Stereoselective $\mathbf{S}_{\mathbf{N}} \mathbf{2}$-Substitutions using Polyfunctional Lithium Arylcuprates Prepared by an Iodine-Copper Exchange

M. Isabel Calaza, Xiaoyin Yang, Darunee Soorukram, and Paul Knochel*
Department Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377, München (Germany). Paul.Knochel@cup.uni-muenchen.de

Supporting Information

General considerations

Unless otherwise indicated, all reactions were carried out with magnetic stirring and, if air or moisture sensitive, in flame-dried glassware under argon. Syringes used to transfer reagents and solvent were purged with argon prior to use. Reactions were monitored by gas chromotography (GC and GC-MS) or thin layer chromotography (TLC). Enantiomeric purity was determined by chiral HPLC or capillary GC analysis. In all cases, the analysis was calibrated with a sample of the racemate.

Chiral HPLC:
column A: Chiralcel OD-H, $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$
column B: Chiralcel OD, $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$
column C: Chiralcel AD, $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$
Chiral GC:
column A: TFA gamma-cyclodextrin, 30.0 mx 0.25 mm
method A: $40^{\circ} \mathrm{C}(2 \mathrm{~min})$, ramp of $20^{\circ} \mathrm{C} / \mathrm{min}$ to $150^{\circ} \mathrm{C}(45 \mathrm{~min})$
method B: $130^{\circ} \mathrm{C}(100 \mathrm{~min})$.
method $\mathrm{C}: 150^{\circ} \mathrm{C}(150 \mathrm{~min})$.

Starting materials

(R)-2-Iodo-2-cyclohexen-1-ol and (R)-2-iodo-2-cyclopenten-1-ol are literature known. ${ }^{[1]}$ and (1S, 2Z)-1-Butyl-2-butenyl-2,3,4,5,6-pentafluorobenzoate are literature known. ${ }^{[2]}$

Neophyllithium solutions were titrated using the method of Paquette. ${ }^{[3]}$

Preparation of lithium dineophylcuprate ($\mathbf{N p h y l}_{2} \mathbf{C u L i}$): ${ }^{[4]}$

A dry and argon flushed 500 mL round-bottom flask was charged with lithium dust (3.0 g , 432 mmol) and 2,2-dimethyl-2-phenylethyl chloride ($14.0 \mathrm{~mL}, 86.9 \mathrm{mmol}$) in n-hexane (75 mL). The reaction mixture was refluxed overnight. After cooling to rt n-hexane was removed in vacuo and then dry diethyl ether was added. The resulting mixture was cannulated into a flame dried Schlenk tube and centrifuged ($2000 \mathrm{rpm}, 30 \mathrm{~min}$). The clear solution of neophyllithium thus obtained was titrated before use with menthol using o-phenanthroline as indicator and could be stored at $-30^{\circ} \mathrm{C}$ for several days. Usaully $1.4 \mathrm{M} / \mathrm{Et}_{2} \mathrm{O}$ solution of the lithium reagent is obtained.
A dry and argon flushed 25 mL flask was charged with $\mathrm{CuCN}(110 \mathrm{mg}, 1.2 \mathrm{mmol})$. Dry diethyl ether (1 mL) was added and the resulting suspension was cooled to $0^{\circ} \mathrm{C}$. The freshly titrated solution of neophyllithium was then added slowly and the mixture was quickly warmed to rt and stirred for 10 min , until a clear yellow solution of the desired cuprate was obtained.

(R)-2-Iodo-2-cyclopenten-1-yl acetate (4a): ${ }^{[5]}$

(R)-2-Iodo-2-cyclopenten-1-ol ($1.6 \mathrm{~g}, 7.6 \mathrm{mmol}$) was dissolved in pyridine $(5.0 \mathrm{~mL})$ and $\mathrm{Ac}_{2} \mathrm{O}$ $(2.5 \mathrm{~mL})$. The resulting mixture was stirred for 12 h at $25^{\circ} \mathrm{C}$. It was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and washed with $2 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and brine ($50 \mathrm{~mL} \times 2$). The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed and the crude product purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/diethyl ether $\left.=6: 1\right)$ to give $1.54 \mathrm{~g}(80 \%)$ of $\mathbf{4 a}$ as a colorless oil.
GC (column A, method A): $t_{R} / \min =8.7$ (major), 13.0 (minor); $96.6 \% e e$.
$[\alpha]_{\mathrm{D}}{ }^{20}+33.8^{\circ}\left(\mathrm{c} 1.16, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=6.36(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.16(\mathrm{~m}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$, 1.72-1.86 (m, 1H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=170.6,145.7,92.7,83.8,33.0,29.9,21.1$.
IR (film): 1738 (vs), 1372 (m), 1233 (vs), 1034 (s), 926 (m), 808 (w).
MS (EI, 70 ev), m / z (\%): 209 (4, $\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}$), 192 (21), 125 (48), 83 (100), 66 (35), 65 (36), 55 (6).

Anal. calcd. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{IO}_{2}$ (252.05): C 33.36, H 3.60; found: C 33.78, H 3.22.

