Cyanide-Catalyzed Cyclizations via Aldimine Coupling

B. Jesse E. Reich, Aaron K. Justice, Brittany T. Beckstead, Joseph H. Reibenspies, and Stephen A. Miller*
Department of Chemistry, Texas A\&M University
College Station, TX 77843-3255

Supporting Information

Supporting Information Available: Experimental procedures and compound characterization data, including X-ray crystallographic data for 5,6-di-(2-hydroxyphenyl)-2,3-dihydropyrazine and 2,3-di-(2-hydroxyphenyl)-quinoxaline.

Table of Contents

General Considerations and Instrumentation S2
Preparation of Dialdimine Substrates S2
Cyanide-catalyzed Cyclizations and Oligomerizations S3
Substrate and Product Summary S6
NMR Analysis of Turnover Numbers S7
${ }^{1}$ H NMR Spectra S9
X-Ray Structure Data for 5,6-di-(2-hydroxyphenyl)-2,3-dihydropyrazine S15
X-Ray Structure Data for 2,3-di-(2-hydroxyphenyl)-quinoxaline S18

General Considerations and Instrumentation. Granular sodium cyanide was used as received from Mallinckrodt. X-ray crystallographic data were obtained on a Bruker SMART 1000 three-circle diffractometer operating at 50 kV and 40 mA , Mo K α ($\lambda=0.71073 \AA$) with a graphite monochromator and a CCD-PXLKAF2 detector.

Preparation of Dialdimine Substrates. Three general procedures were utilized to synthesize the symmetrical dialdimine substrates, all of which are known compounds (See the following Substrate and Product Summary.).

Method A. 200 mmol of an aldehyde were dissolved in 80200 mL of water. To this, 100 mmol of liquid diamine were added and the reaction was shaken for 16 hours. In the case of solid formation, the solid was isolated by filtration, washed with $200-300 \mathrm{~mL}$ of water, washed with 100 mL of hexanes, and dried in vacuo. All yields were greater than 90% and often analytically pure (small concentrations of starting aldehyde could be detected in some products). In the case of a liquid product, a dichloromethane/water extraction was performed. The organic layer was dried over magnesium sulfate and filtered. The dichloromethane was removed by rotary evaporation and the resulting solid was dried in vacuo to provide an analytically pure solid in greater than 90% yield.

Method B. 200 mmol of an aldehyde were dissolved in 80-200 mL of methanol. To this, 100 mmol of liquid diamine were added and the reaction was shaken for 16 hours. In the case of solid formation, the solid was isolated by filtration, washed with 100200 mL of alcohol, and dried in vacuo. All yields were greater than 90% and often analytically pure (small concentrations of starting aldehyde could be detected in some products). In the case of a liquid product, the solvent was removed in vacuo and a dichloromethane/water extraction was performed. The organic layer was dried over magnesium sulfate and filtered. The dichloromethane was removed by rotary evaporation and the resulting solid was dried in vacuo to provide an analytically pure solid in greater than 90% yield.

