Hydrogen and Carbon Isotope Fractionation during Anaerobic Biodegradation of Aromatic Hydrocarbons– A Field Study

Alfred Steinbach, Richard Seifert, Eva Annweiler, and Walter Michaelis*

Environmental Science and Technology

Table 1. Concentrations and stable carbon as well as stable hydrogen isotope signatures of selected aromatic hydrocarbons for groundwater samples at the site taken in November 2000 ($\delta^{13}C$) and March 2001 (δ^2 H).

	toluene		o-xylene		o-xylene		<i>p, m</i> -xylene	
well	concn.	δ ¹³ C	concn.	δ ¹³ C	concn. ^a	δ²Η	concn.	δ ¹³ C
	(μg/L)	(‰ VPDB)	(μg/L)	(‰ VPDB)	(μg/L)	(‰ SMOW)	(μg/L)	(‰ VPDB)
B14	$1050\ \pm90$	-24.9 ± 1.0	579 ± 60	-25.3 ± 0.5	579 ± 60	-135 ± 6	1014 ± 110	-24.1 ± 0.7
B15	6607 ± 518	-25.3 ± 0.3	1107 ± 200	-25.3 ± 0.3	1107 ± 200	-95 ± 6	$\textbf{2254} \pm \textbf{184}$	-25.0 ± 0.7
B22	2063 ± 210	-24.8 ± 0.5	1324 ± 150	-24.2 ± 0.7	1324 ± 150	-111 ± 9	2608 ± 214	$\textbf{-23.8} \pm 0.5$
B27	-	< d.l.	2 ± 1	-13.6 ± 0.6	-	< d.l.	2 ± 1	-13.8 ± 0.9
B28	-	< d.l.	-	< d.l.	-	< d.l.	2 ± 1	-13.6 ± 2.3
B42	-	< d.l.	-	< d.l.	-	< d.l.	-	< d.l.
B44	-	< d.l.	58 ± 7	-19.7 ± 0.7	58 ± 7	-92 ± 10	$\textbf{39}\pm\textbf{3}$	-18.5 ± 0.5
B47	-	< d.l.	20 ± 3	-16.7 ± 1.0	20 ± 3	-42 ± 12	18 ± 2	-13.5 ± 1.6
B48	16 ± 2	-14.4 ± 0.8	$\textbf{36}\pm\textbf{3}$	-19.7 ± 0.3	$\textbf{36}\pm\textbf{3}$	-32 ± 10	27 ± 3	-17.0 ± 1.2
B49	-	< d.l.	39 ± 3	-18.8 ± 0.8	39 ± 3	-34 ± 11	28 ± 3	-18.9 ± 0.9
B54	-	< d.l.	7 ± 1	-16.8 ± 1.8	-	< d.l.	3 ± 3	-21.9 ± 0.8
B55	100 ± 7	-21.6 ± 0.5	$\textbf{72}\pm\textbf{8}$	$\textbf{-21.9} \pm \textbf{1.0}$	72 ± 8	-133 ± 13	142 ± 15	-21.8 ± 0.6
B56	173 ± 20	$\textbf{-21.9}\pm0.9$	228 ± 20	$\textbf{-24.3}\pm0.8$	228 ± 20	-115 ± 5	268 ± 30	-22.7 ± 0.7
B57	-	< d.l.	43 ± 4	-18.1 ± 0.6	43 ± 4	-63 ± 16	$\textbf{30}\pm\textbf{3}$	-18.6 ± 1.3

	2-methylnaphthalene		1-methylnaphthalene		methylbenzofurane ^b		acenaphthene	
well	concn.	δ ¹³ C	concn.	δ ¹³ C	concn.	$\delta^{13}C$	concn.	δ ¹³ C
	(µg/L)	(‰ VPDB)	(μg/L)	(‰ VPDB)	(µg/L)	(‰ VPDB)	(μg/L)	(‰ VPDB)
B14	822 ± 90	-24.4 ± 0.7	1004 ± 120	-24.1 ± 0.7	179 ± 19	-19.8 ± 0.5	482 ± 45	-23.6 ± 0.6
B15	1030 ± 108	-23.5 ± 0.3	958 ± 94	-23.4 ± 1.8	$\textbf{489} \pm \textbf{48}$	-20.7 ± 1.9	920 ± 92	-22.7 ± 1.4
B22	$\textbf{279} \pm \textbf{30}$	$\textbf{-22.7} \pm \textbf{1.6}$	$\textbf{421} \pm \textbf{35}$	-24.1 ± 1.5	$\textbf{226} \pm \textbf{18}$	-20.4 ± 1.4	582 ± 51	$\textbf{-23.3} \pm \textbf{1.6}$
B27	-	< d.l.	-	< d.l.	$\textbf{62}\pm\textbf{6}$	-20.4 ± 0.3	211 ± 17	-24.4 ± 0.3
B28	-	< d.l.	-	< d.l.	$\textbf{30} \pm \textbf{4}$	-20.7 ± 0.8	181 ± 18	-24.5 ± 0.8
B42	-	< d.l.	-	< d.l.	3 ± 1	-20.4 ± 1.1	148 ± 10	$\textbf{-23.7} \pm 0.3$
B44	-	< d.l.	$\textbf{213} \pm \textbf{18}$	-23.9 ± 0.7	84 ± 7	-20.3 ± 0.8	214 ± 17	$\textbf{-23.7} \pm 0.3$
B47	-	< d.l.	$\textbf{43}\pm\textbf{6}$	-22.4 ± 0.8	169 ± 15	-20.7 ± 0.5	400 ± 33	-24.0 ± 0.5
B48	12 ± 2	-20.4 ± 0.4	$\textbf{207} \pm \textbf{21}$	-23.8 ± 0.3	206 ± 22	-20.8 ± 0.6	463 ± 42	-24.0 ± 0.3
B49	-	< d.l.	410 ± 45	-24.5 ± 0.6	146 ± 14	-20.6 ± 0.7	541 ± 46	$\textbf{-23.7}\pm0.3$
B54	-	< d.l.	32 ± 2	-23.8 ± 0.5	137 ± 11	-21.0 ± 0.4	$\textbf{278} \pm \textbf{25}$	$\textbf{-23.7}\pm0.9$
B55	25 ± 3	$\textbf{-21.7} \pm 0.6$	35 ± 4	-23.8 ± 0.4	$\textbf{37} \pm \textbf{5}$	-20.4 ± 0.3	522 ± 44	-24.0 ± 0.3
B56	91 ± 10	$\textbf{-22.6} \pm 0.5$	437 ± 46	-24.4 ± 0.8	149 ± 11	-19.8 ± 0.8	495 ± 45	$\textbf{-23.6} \pm \textbf{0.3}$
B57	-	< d.l.	148 ± 12	-24.2 ± 0.3	$\textbf{99}\pm\textbf{8}$	-21.0 ± 0.4	193 ± 19	-23.8 ± 0.3
а	- concentrations derive from the November sampling campaign (see manuscript text)							

= concentrations derive from the November sampling campaign (see manuscript text).

b = isomer not identified.

< d.l. = below detection limit for isotope analysis.

= not detected. -