(R)-2-Iodo-2-cyclohexen-1-yl ethyl acetate (4b): ${ }^{[5]}$

To a solution of (R)-2-iodo-cyclohexen-1-ol ($3.7 \mathrm{~g}, 16.5 \mathrm{mmol}$) in 20 mL pyridine, acetic anhydride ($8.5 \mathrm{~g}, 82.6 \mathrm{mmol}$) was added at rt . The resulting mixture was stirred at rt for 12 h and then diluted with 100 mL diethyl ether. The solution was washed with 2M HCL (100 mL) and brine ($100 \mathrm{~mL} \times 2$). The organic phase was dried $\left(\mathrm{NaSO}_{4}\right)$ and concentrated in vacuum. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/diethyl ether = $\left.10: 1\right)$ to give $4.2 \mathrm{~g}(95 \%)$ of $\mathbf{4 b}$ as a colorless oil.
GC (column A, method A): $t_{R} / \min =10.24$ (major), 11.04 (minor); $98 \% e e$.
$[\alpha]_{\mathrm{D}}{ }^{20}+21.6\left(\mathrm{c} 1.08, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MH}_{\mathrm{Z}}\right): \delta=6.65(\mathrm{~m} \mathrm{1H}), 539(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~s} .3 \mathrm{H}), 2.11-1.70(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MH}_{\mathrm{z}}\right): \delta=170.5,143.9,95.8,73.8,30.3,29.5,21.6,17.8$.
IR (film): 2944 (w), 1735 (vs), 1427 (w), 1371 (m), 1233 (vs), 977 (m), 917 (w), 730 (w).
MS (EI, 70 ev), m / z (\%): 206 (4) [M-AcO-H] ${ }^{+}, 139$ (85), 126 (15), 97 (100), 79 (47), 55 (4).
Anal. calcd. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{IO}_{2}$ (252.05): C 36.11, H 4.17; found: C 33.38, H 4.06.

1-d-2-Iodo-2-cyclohexenyl acetate (4c):

To a solution of 2-iodo-2-cyclohex-1-one ($1.11 \mathrm{~g}, 5 \mathrm{mmol}$) and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(1.86 \mathrm{~g}, 5 \mathrm{mmol})$ in $\mathrm{MeOH}(8 \mathrm{~mL})$ cooled at $0{ }^{\circ} \mathrm{C}, \mathrm{NaBD}_{4}$ was added in small portions. The resulting mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was poured into cold water and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic phase was washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/diethyl ether $\left.=5: 1\right)$ to give 856 mg (76 \% yield) of 1-d-2-iodo-2-cyclohexenol as a colorless oil.
To a solution of 1-d-2-iodo-2-cyclohexenol ($788 \mathrm{mg}, 3.51 \mathrm{mmol}$) in pyridine (3.1 mL), $\mathrm{Ac}_{2} \mathrm{O}$ $(1.9 \mathrm{~mL})$ was added. The resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched with $2 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, saturated aqueous NaHCO_{3} solution, brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/diethyl ether $\left.=10: 1\right)$ to give $775 \mathrm{mg}(83 \%$ yield $)$ of $\mathbf{4 c}$ as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=6.65-6.50(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.64(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=169.6,144.0,95.8,72.0,30.3,29.5,21.6,17.7$.
IR (film): 2944 (m), 1738 (s), 1369 (m), 1264 (m), 1240 (s), 1013 (m), 922 (m).
MS (EI, 70 ev), m / z (\%): 208 (3), 207 (5), 140 (79), 127 (10), 98 (100), 80 (33).
HRMS (EI): calcd. for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{DI}\left[\mathrm{M}^{+}-\mathrm{OAc}\right]: 207.9732$, found: 207.9733.

4-[(1R)-(2-Iodo-2-cyclopenten-1-yl)] phenyl methyl ether (5a):

Typical procedure A: A dry and argon flushed 25 mL flask, equipped with a magnetic stirrer and a septum, was charged with a solution of $\mathrm{Nphyl}_{2} \mathrm{CuLi}$ ($1.2 \mathrm{mmol}, 1.2$ equiv). A solution of ethyl 4-iodoanisole ($281 \mathrm{mg}, 1.2 \mathrm{mmol}$) in THF (2 mL) was added over the solution of $\mathrm{Nphyl}_{2} \mathrm{CuLi}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ until I/Cu-exchange was completed (30 min). The mixture was cooled at $-40^{\circ} \mathrm{C}$ and a solution of (R)-2-iodo-2-cyclopenten-1-yl acetate (5a) $(252 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) in THF (1.5 mL) was added. The resulting reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ and stirred at this temperature for 12 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ sol. (20 mL) was added followed by 25% aqueous ammonia solution (1 mL). The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ until the copper salts had dissolved and was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 20 mL). The combined extracts were washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvents and purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane, then pentane: $\mathrm{Et}_{2} \mathrm{O}=$ 30:1) afforded 213 mg (71% yield) of $\mathbf{5 a}$ as a colorless oil.
GC (column A, method C,): $t_{R} / \mathrm{min}=18.3$ (minor), 18.9 (major); 92.4% ee.
$[\alpha]_{\mathrm{D}}{ }^{20}-26.7^{\circ}\left(\mathrm{c} 1.19, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.20-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.30(\mathrm{~m}, 1 \mathrm{H}), 3.89-$ $3.80(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.33(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.85(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=158.4,140.8,136.1,128.7,113.9,100.9,58.7,55.2,33.9$, 33.0.

IR (film): 2934 (m), 1611 (m), 1511 (vs), 1464 (m), 1303 (w), 1248 (vs), 1176 (s), 1037 (s), 828 (m), 808 (m), 543 (w).
MS (EI, 70 ev), $m / z(\%): 300\left(\mathrm{M}^{+}, 100\right), 269$ (4), 173 (42), 158 (29), 145 (15), 128 (16), 115 (13), 102 (9), 91 (4), 77 (4).

HRMS (EI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{IO}\left[\mathrm{M}^{+}\right]: 300.0011$, found: 300.0036 .

Ethyl 4-[(1R)-(2-iodo-2-cyclopenten-1-yl)] benzoate (5b):

The reaction was carried out according to typical procedure A with $\mathrm{Nphyl}_{2} \mathrm{CuLi}(1.2 \mathrm{mmol}, 1.2$ equiv), ethyl 4-iodobenzoate ($0.331 \mathrm{~g}, 1.2 \mathrm{mmol}, 1.2$ equiv) and (R)-2-iodo-2-cyclopenten-1-yl acetate ($252 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv). Standard workup and purification by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-pentane/diethyl ether $\left.=30: 1\right)$ yielded $170 \mathrm{mg}(50 \%$ yield $)$ of $\mathbf{5 b}$ as a colorless oil.