Method C. 200 mmol of an aldehyde, 100 mmol of a diamine, $0.10 \mathrm{~g}(0.52 \mathrm{mmol})$ of p-toluenesulfonic acid, and 300 mL of toluene were combined. A Dean-Stark trap and a condenser were attached to the flask and the reaction was heated and stirred at reflux. When the expected 3.6 mL of water were isolated, the toluene was removed by rotary evaporation and the resulting solid was triturated in 200 mL of hexanes. The solid was isolated by filtration and dried in vacuo to provide the product in greater than 90\% yield.
N, N^{\prime}-bis(salicylidene)-ethane-1,2-diamine (salen). Method A.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-1.81(\mathrm{~s}, 2 \mathrm{H}) 3.97(\mathrm{~s}, 4 \mathrm{H}) 6.87\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $7.4 \mathrm{~Hz}), 6.95\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.0\right), 7.24\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{JH}_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right), 7.31$ $\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right), 8.37(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 60.0,117.2,118.83,118.88,131.7,132.6,161.2,166.7$. MS (ESI) $m / z=269[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}(268.31)$.
N, N^{\prime}-bis(salicylidene)-o-phenylenediamine (salophen) Method B.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-1.90(\mathrm{~s}, 2 \mathrm{H}), 6.94\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right)$, $7.07\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}$, 4H), 8.64 (s, 2H). ${ }^{13} \mathrm{C}$ NMR: $\delta 117.6,119.1,119.4,119.8,127.9$, 132.5, 133.5, 142.6, 161.5, 163.8. MS (ESI) $m / z=317[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ (316.35).
(+/-)-N, N^{\prime}-bis(salicylidene)-trans-1,2-diaminocyclohexane. Method A.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-1.6(\mathrm{~s}, 2 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H})$, $1.88(\mathrm{~m}, 4 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 6.82\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 6.95(\mathrm{~d}$, $\left.2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.4\right), 7.18\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.8\right), 7.27(\mathrm{~m}, 2 \mathrm{H}), 8.28(\mathrm{~s}$, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.4,33.3,72.8,117.1,118.3,118.8$, 131.8, 132.5, 161.3, 165.0. MS (ESI) $m / z=323[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ (322.40).
$\boldsymbol{N}, \boldsymbol{N}$ '-bis(\boldsymbol{o}-vanillidene)-o-phenylenediamine. Method B.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-1.8(\mathrm{~s}, 2 \mathrm{H}), 3.88,(\mathrm{~s}, 6 \mathrm{H}$, methyl- H), $6.85(\mathrm{t}$, $\left.2 \mathrm{H},{ }^{3} \mathrm{JH}_{\mathrm{H}}=7.8 \mathrm{~Hz}\right) 6.99(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 8.60$ $(\mathrm{s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 56.3,115.2,118.7,119.3,120.4$, 124.1, 127.8, 142.6, 148.7, 151.7, 164.4. MS (ESI) $\mathrm{m} / \mathrm{z}=377$ $[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ (376.41).
(+/-)-N, N^{\prime}-bis (\boldsymbol{o}-vanillidene)-trans-1,2-diaminocyclohexane. Method B.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-1.16(\mathrm{~s}, 2 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H})$, $1.90(\mathrm{~m}, 4 \mathrm{H}), 3.31(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 6.71\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{JH}_{\mathrm{HH}}=7.5\right)$, $6.78\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right), 6.85\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right), 8.24(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 24.2,33.1,56.1,72.5,113.9,118.0$, 118.5, 123.3, 148.4, 151.7, 164.9. MS (ESI) $m / z=383[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ (382.45).
N-(salicylidene)- N^{\prime}-(o-vanillidene)- o-phenylenediamine.

$4.32 \mathrm{~g}(40 \mathrm{mmol})$ of o-phenylene diamine were dissolved into 400 ml of pure ethanol and cooled to $0^{\circ} \mathrm{C}$ in an ice water bath. An addition funnel containing 4.88 g (40 mmol) of salicylaldehyde dissolved in 200 ml of ethanol was attached and the dropwise addition was performed over five hours. When the addition was complete the vessel was allowed to stir and warm for one hour. The addition funnel was removed and the solution filtered. To the filtrate $6.09 \mathrm{~g}(40 \mathrm{mmol})$ of o-vanillin was added and the mixture was shaken overnight. The flask was then heated to reflux and triturated for twenty minutes to yield a first crop of 5.73 grams of bright burnt-orange powder by filtration. The filtrate was cooled to $0^{\circ} \mathrm{C}$ and filtration yielded 5.36 g of orange-red crystals as the
second crop. Yield for both crops: 80.0%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $-2.08(\mathrm{~s}, 0.9 \mathrm{H}),-1.97(\mathrm{~s}, 0.1 \mathrm{H}),-1.85(\mathrm{~s}, 0.1 \mathrm{H}) .-1.77(\mathrm{~s}, 0.9 \mathrm{H})$, $3.88(\mathrm{~s}, 0.3 \mathrm{H}), 3.89(\mathrm{~s}, 2.7 \mathrm{H}), 6.93(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}), 7.34$ $(\mathrm{m}, 4 \mathrm{H}), 8.628(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 56.36,115.2$, 117.8, 118.7, 119.1, 119.4, 120.0, 120.2, 120.5, 120.6, 124.1, 127.8, 127.9, 132.6, 133.6, 142.7, 148.8, 151.8, 161.6, 164.2, 164.4. MS (ESI) $m / z=347[\mathrm{M}+\mathrm{H}]^{+} 369[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$ (346.38).
N, N '-bis(benzylidene)-p-phenylenediamine. Method C.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.31(\mathrm{~s}, 4 \mathrm{H}), 7.49(\mathrm{~m}, 6 \mathrm{H}), 7.94(\mathrm{~m}, 4 \mathrm{H})$, $8.54(\mathrm{~s}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 122.2,129.1,129.1,131.7$, 136.5, 150.2, 160.0. MS (ESI) $m / z=285[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2}$ (284.35).

