, J $10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.76 (d, J $10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.73 (d, J $10.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.70(\mathrm{~d}, J 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J 12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J 11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~d}, J 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J 12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J 11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J 12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45(\mathrm{~d}, J 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.43(\mathrm{~m}, 3 \mathrm{H}), 4.33-4.37(\mathrm{~m}, 5 \mathrm{H}), 4.29(\mathrm{~d}, J 12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, J 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, J 9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.97(\mathrm{~m}, 18 \mathrm{H}), 3.65(\mathrm{dd}, J 9.6,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J 9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.53(\mathrm{~m}, 6 \mathrm{H}), 3.33(\mathrm{~d}, J 9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{t}, J 7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.37(\mathrm{~m}, 24 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}$, $3 \mathrm{H})$.

To the mixture of above product ($200 \mathrm{mg}, 0.081 \mathrm{mmol}$) and dibenzyl dicarbonate ($363 \mathrm{mg}, 1.50$ $\mathrm{mmol})$ in MeOH and $\mathrm{DCM}(1: 2,10 \mathrm{~mL})$ was added triethylphosphine ($145 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) under a nitrogen atmosphere at $0^{\circ} \mathrm{C}$. The reaction mixture was then warmed up to rt and stirred overnight. After removal of solvents in a vacuum, the residue was purified by flash column chromatography to afford $11(136 \mathrm{mg}, 0.053 \mathrm{mmol}, 65 \%) .[\alpha]_{\mathrm{D}}=+34.0\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$: $\delta 5.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J 9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J 2.4,1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.14$ (s, 1H), $4.99(\mathrm{~d}, J$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J 9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J 9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~m}$, $2 \mathrm{H}), 1.25(\mathrm{~m}, 24 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H})$. MALDI-TOFMS: Cacld for $\mathrm{C}_{158} \mathrm{H}_{187} \mathrm{NO}_{28} \mathrm{Si}, 2576$; Fond, $2599\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Synthesis of 12. To a mixture of $\mathbf{1 1}(100 \mathrm{mg}, 0.039 \mathrm{mmol})$ and dibenzyl N, N-diisopropylphosphoramidite ($55 \mathrm{mg}, 0.16 \mathrm{mmol}$) in dry DCM (5 mL) under argon were added $1 H$-tetrazole (0.16 mmol , $0.47 \mathrm{~mol} / \mathrm{L}$ in $\mathrm{CH}_{3} \mathrm{CN}$). After 0.5 h of stirring, $\mathbf{1 1}$ transformed completely to a less polar product shown on TLC. The solution was concentrated under reduced pressure and the residue was purified by flash column chromatography to give $12(110 \mathrm{mg}, 0.039 \mathrm{mmol},>99 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600\right.$ MHz): $\delta 5.70$ (br s, 1 H), 5.58 (d, J $10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.34 (d, J 3.0, 1 H), 5.18 (s, 1H), 5.12 (s, 1H), $2.24(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~m}, 24 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.00$ ($\mathrm{s}, 3 \mathrm{H}$).

Synthesis of 16. After the mixture of $\mathbf{1 4}(130 \mathrm{mg}, 0.11 \mathrm{mmol}), \mathbf{1 5}(0.60 \mathrm{mmol}), 1 \mathrm{H}$-tetrazole $(0.050$ $\mathrm{mmol}, 0.47 \mathrm{mmol} / \mathrm{L}$ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$ and $\mathrm{MS} 4 \AA(200 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at rt under
argon for $6 \mathrm{~h}, t-\mathrm{BuO}_{2} \mathrm{H}$ ($5 \mathrm{mmol}, 1 \mathrm{~mL}$ of 5 M solution in decane) was added at $-20^{\circ} \mathrm{C}$. The reaction mixture was warmed up to rt and stirred for another 1 h and finally concentrated under vacuum. Flash column chromatography of the residue produced the diastereoisomeric mixture of $\mathbf{1 6}$ ($143 \mathrm{mg}, 0.080 \mathrm{mmol}, 76 \%$) as a white solid. TLC (acetone/hexane $1: 3$): $R_{f}=0.41 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 5.85(\mathrm{br}, 1 \mathrm{H}), 5.38(\mathrm{~d}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}$, $J 6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.93$, 0.58 . FABMS: Calcd for $\mathrm{C}_{104} \mathrm{H}_{142} \mathrm{ClN}_{2} \mathrm{O}_{19} \mathrm{P} 1789$, Found $1813\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Synthesis of 22. After the mixture of MS 4A (1.0 g), the pseudodisaccharide $19(40 \mathrm{mg}, 26 \mu \mathrm{~mol})$ and the disaccharide $21(60 \mathrm{mg}, 54 \mu \mathrm{~mol})$ in $\mathrm{DCM}(4 \mathrm{~mL})$ was stirred at rt for 1 h and cooled down to $0^{\circ} \mathrm{C}$, to it was then added NIS ($45 \mathrm{mg}, 0.2 \mathrm{mmol}$). The stirring was continued for another 30 min . Upon the mixture was cooled down to $-10^{\circ} \mathrm{C}$, $\mathrm{TfOH}(1.0 \mu \mathrm{~L}, 5 \mu \mathrm{~mol})$ in $\mathrm{DCM}(1 \mathrm{~mL})$ was added. It was then warmed up to $0^{\circ} \mathrm{C}$ and stirred for additional 30 min . Triethylamine was added to quench the reaction, and the molecular sieves were filtered off. The filtrate was diluted with DCM, washed with brine, water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and finally concentrated in a vacuum. Column chromatography of the residue afforded a diastereoisomeric mixture (1.4:1.0) of 22 as colorless syrup ($35 \mathrm{mg}, 54 \%$), as well as an orthoester side product ($15 \mathrm{mg}, 23 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 5.84(\mathrm{t}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}$, major isomer), $5.76(\mathrm{t}, J=2 \mathrm{~Hz}, 1 \mathrm{H}$, minor isomer), $5.40-5.30(\mathrm{~m}, 4 \mathrm{H}), 4.10(2 \mathrm{~d}, J=12$ $\mathrm{Hz}, 2 \mathrm{H}), 2.36(\mathrm{~m}, 4 \mathrm{H}), 2.11-2.08(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.30(\mathrm{~m}, 54 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H})$, $0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.

Selected NMR and MS Spectra

Relax. delay 1.000 sec
Acq. time 0.206 sec

9OO MHZ IN CDCL3
P-SPEC