GC (column A, method C ,): $t_{R} / \min =81.5$ (minor), 86.4 (major); $97.0 \% e e$.
$[\alpha]_{\mathrm{D}}{ }^{20}-14.4^{\circ}\left(\mathrm{c} 1.03, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.96-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.95-3.84(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.28(\mathrm{~m}, 3 \mathrm{H}), 1.94-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=166.5,149.2,141.9,129.9,129.1,127.7,98.6,60.8,59.5$, 34.1, 33.0, 14.3 .

IR (film): 2935 (m), 1716 (vs), 1610 (m), 1418 (m), 1276 (vs), 1178 (m), 1102 (s), 1022 (m), 771 (m), 707 (m), 541 (w).

MS (EI, 70 ev), $m / z(\%): 342$ (100) [$\left.\mathrm{M}^{+}\right], 313$ (8), 297 (55), 269 (45), 215 (64), 192 (11), 187 (9), 169 (10), 142 (50), 141 (55), 128 (24), 115 (32), 114 (11), 85 (6).

HRMS (EI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{IO}_{2}\left[\mathrm{M}^{+}\right]: 342.0117$, found: 342.0154.

Ethyl 4-[(1S)-2-iodocyclohex-2-en-1-yl]beozoate (5c):

The reaction was carried out according to typical procedure A with $\mathrm{Nphyl}_{2} \mathrm{CuLi}(1.2 \mathrm{mmol}$, 1.2 equiv), ethyl 4-iodobenzoate ($331 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv) and (R)-2-iodo-cyclohex-2enyl ester ($266 \mathrm{mg}, 1.0 \mathrm{mmol}$). Standard workup and purification by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-pentane/diethyl ether $\left.=10: 1\right)$ yielded $274 \mathrm{mg}(77 \%$ yield $)$ of $\mathbf{5 c}$ as a colorless oil.
HPLC (column C, heptane : $i \operatorname{PrOH}=99: 1,0.5 \mathrm{ml} / \mathrm{min}$): $t_{R} / \mathrm{min}=18.3$ (minor), 19.8 (major); 98 \%ee.
$[\alpha]_{\mathrm{D}}{ }^{20}+12.1\left(\mathrm{c} 0.99, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MH}_{\mathrm{z}}\right): \delta=7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~m}$, $1 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.53(\mathrm{~m}, 6 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MH}_{\mathrm{Z}}\right): \delta=149.8,141.2,130.1,129.4,128.7,100.2,61.2,53.0,33.9$, 29.7, 18.1, 14.8.

IR (film): 3415 (w), 2937 (s), 1715 (vs), 1609 (m), 1444 (m), 1417 (m), 1366 (m), 1276 (vs), 1178 (s), 1102 (vs), 1021 (m), 769 (m), 707 (m).
MS (EI, 70 ev), m / z (\%): 356 (100) [$\left.\mathrm{M}^{+}\right], 311$ (32), 229 (27), 206 (19), 183 (7), 155 (20), 129 (25), 115 (13), 91 (7).

HRMS (EI): calcd. For $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{IO}_{2}\left[\mathrm{M}^{+}\right]: 356.0273$, found 356.0280.

4-[(1R)-2-iodocyclohex-2-en-1-yl]benzonitrile (5d):

The reaction was carried out according to typical procedure A with $\mathrm{Nphyl}_{2} \mathrm{CuLi}(1.2 \mathrm{mmol}$, 1.2 equiv), 4-bromobenzonitrile ($218 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv), and acetic acid (R)-2-iodo-cyclohex-2-enyl ester ($266 \mathrm{mg}, 1.0 \mathrm{mmol}$, 1.0equiv). The temperature for the $\mathrm{Br} / \mathrm{Cu}$-exchange
is rt. Standard workup and purification by column chromatography (SiO_{2}, n-pentane/diethyl ether $=15: 1)$ yielded $204 \mathrm{mg}(66 \%$ yield $)$ of $\mathbf{5 d}$ as a colorless oil.
GC (column A, method B): $t_{R} / \mathrm{min}=33.73$ (minor), 34.98 (major); $97 \% e e$.
$[\alpha]_{\mathrm{D}}{ }^{20}+18.5\left(\mathrm{c} 1.26, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MH}_{\mathrm{Z}}\right): \delta=7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~m}$, $1 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.53(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MH}_{\mathrm{z}}\right): \delta=148.7,140.4,131.2,128.1,118.0,109.6,51.6,32.4,28.2$, 16.6.

IR (film): 4306 (w), 2907 (m), 2229 (vs), 1604 (s), 1503 (s), 1411 (s), 975(s), 833 (vs), 690 (s), 563 (vs), 483 (w).
MS (EI, 70 ev), m / z (\%): 309 (100) [$\left.\mathrm{M}^{+}\right], 182$ (41), 154 (63), 140 (26), 127 (19), 116 (57).
HRMS (EI): calcd. For $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{IN}\left[\mathrm{M}^{+}\right]: 309.0014$, found 309.0008.

1-[(1R)-2-Iodocyclohex-2-en-1-yl]-4-(trifluoromethyl)benzene (5e):

The reaction was carried out according to typical procedure A with $\mathrm{Nphyl}_{2} \mathrm{CuLi}(1.2 \mathrm{mmol}$, 1.2 equiv), 1-iodo-4-trifluoromethylbenzene ($326 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv), and acetic acid (R)-2-iodo-cyclohex-2-enyl ester ($266 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv). Standard workup and purification by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-pentane/diethyl ether $\left.=15: 1\right)$ yielded 250 mg (70% yield) of $\mathbf{5 e}$ as a colorless oil.
GC (column A, method B): $t_{R} / \min =24.56$ (minor), 25.91 (major); $94 \% e e$.
$[\alpha]_{\mathrm{D}}{ }^{20}+11.7\left(\mathrm{c} 1.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MH}_{\mathrm{z}}\right): \delta=7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~m}$, $1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 1.53-2.12(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MH}_{\mathrm{Z}}\right): \delta=148.5,141.4,129.5,129.0,125.7,124\left(\mathrm{q}, J=271 \mathrm{H}_{\mathrm{Z}}\right), 99.8$, 73.3, 52.8, 33.9, 29.6 17.9.