Cyanide-catalyzed Cyclizations and Oligomerizations. Eight cyclized products were characterized by X-ray crystallography; thermal ellipsoid diagrams (with 50% probability) and crystallographic summaries are included. Complete crystallographic data, where absent, will be reported elsewhere.

5,6-di-(2-hydroxyphenyl)-2,3-dihydropyrazine.

A flask was a charged with $12.72 \mathrm{~g}(47.4 \mathrm{mmol})$ of $N, N^{\prime}-$ bis(salicylidene)-ethane-1,2-diamine, 2.00 g of NaCN (40.8 mmol) and 100 mL of N, N-dimethylformamide. This was allowed to stir for 120 hours and then poured into an ice water bath. The resulting orange solid was isolated by filtration, dissolved into hot ethyl acetate, and filtered. Slow evaporation of the ethyl acetate solution provided 6.112 grams (48.1%) of orange-red crystal blocks ($2 \mathrm{~mm} \times 2 \mathrm{~mm} \times 2 \mathrm{~mm}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-1.87(\mathrm{~s}, 2 \mathrm{H}) 3.70($ broad s, 4 H$), 6.64\left(\mathrm{t} 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=\right.$ 7.7), $7.04(\mathrm{~m}, 4 \mathrm{H}), 7.29\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{JH}_{\mathrm{HH}}=9.0\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 44.7, 117.96, 118.04, 118.3, 131.3, 132.8, 161.0, 162.4. MS (ESI) $m / z=267[M+H]^{+} . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ (266.29). X-ray crystallography (SM08):

Orange-red blocks were grown by slow evaporation of an ethyl acetate solution. Crystal data: triclinic, $P-1, a=5.8600(7) \AA, b=$ 8.4944(10) $\AA, c=13.4511(17) \AA, \alpha=101.721(2)^{\circ}, \beta=$ $98.011(2)^{\circ}, \gamma=99.562(2)^{\circ}, V=636.01(13) \AA^{3}, Z=2, T=110(2)$ $\mathrm{K}, \mathrm{R}_{1}\left(\right.$ on $\left.\mathrm{F}_{0}\right)=0.0602, \mathrm{wR}_{2}\left(\right.$ on $\left.\mathrm{F}_{0}{ }^{2}\right)=0.1569, \mathrm{GOF}=1.089$ for 184 parameters and 2189 unique data.

2,3-di-(2-hydroxyphenyl)-quinoxaline.

A flask was charged with $8.00 \mathrm{~g}(25.3 \mathrm{mmol})$ of N, N^{\prime} -bis(salicylidene)-o-phenylenediamine, $0.496 \mathrm{~g}(10.1 \mathrm{mmol})$ of NaCN and 110 mL of N, N-dimethylformamide. This was allowed to stir for 48 hours and then poured into ice water. The resulting yellow solid was isolated by filtration, dissolved in dichloromethane, and dried over magnesium sulfate. Filtration and in vacuo drying provided $7.00 \mathrm{~g}(87.5 \%)$ of a yellow powder. The product can be recrystallized from acetone, toluene or ethyl acetate. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.69(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~m}$, $4 \mathrm{H}), 7.80(\mathrm{~m}, 2 \mathrm{H}), 8.05(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 118.6$, 119.3, 120.7, 127.9, 131.0, 131.8, 132.2, 137.9, 151.7, 157.0. MS (ESI) $m / z=315[\mathrm{M}+\mathrm{H}]^{+} . \quad \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ (314.34). X-ray crystallography (SM12):