IR (film): 2938 (s), 1618 (s), 1445 (m), 1418 (m), 1325 (vs), 1163 (vs), 1124 (vs), 1110 (vs), 985 (m), 834 (m), 606 (w).
MS (EI, 70 ev), m / z (\%): 352 (100) [$\left.\mathrm{M}^{+}\right], 333$ (15), 225 (61), 197 (45), 177 (43), 158 (87), 128 (20).
HRMS (EI): calcd. For $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{I}\left[\mathrm{M}^{+}\right]: 351.9936$, found 351.9916.

1-Iodo-4-[(1R)-2-iodocyclohex-2-en-1-yl]benzene (5f):

The reaction was carried out according to typical procedure A with $\mathrm{Nphyl}_{2} \mathrm{CuLi}(1.2 \mathrm{mmol}$, 1.2 equiv), 1,4-diiodobenzene ($394 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv), and acetic acid (R)-2-iodo-
cyclohex-2-enyl ester ($266 \mathrm{mg}, 1.0 \mathrm{mmol}$). Standard workup and purification by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-pentane/diethyl ether $\left.=15: 1\right)$ yielded $336 \mathrm{mg}(82 \%$ yield $)$ of $\mathbf{5 f}$ as a colorless oil.

GC (column A, method C): $t_{R} / \min =78.77$ (minor), 82.21 (major); $98 \% e e$.
$[\alpha]_{\mathrm{D}}{ }^{20}+25.2\left(\mathrm{c} 1.58, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MH}_{\mathrm{z}}\right): \delta=7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~m}$, $1 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.46(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MH}_{\mathrm{Z}}\right): \delta=142.5,139.4,136.1,129.1,98.8,90.7,50.9,32.2,28.0,16.3$.
IR (film): 2934 (s), 1627 (w), 1479 (s), 1400 (m), 1141 (w), 1060 (m), 1006 (s), 981 (m), 818 (s), 551 (w).

MS (EI, 70 ev), m / z (\%): 410 (100) [M $\left.{ }^{+}\right], 283$ (23), 217 (26), 156 (36), 141 (19), 128 (37), 115 (17).
HRMS (EI): calcd. For $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{I}_{2}\left[\mathrm{M}^{+}\right]: 409.9028$, found 409.9017 .

1-Bromo-4-[(1R)-2-iodocyclohex-2-en-1-yl]benzene (5g):

The reaction was carried out according to typical procedure A with $\mathrm{Nphyl}_{2} \mathrm{CuLi}(1.2 \mathrm{mmol}$, 1.2 equiv), 4-bromo-iodobenzene ($339 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv), and acetic acid (R)-2-iodo-cyclohex-2-enyl ester ($266 \mathrm{mg}, 1.0 \mathrm{mmol}$). Standard workup and purification by column chromatography (SiO_{2}, n-pentane) yielded 323 mg (89% yield) of $\mathbf{5 g}$ as a colorless oil.
CC (column A, method B): $t_{R} / \mathrm{min}=117.23$ (minor), 132.05 (major); 96% ee.
$[\alpha]_{\mathrm{D}}{ }^{20}+14.8\left(\mathrm{c} 1.43, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MH}_{\mathrm{z}}\right): \delta=7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~m}$, $1 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 1.50-2.14(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MH}_{\mathrm{Z}}\right): \delta=143.6,141.1,131.9,130.5,120.9,100.6,52.5,33.9,29,7$, 18.0.

IR (film): 2934 (vs), 1898 (w), 1628 (m), 1483 (vs), 1442 (s), 1404 (s9, 1073 (s), 1010 (vs), 984 (s), 895 (m), 820 (s$), 701$ (m9, 552 (w).

MS (EI, 70 ev), m / z (\%): 362 (45) [$\left.\mathrm{M}^{+}\right], 235$ (35), 206 (31), 169 (40), 156 (100), 141 (34), 128 (77), 115 (29), 77 (15).
HRMS (EI): calcd. For $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrI}\left[\mathrm{M}^{+}\right]$: 361.9167, found 361.9153.

1-[(1R)-2-Iodocyclohex-2-en-1-yl]-4-methoxybenzene (5h):

The reaction was carried out according to typical procedure A with $\mathrm{Nphyl}_{2} \mathrm{CuLi}(1.2 \mathrm{mmol}$, 1.2 equiv), 4-iodoanisole ($291 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv), and acetic acid (R)-2-iodo-cyclohex-

2-enyl ester ($266 \mathrm{mg}, 1.0 \mathrm{mmol}$). Standard workup and purification by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-pentane $\left./ \mathrm{Et}_{2} \mathrm{O}=150: 1\right)$ yielded $270 \mathrm{mg}(85 \%)$ of $\mathbf{5 h}$ as a colorless oil.

GC (column A, method B): $t_{R} / \min =96.5$ (minor), 102.2 (major); $95 \% e e$.
$[\alpha]_{\mathrm{D}}{ }^{20}+15.2\left(\mathrm{c} 1.04, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MH}_{\mathrm{z}}\right): \delta=7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~m}$, $1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.54(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MH}_{\mathrm{Z}}\right): \delta=158.7,140.4,136.7,129.7,114.1,102.5,55.6,52.2,34.1$, 29.7, 18.2.

IR (film): 2933 (vs), 2832 (s), 1610 (s), 1510 (vs), 1463 (s), 1302 (m), 1249 (vs), 1176 (s), 1036 (s), 828 (m), 602 (w).
MS (EI, 70 ev), m / z (\%): 314 (100) [$\left.\mathrm{M}^{+}\right], 286$ (4), 208 (18), 187 (31), 171(10), 159 (24), 144 (22), 121 (43), 108 (23), 77 (11).

HRMS (EI): calcd. For $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{IO}\left[\mathrm{M}^{+}\right]: 314.0168$, found 314.0150.

1-\{4-[(1R)-2-Iodocyclohex-2-en-1-yl]phenyl\}ethanone (5i):

The reaction was carried out according to typical procedure A with $\mathrm{Nphyl}_{2} \mathrm{CuLi}(1.2 \mathrm{mmol}$, 1.2 equiv), 4-iodo-acetobenzene ($295 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv), and acetic acid (R)-2-iodo-cyclohex-2-enyl ester ($266 \mathrm{mg}, 1.0 \mathrm{mmol}$). Standard workup and purification by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-pentane/diethyl ether $\left.=10: 1\right)$ yielded $218 \mathrm{mg}(67 \%$ yield $)$ of $\mathbf{5 i}$ as a colorless oil.

HPLC (column C, heptane : $i \operatorname{PrOH}=99: 1,0.4 \mathrm{ml} / \mathrm{min}$): $t_{R} / \mathrm{min}=47.19$ (minor), 51.78 (major); 89 \% ee.
$[\alpha]_{\mathrm{D}}{ }^{20}+24.7\left(\mathrm{c} 1.43, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MH}_{\mathrm{Z}}\right): \delta=7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~m}$, $1 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.12-1.57(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MH}_{\mathrm{Z}}\right): \delta=198.1,150.1,141.3,136.1,129.0,100.0,53.0,33.9,29.7$, 27.0, 18.1.

IR (film): 2935 (s), 1681 (vs), 1605 (s), 1412 (m), 1357 (s), 1268 (s), 938 (m), 830 (m), 589 (m), 553 (w).

MS (EI, 70 ev), $m / z(\%): 326$ (100) [$\left.\mathrm{M}^{+}\right], 311$ (48), 206 (13), 199 (18), 154 (20), 128 (20), 115 (14), 77 (7).
HRMS (EI): calcd. For $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{IO}\left[\mathrm{M}^{+}\right]: 326.0168$, found 326.0162.

1-[(1R)-2-Iodocyclohex-2-en-1-yl]-3-methoxybenzene (5j):

The reaction was carried out according to typical procedure A with $\mathrm{Nphyl}_{2} \mathrm{CuLi}(1.2 \mathrm{mmol}$, 1.2 equiv), 3-iodoanisole ($281 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv), and acetic acid (R)-2-iodo-cyclohex-2-enyl ester ($266 \mathrm{mg}, 1.0 \mathrm{mmol}$). Standard workup and purification by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-pentane/diethyl ether $\left.=100: 1\right)$ yielded $270 \mathrm{mg}(86 \%$ yield $)$ of $\mathbf{5 j}$ as a colorless oil.
HPLC (column A, heptane : $i \operatorname{PrOH}=99: 1,0.2 \mathrm{ml} / \mathrm{min}$): $t_{R} / \mathrm{min}=31.52$ (minor), 38.05 (major); 92 \% ee.
$[\alpha]_{\mathrm{D}}{ }^{20}+27.6\left(\mathrm{c} 1.27, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MH}_{\mathrm{z}}\right): \delta=7.28(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 3 \mathrm{H}), 6.68(\mathrm{~m}, 1 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 2.17-1.63(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MH}_{\mathrm{z}}\right): \delta=160.0,146.2,140.7,129.7,121.2,114.8,112.0,101.4,55.6$, 53.0, 34.0, 29.1, 18.2.

IR (film): 2935 (vs), 2832 (w), 1660 (vs), 1583 (vs), 1464 (vs), 1485 (s), 1435 (s), 1347 (m), 1252 (vs), 1154 (s), 1052 (s), 985 (m), 779 (m), 700 (s), 568 (w).
MS (EI, 70 ev), $m / z(\%): 314$ (100) [M $\left.{ }^{+}\right], 187$ (46), 172 (9), 159 (14), 144 (12), 121 (37), 115 (30), 79 (15).

HRMS (EI): calcd. For $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{IO}\left[\mathrm{M}^{+}\right]: 314.0168$, found 314.0157.

Ethyl 4-(1-d-2-iodo-2-cyclohexen-1-yl)benzoate (5k)

The reaction was carried out according to typical procedure A with $\mathrm{Nphyl}_{2} \mathrm{CuLi}(1.2 \mathrm{mmol}, 1.2$ equiv), ethyl 4 -iodobenzoate ($331 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv) and $1-\mathrm{d}-2$-iodo-2-cyclohexenyl acetate ($4 \mathbf{c}$) ($267 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) in THF (1.5 mL). Standard workup and purification by flash chromatography $\left(\mathrm{SiO}_{2}, n\right.$-pentane/diethyl ether $\left.=100: 1\right)$ yielded $189 \mathrm{mg}(53 \%$ yield $)$ of $\mathbf{5 k}$ as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.97-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.60(\mathrm{~m}, 1 \mathrm{H})$, $4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.04(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=167.0,149.7,141.2,130.1,129.4,128.7,100.2,61.2,52.6$, 33.9, 29.7, 18.1, 14.8.

IR (film): 2935 (m), 1716 (s), 1610 (m), 1276 (s), 1178 (m), 1104 (s), 1022 (m), 771 (m), 707 (m).

MS (EI, 70 ev), $m / z(\%): 357\left[\mathrm{M}^{+}\right],(100), 312$ (37), 230 (23), 207 (31), 156 (28), 142 (15), 129 (48), 116 (14).

HRMS (EI): calcd.for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{DIO}_{2}: 357.0335$, found: 357.0334 .