Yellow plates were grown by slow evaporation of an acetone solution. Crystal data: triclinic, $P-1, a=5.9430(9) \AA, b=$ 8.6856(13) $\AA, c=14.988(2) \AA, \alpha=74.255(2)^{\circ}, \beta=81.050(2)^{\circ}, \gamma$ $=83.614(2)^{\circ}, V=733.64(19) \AA^{3}, Z=2, T=110(2) \mathrm{K}, \mathrm{R}_{1}\left(\right.$ on $\left.\mathrm{F}_{0}\right)$ $=0.0572, \mathrm{wR}_{2}\left(\right.$ on $\left.\mathrm{F}_{0}{ }^{2}\right)=0.1430, \mathrm{GOF}=1.091$ for 225 parameters and 2472 unique data.
(+/-)-2,3-di-(2-hydroxyphenyl)-trans-4a,5,6,7,8,8a-

hexahydroquinoxaline.

A flask was charged with $1.60(4.99 \mathrm{mmol})$ grams of $(+/-)-N, N^{\prime}-$ bis(salicylidene)-trans-1,2-diaminocyclohexane, 0.245 g (5.00 $\mathrm{mmol})$ of $\mathrm{NaCN}, 15 \mathrm{~mL}$ of methanol, and the vessel was heated to reflux. Heat was removed after 24 hours, and the solvent was removed by rotary evaporation. The resulting solid was washed with dichloromethane and the washings were combined, gravity filtered, and then dried in vacuo to provide 0.94 g (58.8%) of a red powder. Single crystals suitable for single crystal X-Ray diffraction can be grown by slow evaporation from dichloromethane. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-1.68(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H})$, $1.62(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{t}$, $\left.2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}\right), 7.05\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}\right), 7.29,\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}\right.$ $=8.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.1,32.8,58.7,117.8,118.0$, 118.3, 131.3, 132.7, 161.1, 161.6. MS (ESI) $m / z=321[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ (320.39). X-ray crystallography (SM09):

Orange-red blocks were grown by slow evaporation of a dichloromethane solution. Crystal data: monoclinic, $P n, \mathrm{a}=$ 8.375(4) $\AA, b=6.257(3) \AA, c=15.609(8) \AA, \alpha=90^{\circ} . \beta=$ $100.709(9)^{\circ}, \gamma=90^{\circ} . \quad V=803.7(7) \AA^{3}, Z=2, T=110(2) \mathrm{K}, \mathrm{R}_{1}$ $\left(\right.$ on $\left.\mathrm{F}_{0}\right)=0.0801, \mathrm{wR}_{2}\left(\mathrm{on}_{0}{ }^{2}\right)=0.1201, \mathrm{GOF}=1.040$ for 217 parameters and 2658 unique data.

2,3-di-(2-furyl)-quinoxaline.

A flask was charged with 1.92 g (20.0 mmol) of 2-furaldehyde, $1.08 \mathrm{~g}(10.0 \mathrm{mmol})$ of o-phenylenediamine, and 50 mL of $N, N-$ dimethylformamide. The solution was allowed to stir for 24 hours at which point $0.50 \mathrm{~g}(10 \mathrm{mmol})$ of sodium cyanide were added and the solution was allowed to stir for an additional 48 hours. The solution was poured into an ice water bath and the solid was collected by filtration. The solid was dissolved in dichloromethane, dried over magnesium sulfate, and filtered; solvent from the filtrate was removed by rotary evaporation. The resulting solid was dried in vacuo and then recrystallized from methanol, providing $1.38 \mathrm{~g}(52.8 \%)$ of tan needles. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.57(\mathrm{~m}, 2 \mathrm{H}), 6.67\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right), 7.64(\mathrm{~d}, 2 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{HH}}=3.3 \mathrm{~Hz}\right), 7.76(\mathrm{~m}, 2 \mathrm{H}), 8.15(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 112.1, 113.2, 129.3, 130.6, 140.8, 142.9, 144.5, 151.9. MS (ESI) $m / z=263[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ (262.23). X-ray crystallography (SMN):