4-(2-Hex-1-ynylcyclohex-2-enyl)-benzoic acid ethyl ester (6a):

A flame-dried 25 mL flask equipped with a magnetic stirring bar, an argon inlet, and a septum was charged with $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(35 \mathrm{mg}, 0.05 \mathrm{mmol})$, $\mathrm{CuI}(10 \mathrm{mg}, 0.05 \mathrm{mmol})$ and dry THF (2 $\mathrm{mL})$. A solution of ethyl $4-[(1 R)$-(2-iodocyclohex-2-en-1-yl)] benzoate ($\mathbf{5 c}$) $(335 \mathrm{mg}, 1.0$ $\mathrm{mmol}, 95 \% \mathrm{ee})$ in THF (2 mL) was added dropwise. The reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 5 min , then dry $\mathrm{Et}_{3} \mathrm{~N}$ ($304 \mathrm{mg}, 3.0 \mathrm{mmol}$) and 1-hexyne $(90 \mathrm{mg}, 1.1 \mathrm{mmol})$ were added consecutively. The resulting yellow solution was stirred at $25^{\circ} \mathrm{C}$ for 25 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ sol. $(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined extracts were washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvents and purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/diethyl ether $\left.=80: 1\right)$ afforded 205 mg (70% yield) of $\mathbf{6 a}$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{20}+1.43^{\circ}\left(\mathrm{c} 0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.92-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.22-6.17(\mathrm{~m}, 1 \mathrm{H})$, $4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.46-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.40$ $(\mathrm{m}, 4 \mathrm{H}), 1.36-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.10-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=167.1,150.8,135.7,129.7,128.7,123.2,89.5,81.9,61.1$, 45.8, 32.4, 31.1, 28.7, 26.1, 22.0, 19.5, 19.2, 14.7, 13.9.

IR (film): 2933 (m), 1719 (s), 1610 (m), 1275 (s), 1178 (m), 1102 (s), 1022 (m).
MS (EI, 70 ev), $m / z(\%): 310\left[\mathrm{M}^{+}\right], 100$), 295 (7), 281 (23), 265 (44), 253 (19), 237 (42), 225
(12) 209 (12), 195 (43), 181 (51), 165 (72), 152 (33), 134 (28), 119 (29), 115 (29), 103 (35), 91 (41), 77 (17).

HRMS (EI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2}: 310.1933$, found: 310.1946.

Ethyl 4-[2-(4-(benzoyloxy)phenyl)-2-cyclohexen-1-yl]benzoate (6b):

A flame-dried 25 mL flask equipped with a magnetic stirring bar, an argon inlet, and a septum was charged with benzoic acid 4-iodo phenyl ester ($243 \mathrm{mg}, 0.75 \mathrm{mmol}$) and dry THF (1 mL), and cooled to $-20^{\circ} \mathrm{C}$. To the resulting solution, $i-\mathrm{PrMgCl}(1.45 \mathrm{M} / \mathrm{THF}, 0.8 \mathrm{~mL})$ was added dropwise. The resulting mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 min . The solution of $\mathrm{ZnBr}_{2}(1.5$ M/THF, 1.5 mL) was added dropwise, and the reaction mixture was stirred at $-20{ }^{\circ} \mathrm{C}$ for 15 min . Then the reaction mixture was warmed up to $25^{\circ} \mathrm{C}$ for 30 min . The resulting solution was cannulated to the flame-dried 25 mL flask which was charged with $\operatorname{Pd}(\mathrm{dba})_{2}(14 \mathrm{mg}, 25 \mathrm{mmol})$, dppf ($14 \mathrm{~g}, 25 \mathrm{mmol}$), ethyl $4-[(1 R)$-(2-iodocyclohex-2-en-1-yl) benzoate ($\mathbf{5 c}$) ($178 \mathrm{mg}, 0.5$
$\mathrm{mmol}, 95 \% \mathrm{ee}$) and THF (3 mL). The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 16 h , quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ sol. $(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined extracts were washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvents and purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/diethyl ether $\left.=10: 1\right)$ afforded 160 mg (75% yield) of $\mathbf{6 b}$ as a white solid, $\mathrm{mp}=128^{\circ} \mathrm{C}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-95.0^{\circ}\left(\mathrm{c} 0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=8.10-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 1 \mathrm{H})$, 7.44-7.36 (m, 2H), 7.24-7.18 (m, 4H), 6.98-6.92 (m, 2H), 6.38-6.32 (m, 1H), $4.26(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.02-3.94(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.58-$ $1.42(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=167.0,165.5,150.9,149.9,139.7,137.0,133.9,130.5,129.9$, 129.0, 128.9, 128.7, 127.2, 121.6, 61.1, 43.2, 32.9, 26.4, 17.9, 14.7.

IR (film): 2934 (m), 1731 (s), 1720 (s), 1609 (m), 1506 (m), 1275 (s), 1205 (s), 1173 (s), 1102 (m), 1082 (m), 1065 (m), 1024 (m), 741 (s).

MS (EI, 70 ev), $m / z(\%): 426$ (5, M ${ }^{+}$), 115 (2), 106 (8), 105 (100), 78 (2), 77 (19), 51 (2).
HRMS (EI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{4}: 426.1831$, found: 426.1812 .
anal. calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{4}$ (426.18): C 78.85, H 6.14; found: C 78.59, H 6.25.

Ethyl 4-[(1S)-2-butyl-2-cyclohexen-1-yl]benzoate (6c):

To Zn foil ($690 \mathrm{mg}, 10 \mathrm{mmol}$) previously activated with 1,2-dibromoethane ($79 \mu \mathrm{~L}$) and TMSCl $(49 \mu \mathrm{~L})$ in THF (1 mL) was added a solution of iodobutane ($0.644 \mathrm{~g}, 3.5 \mathrm{mmol}$) in THF (1.5 mL). The reaction mixture was heated at $40^{\circ} \mathrm{C}$ for 4 h . GC analysis of hydrolyzed reaction aliquot showed the complete formation of the zinc reagent.
A flame-dried 25 mL flask was charged with $\mathrm{Pd}(\mathrm{dba})_{2}(14 \mathrm{mg}, 0.025 \mathrm{mmol})$, $\mathrm{dppf}(14 \mathrm{mg}$, $0.025 \mathrm{mmol})$ and THF (1 mL). Then the solution of ethyl 4 [(1R)-(2-iodocyclohex-2-en-1-yl) benzoate ($5 \mathbf{c}$) ($0.178 \mathrm{mg}, 0.5 \mathrm{mmol}, 95 \% \mathrm{ee}$) in THF (2 mL) was added dropwise followed by addition of freshly prepared butylzinc iodide ($1.4 \mathrm{M} / \mathrm{THF}, 1.5 \mathrm{~mL}$). The reaction mixture was refluxed at $80^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ sol. (20 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 20 \mathrm{~mL})$. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvents and purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/diethyl ether $\left.=100: 2\right)$ afforded $99 \mathrm{mg}(69 \%$ yield $)$ of $\mathbf{6 c}$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{20}-74.08^{\circ}\left(\mathrm{c} 1.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.92-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 5.66-5.62(\mathrm{~m}, 1 \mathrm{H})$, $4.29(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.36-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.00$ (m, 12H), $0.74(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=165.7,150.2,137.0,128.4,127.5,127.2,123.0,59.7,43.1$, 34.6, 31.7, 28.9, 24.4, 21.4, 17.8, 13.4, 13.0.