Tan needles were grown by slow evaporation of a methanol solution. Crystal data: orthorhombic, $\operatorname{Pna2_{1}}, \mathrm{a}=15623(2) \AA, \mathrm{b}=$ $\left.16.870(2) \AA, c=4.6291(6) \AA, \alpha=90^{\circ}, \beta=90\right)^{\circ}, \gamma=90^{\circ} . \quad V=$ $1220.0(3) \AA^{3}, Z=4, T=110(2) \mathrm{K}, \mathrm{R}_{1}\left(\right.$ on $\left.\mathrm{F}_{0}\right)=0.0545, \mathrm{wR}_{2}($ on $\left.\mathrm{F}_{0}{ }^{2}\right)=0.1258, \mathrm{GOF}=1.007$ for 181 parameters and 2358 unique data.
(+/-)-2,3-di-(2-furyl)-trans-4a,5,6,7,8,8a-

hexahydroquinoxaline.

A flask was charged with $1.92 \mathrm{~g}(20.0 \mathrm{mmol})$ of 2-furaldehyde, $1.14 \mathrm{~g}(10.0 \mathrm{mmol})$ of (+/-)-trans-1,2-diaminocyclohexane, and 50 mL of N, N-dimethylformamide. The solution was allowed to stir for 24 hours at which point $0.50 \mathrm{~g}(10 \mathrm{mmol})$ of sodium cyanide were added and the solution was allowed to stir for an additional 48 hours. The solution was poured into an ice water bath and the solid was collected by suction filtration. The solid was dissolved in dichloromethane, dried over magnesium sulfate, and filtered; solvent from the filtrate was removed by rotary
evaporation. The resulting solid was dried in vacuo and then recrystallized from methanol, providing $0.72 \mathrm{~g}(26.8 \%)$ of dark green plates. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.41(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H})$, $1.86(\mathrm{~m}, 2 \mathrm{H}), 2.49\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}\right) 2.76(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~m}$, $2 \mathrm{H}), 6.48\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=3.6 \mathrm{H}\right), 7.50\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=2.1 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.5,33.6,58.8,111.5,114.7,144.7,148.9$, 150.3. MS (ESI) $m / z=269[M+H]^{+} . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ (268.31). X-ray crystallography (SM20):

Green plates were grown by slow evaporation of a methanol solution. Crystal data: monoclinic, $C 2 k$, $\mathrm{a}=14.140(7) \AA, \mathrm{b}=$ $10.157(5) \AA, c=9.583(5) \AA, \alpha=90^{\circ} . \beta=94.221(9)^{\circ}, \gamma=90^{\circ} . V$ $=1372.7(12) \AA^{3}, Z=4, T=273(2) \mathrm{K}, \mathrm{R}_{1}\left(\right.$ on $\left.\mathrm{F}_{0}\right)=0.0555, \mathrm{wR}_{2}$ $\left(\right.$ on $\left.\mathrm{F}_{0}{ }^{2}\right)=0.1302$, GOF $=1.064$ for 91 parameters and 991 unique data.

2,3-di-(2-hydroxy-3-methoxyphenyl)-quinoxaline.

In a flask $3.76 \mathrm{~g}(10.0 \mathrm{mmol})$ of N, N^{\prime}-bis $(o$-vanillidene $)-o-$ phenylenediamine and $0.50 \mathrm{~g}(10 \mathrm{mmol})$ of sodium cyanide were dissolved in 50 mL of N, N-dimethylformamide. The solution was warmed to $60^{\circ} \mathrm{C}$ and allowed to stir for 120 hours. The solution was poured into an ice water bath. The solid was isolated by filtration, dissolved in dichloromethane, dried over magnesium sulfate, and filtered; solvent from the filtrate was removed by rotary evaporation. The resulting tan solid was dried in vacuo and recrystallized from methanol to provide $2.40 \mathrm{~g}(64.9 \%)$ of \tan needles. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.92$, $(\mathrm{s}, 6 \mathrm{H}), 6.71\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{JH}_{\mathrm{H}}=\right.$ $8.0 \mathrm{~Hz}), 6.92(\mathrm{~m}, 4 \mathrm{H}), 7.8(\mathrm{~m}, 2 \mathrm{H}), 8.05(\mathrm{~m}, 2 \mathrm{H}), 9.99($ broad s, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 56.3,112.8,119.0,122.5,122.9$, 128.3, 130.7, 138.8, 146.5, 148.5, 152.0. MS (ESI) $m / z=375$ $[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ (374.39). X-ray crystallography (SM13):

Tan needles were grown by slow evaporation of a methanol solution. Crystal data: monoclinic, $P 2_{1} / n, \mathrm{a}=14.0608(14) \AA, \mathrm{b}=$ 8.0440(8) $\AA, \mathrm{c}=15.6788(16) \AA, \alpha=90^{\circ} . \beta=102.031(2)^{\circ}, \gamma=$ $90^{\circ}, V=1734.4(3) \AA^{3}, Z=4, T=110(2) \mathrm{K}, \mathrm{R}_{1}\left(\right.$ on $\left.\mathrm{F}_{0}\right)=0.0537$,
$\mathrm{wR}_{2}\left(\mathrm{on} \mathrm{F}_{0}{ }^{2}\right)=0.1344, \mathrm{GOF}=1.002$ for 262 parameters and 4143 unique data.
(+/-)-2,3-di-(2-hydroxy-3-methoxyphenyl)-trans-
4a,5,6,7,8,8a-hexahydroquinoxaline.

In a flask $3.82 \mathrm{~g}(10.0 \mathrm{mmol})$ of ($+/-$)- N, N^{\prime}-bis(o-vanillidene)-trans-1,2-diaminocyclohexane and $0.50 \mathrm{~g}(10 \mathrm{mmol})$ of sodium cyanide were dissolved in 50 mL of methanol. The solution was heated to reflux and allowed to stir for 48 hours. Heat was removed and methanol was removed by rotary evaporation. 50 mL of water and 50 mL of dichloromethane were added to the flask. The contents were poured into a separatory funnel and the organic layer was removed. The remaining aqueous layer was washed with dichloromethane and all of the organic extracts were combined, washed with water, and dried over magnesium sulfate. This was filtered and the solvent was removed from the filtrate by rotary evaporation. The resulting orange-red solid was dried in vacuo: $1.56 \mathrm{~g}(41.1 \%)$. Single crystals can be grown from methanol, ethanol, or ethyl acetate. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-1.32$ (broad s, 2H), $1.42(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~d}$, $\left.2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=13.6 \mathrm{~Hz}\right), 2.95(\mathrm{~m}, 2 \mathrm{H}), 3.9(\mathrm{~s}, 6 \mathrm{H}), 6.58\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=\right.$ $8.1 \mathrm{~Hz}), 6.66\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right), 6.89\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.0,32.7,56.3,58.6,113.9,117.2,117.8$, $122.9,149.1,151.9$, $161.8 \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}=381[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ (380.44). X-ray crystallography (SM27):

Orange needles were grown by slow evaporation of an ethyl acetate solution. Crystal data: monoclinic, $P 2(1), \mathrm{a}=6.817(5) \AA$, $\mathrm{b}=17.352(5) \AA, \mathrm{c}=8.606(5) \AA, \alpha=90.000(5)^{\circ} . \beta=112.182(5)^{\circ}$, $\gamma=90.000(5)^{\circ}, V=942.6(9) \AA^{3}, Z=2, T=110(2) \mathrm{K}, \mathrm{R}_{1}\left(\right.$ on $\left.\mathrm{F}_{0}\right)=$ $0.0801, \mathrm{wR}_{2}\left(\mathrm{on}_{\mathrm{F}}^{0}{ }^{2}\right)=0.1685, \mathrm{GOF}=1.061$ for 257 parameters and 2068 unique data.
(+/-)-2,3-di-(2-hydroxyphenyl)-1,2-dihydroquinoxaline.