IR (film): 2930 (m), 1720 (s), 1609 (m), 1276 (s), 1177 (m), 1102 (s), 1023 (m).
MS (EI, 70 ev), m / z (\%): $286\left[\mathrm{M}^{+}\right]$, (100), 241 (34), 229 (91), 216 (24), 215 (24), 201 (12), 171
(39), 157 (31), 141 (32), 129 (60), 115 (28), 91 (24), 77 (14).

HRMS (EI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}$: 286.1933, found: 286.1915 .

Ethyl 4-[(1R,2E)-1-methylhept-2-en-1-yl]benzoate (8):

A dry and argon flushed 15 mL flask, equipped with a magnetic stirrer and a septum, was charged with a solution of $\mathrm{Nphyl}_{2} \mathrm{CuLi}$ ($1.2 \mathrm{mmol}, 1.2$ equiv). Ethyl 4-iodobenzoate (331 mg , $1.2 \mathrm{mmol}, 1.2$ equiv) was added at $-78^{\circ} \mathrm{C}$. The resulting mixture was immediately warmed to $0{ }^{\circ} \mathrm{C}$ and kept stirring for 30 min . Then the reaction was cooled to $-78^{\circ} \mathrm{C}$ and the solution of ZnBr_{2} in THF ($1.5 \mathrm{M}, 0.8 \mathrm{~mL}, 1.2 \mathrm{mmol}$) was added at this temperature. After 10 min , the solution of $7(320 \mathrm{mg}, 1.0 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ was added at $-40^{\circ} \mathrm{C}$. The mixture was allowed to warm to rt overnight. The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and poured into water (25 mL). The aqueous phase was extracted with diethyl ether $(3 \times 30 \mathrm{~mL})$. The organic fractions were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, n\right.$-pentane/diethyl ether $=$ 80:1) yielded 220 mg (85% yield) of $\mathbf{8}$ as a colorless oil

HPLC (column B, heptane : $i \mathrm{PrOH}=99: 1,0.2 \mathrm{ml} / \mathrm{min}$): $t_{R} / \mathrm{min}=21.87$ (major), 23.86 (minor); 95\% ee.
$[\alpha]_{\mathrm{D}}{ }^{20}-35.4\left(\mathrm{c} 1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MH}_{\mathrm{z}}\right): \delta=7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.48-5.41$ $(\mathrm{m}, 2 \mathrm{H}), 4.29(\mathrm{q}, J=7.07 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.22(\mathrm{~m} \mathrm{10H}), 0.80(\mathrm{t}, J$ $=7.07,3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MH}_{\mathrm{Z}}\right): \delta=167.1,152.3,134.4,130.5,130.1,128.6,127.5,61.1,42.7$, 32.6, 32.0, 22.6, 21.7, 14.7, 14.1.

IR (film): 3409 (s), 2959 (s), 2932 (s), 1718 (vs), 1608 (w), 1465 (w), 1408 (w), 1367 (m), 1276 (vs), 1181 (m), 1107 (vs), 1019 (m), 856 (w), 771 (m), 707 (w).
MS (EI, 70 ev), m / z (\%): 260 (66) [M $\left.{ }^{+}\right], 245$ (9), 231 (12), 215 (50), 190 (91), 175 (20), 162 (41), 145 (66), 131 (100), 117 (41), 105 (12), 91 (15), 77 (7).

HRMS (EI): calcd. For $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]: 260.1776$, found 260.1763.

Appendix:

Determination of the enantiomer excess by chiral GC and chiral HPLC

(R)-2-Iodo-2-cyclopenten-1-yl acetate (4a)
$\mathrm{GC}\left(40^{\circ} \mathrm{C}(2 \mathrm{~min})\right.$, ramp of $20^{\circ} \mathrm{C} / \mathrm{min}$ to $150^{\circ} \mathrm{C}(45 \mathrm{~min})$; TFA gamma-cyclodextrin, 30.0 m x 0.25 mm$): t_{R} / \min 8.7(R), 9.6(S) ; 96.5 \% e e$.

a) racemic

b)chiral

(R)-2-Iodo-2-cyclohexen-1-yl ethyl acetate (4b)
$\mathrm{GC}\left(40^{\circ} \mathrm{C}(2 \mathrm{~min})\right.$, ramp of $20^{\circ} \mathrm{C} / \mathrm{min}$ to $150^{\circ} \mathrm{C}(45 \mathrm{~min})$; TFA gamma-cyclodextrin, 30.0 m $\mathrm{x} 0.25 \mathrm{~mm}): t_{R} / \mathrm{min} 8.7(R), 9.6(S) ; 98 \% \mathrm{ee}$.

a): racemic

b)chiral

4-[(1R)-(2-Iodo-2-cyclopenten-1-yl)] phenyl methyl ether (5a)
GC ($150{ }^{\circ} \mathrm{C}(100 \mathrm{~min})$); TFA gamma-cyclodextrin, 30.0 mx 0.25 mm$)$: $t_{R} / \min 18.3(R), 18.9$ (S); 96% ee.

a) racemic

b) chiral

Ethyl 4-[(1R)-(2-iodo-2-cyclopenten-1-yl)] benzoate (5b):
GC $\left(150{ }^{\circ} \mathrm{C}(100 \mathrm{~min})\right)$; TFA gamma-cyclodextrin, 30.0 m x 0.25 mm$): t_{R} / \mathrm{min} 81.5(R), 85.2$ (S); $92 \% e e$.