A flask was charged with $11.60 \mathrm{~g}(40.8 \mathrm{mmol})$ of $N, N^{\prime}-$ bis(salicylidene)-o-phenylenediamine, $2.00 \mathrm{~g}(40.8 \mathrm{mmol})$ of sodium cyanide, $1.50 \mathrm{~g}(4.06 \mathrm{mmol})$ of tetra- n-butylammonium iodide, 100 mL of dichloromethane, and 100 mL of water. The reaction was refluxed for 64 hours. The solid that formed at the interface of the two phases was isolated by suction filtration and dried in vacuo to yield 6.50 g (56.0%) of product. Single crystals can be grown by slow evaporation of a toluene solution. ${ }^{1} \mathrm{H}$ NMR
(acetone $-d_{6}$): $\delta 0.21(\mathrm{~s}, 1 \mathrm{H}), 2.85$ (broad s, 1 H), 6.11 (broad s, $1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.61-6.78(\mathrm{~m}, 4 \mathrm{H}) 6.91-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.32$ $(\mathrm{m}, 2 \mathrm{H}), 7.47\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}\right){ }^{13} \mathrm{C}$ NMR (acetone- $\left.d_{6}\right): \delta$ 48.0, 115.7, 117.0, 119.0, 119.3, 119.6, 121.2, 126.6, 127.2, 127.8, 129.1, 129.1, 130.3, 130.7, 131.4, 133.8, 138.2, 154.4, 163.0, 163.8. MS (ESI) $m / z=317 \quad[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ (316.35). X-ray crystallography (SM11):

Orange-red blocks were grown by slow evaporation of a hot toluene solution. Crystal data: monoclinic, $P 2_{1} / n, a=9.708(2) \AA$, $\mathrm{b}=15.970(4) \AA, \mathrm{c}=11.254(3) \AA, \alpha=90^{\circ} . \beta=115.496(3)^{\circ}, \gamma=$ $90^{\circ} . V=1574.9(6) \AA^{3}, \quad Z=4, T=110(2) \mathrm{K}, \mathrm{R}_{1}\left(\right.$ on $\left.\mathrm{F}_{0}\right)=0.0557$, $\mathrm{wR}_{2}\left(\mathrm{on} \mathrm{F}_{0}{ }^{2}\right)=0.1015, \mathrm{GOF}=1.056$ for 229 parameters and 3553 unique data.

2-(2-hydroxyphenyl)-3-(2-hydroxy-3-methoxyphenyl)quinoxaline.

A flask was charged with 3.00 g (8.66 mmol) of N-(salicylidene)N^{\prime} '(o-vanillidene)- o-phenylenediamine, $0.43 \mathrm{~g}(8.66 \mathrm{mmol})$ of NaCN , and 50 ml of N, N-dimethylformamide. This was allowed to stir at $70^{\circ} \mathrm{C}$ for 24 hours. The solution was then poured into 200 ml of ice water. The powder was collected by filtration and dried in vacuo to yield 1.96 g of a tan powder (65.8%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 393(\mathrm{~s}, 3 \mathrm{H}), 6.61\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.8\right) 6.82\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}\right.$ $=8.1), 6.93\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.2\right), 7.01\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.8\right), 7.10(\mathrm{~d}$, $\left.1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.1\right), 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{~m}, 2 \mathrm{H}), 8.06(\mathrm{~m}, 2 \mathrm{H}), 8.94$ (bs, 1 H$), 11.95(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 56.4,112.7,118.3$, 119.0, 119.8, 120.6, 123.0, 123.8, 127.8, 128.7, 130.7, 130.8, 131.0, 132.0, 138.0, 139.2, 145.6, 148.4, 151.6, 152.3, 158.2. MS (ESI) $m / z=345[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{21} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$ (344.37).