a) racemic

b) chiral

Ethyl 4-[(1R)-2-iodocyclohex-2-en-1-yl]beozoate (5c):
HPLC (Chiralcel AD, $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$; heptane : $i \operatorname{PrOH}=99: 1,0.5 \mathrm{ml} / \mathrm{min}$): $t_{R} / \mathrm{min}=18.3$ (S), 19.8 (R); 98 \% ee.

a): racemic

b) chiral

4-[(1R)-2-Iodocyclohex-2-en-1-yl]benzonitrile (5d):
GC ($130^{\circ} \mathrm{C}(100 \mathrm{~min})$); TFA gamma-cyclodextrin, 30.0 mx 0.25 mm$): t_{R} / \min 33.7(R), 34.9$ (R); $96 \% \mathrm{ee}$.

a) racemic

b) chiral

1-[(1R)-2-Iodocyclohex-2-en-1-yl]-4-(trifluoromethyl)benzene (5e):
$\mathrm{GC}\left(130{ }^{\circ} \mathrm{C}(100 \mathrm{~min})\right)$; TFA gamma-cyclodextrin, 30.0 mx 0.25 mm$): t_{R} / \min 24.6(S), 26.0$ (R); 94 \%ee.

a) racemic

b) chiral

1-Iodo-4-[(1R)-2-iodocyclohex-2-en-1-yl]benzene (5f):
$\mathrm{GC}\left(150{ }^{\circ} \mathrm{C}(100 \mathrm{~min})\right)$; TFA gamma-cyclodextrin, 30.0 mx 0.25 mm$): t R / \mathrm{min} 78.7(R), 82.2$ (S); 97% ee.

a) racemic

b) chiral

1-Bromo-4-[(1R)-2-iodocyclohex-2-en-1-yl]benzene (5g):
GC ($130^{\circ} \mathrm{C}(100 \mathrm{~min})$); TFA gamma-cyclodextrin, 30.0 m x 0.25 mm$)$: $t_{R} / \mathrm{min} 123.7(S)$, 133.6 (R); 96 \% ee.

a) racemic

b) chiral

1-[(1R)-2-Iodocyclohex-2-en-1-yl]-4-methoxybenzene (5h):

GC ($130{ }^{\circ} \mathrm{C}(100 \mathrm{~min})$); TFA gamma-cyclodextrin, $\left.30.0 \mathrm{~m} \times 0.25 \mathrm{~mm}\right): t_{R} / \mathrm{min} 83.3(S), 87.8$ (R); 95% ee.

a) racemic

b) chiral

1-\{4-[(1R)-2-Iodocyclohex-2-en-1-yl]phenyl\}ethanone (5i):
HPLC (Chiralcel AD, $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$; heptane : $i \operatorname{PrOH}=99: 1,0.4 \mathrm{ml} / \mathrm{min}$): $t_{R} / \mathrm{min}=37.4$
(S), $43.3(R) ; 89 \%$ ee.

a) racemic

b) chiral

1-[(1R)-2-Iiodocyclohex-2-en-1-yl]-3-methoxybenzene (5j):
HPLC (Chiralcel OD-H, $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$; heptane : $i \operatorname{PrOH}=99: 1,0.2 \mathrm{ml} / \mathrm{min}$): $t_{R} / \mathrm{min}=31.5$ (S), 38.1 (R); 92 \% ee.

a) racemic

b) chiral

Ethyl 4-[(1R,2E)-1-methylhept-2-en-1-yl]benzoate (8):
HPLC (OD, $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$; heptane : $i \operatorname{PrOH}=99: 1,0.2 \mathrm{ml} / \mathrm{min}$): $t_{R} / \mathrm{min}=21.8(R)$, 23.8 (S); 95 \% ee.

a) racemic

b) chiral

Reference:
[1] Demay, S.; Harms, K.; Knochel, P. Tetrahedron Lett. 1999, 40, 4981.
[2] Harrington-Frost, N.; Leuser, H.; Calaza, M. I.; Knochel, P. Org. Lett. 2003, 5, 2111.
[3] Lin, H.-S.; Paquette, L. A. Synth. Commun. 1994, 24, 2503.
[4] (a) Cano, A.; Cuenca, T.; Galakov, M.; Rodríguez, G. M.; Royo, P.; Cardin, C. J.;
Convery, M. A. J. Organomet. Chem. 1995, 493, 17. (b) Negishi, E.; Swanson, D. R.;
Rousset, C. J. J. Org. Chem. 1990, 55, 5406.
[5] Zhdanov, R. I.; Zhenodarova, S. M. synthesis, 1975, 222.

$$
\underset{\sim}{\pi}
$$

$$
\underset{\sim}{ \pm}
$$

$$
\approx
$$

$$
\hat{\lambda}
$$

$$
\underset{\sim}{\infty}
$$

$$
\stackrel{\infty}{\sim}
$$

ते

$$
\underset{0}{0} \gg \underset{i}{\sim}
$$

$\underbrace{\mathrm{AcO}}_{4 c}$

$$
32
$$

$$
33
$$

$$
34
$$

$$
35
$$

$$
37
$$

$$
38
$$

$$
39
$$

$$
40
$$

$$
41
$$

$$
42
$$

$$
43
$$

44

$$
45
$$

46

46

$$
47
$$

$$
\underset{+}{\infty}
$$

Я

$$
50
$$

$$
\approx
$$

$$
53
$$

$$
\underset{\sim}{4}
$$

$$
\stackrel{\rightharpoonup}{n}
$$

$$
56
$$

in

$$
\infty
$$

in

$$
60
$$

61

તુ

8

$\stackrel{\text { ®in }}{\circ}$

$$
66
$$

$$
67
$$

$$
68
$$

앙

$$
70
$$

$$
72
$$

-
-
-
-
-8
-
-
-
-
-
-
-
$-\curvearrowleft$
-
-
-
-
-8
- §
-

$$
73
$$

さ

$$
75
$$