Oligomerization of N, N '-bis(benzylidene) \boldsymbol{p} phenylenediamine. A flask was charged with $8.53 \mathrm{~g}(30.0$ mmol) of N, N^{\prime}-bis(benzylidene)- p-phenylenediamine, 1.44 g (29.4 mmol) of sodium cyanide, 80 mL of $N, N-$ dimethylformamide, and was heated to $145^{\circ} \mathrm{C}$. The reaction was stirred for two days and then heat was removed. The solution was poured into an ice water bath and the resulting solid was isolated by filtration. The solid was dissolved in 1,2-dichloroethane, heated to reflux, dried over magnesium sulfate, and filtered while hot; solvent from the filtrate was removed by rotary evaporation. The resulting solid was dried in vacuo to yield $3.60 \mathrm{~g}(42.2 \%)$ of a red powder. Integral comparison between aldehydic (2.81) and aromatic (85.43) hydrogens in the ${ }^{1} \mathrm{H}$ NMR spectrum indicates the average degree of polymerization to be 4.34 ($85.43 / 2.81=30.40$. There is a $7: 1$ ratio of aldehydic to aromatic hydrogens in the starting material. $30.40 / 7=4.34$).

Substrate and Product Summary (Structure of all eight symmetrical, monomeric products confirmed by X-ray crystallography.)

Substrate	Substrate Name Lab Notebook\#, CAS\#, Reference			$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{D}} \\ & \frac{\stackrel{\rightharpoonup}{0}}{0} \end{aligned}$			Product	Product Name Lab Notebook\#, CAS\#, Reference	
	N, N '-bis(salicylidene)-ethane-1,2diamine BJR-I-72, [94-93-9], (1)	$\underset{\text { Ni }}{\substack{\text { N }}}$	$\begin{aligned} & \circ 80 \\ & 08 \\ & \infty \\ & \hline 0 \end{aligned}$	\sum_{0}^{I}	$\begin{aligned} & \text { a } \\ & \text { a } \end{aligned}$	$\stackrel{\square}{\sim}$		5,6-di-(2-hydroxyphenyl)-2,3-dihydropyrazine BJR-I-82, no CAS\#	$\frac{o n}{\infty}$
	N, N '-bis(salicylidene)-ophenylenediamine BJR-I-155, [3946-91-6], (2)	$\underset{\infty}{8}$	$\begin{aligned} & \text { oo } \\ & \text { ơ } \\ & \stackrel{\circ}{\circ} \stackrel{\circ}{\circ} \end{aligned}$	\sum_{Δ}^{m}	$\stackrel{\approx}{\infty}$	$\stackrel{\leftarrow}{\sim}$		2,3-di-(2-hydroxyphenyl)-quinoxaline BJR-I-172, [4196-27-4], (10)	$\begin{aligned} & 0.0 \\ & i_{0}^{\prime} \\ & \text { ion } \end{aligned}$
	(+/-)-N,N'-bis(salicylidene)-trans- 1,2-diaminocyclohexane BJR-I-95, (R, R) : [3187-83-5], (S,S): [41013-28-9], (3)	$\underset{-}{8}$			$\stackrel{\approx}{\underset{\sim}{4}}$			(+/-)-2,3-di-(2-hydroxyphenyl)-trans-4a,5,6,7,8,8a-hexahydroquinoxaline BJR-I-157, no CAS\#	
	N, N '-bis(furylidene)- o phenylenediamine [15419-92-8], (4)	$\begin{aligned} & \stackrel{*}{0} \\ & \underset{\sim}{\mathrm{i}} \end{aligned}$	$\begin{aligned} & \text { ồ } \\ & \text { on } \\ & 00 \end{aligned}$	$\sum_{\Delta}^{\mathrm{L}}$	$\stackrel{\sim}{\infty}$			2,3-di-(2-furyl)-quinoxaline AKJ-I-132, [57490-73-0], (11)	
	(+/-)-N,N'-bis(furylidene)-trans- 1,2-diaminocyclohexane [143283-95-8], (5)	$\begin{aligned} & \text { * } \\ & \stackrel{\circ}{\circ} \\ & i \end{aligned}$	$\begin{aligned} & \text { ồ on } \\ & \text { on } \\ & 0 \end{aligned}$	\sum_{Δ}^{N}	$\stackrel{\approx}{\infty}$	$\stackrel{\text { ® }}{\sim}$		(+/-)-2,3-di-(2-furyl)-trans-4a,5,6,7,8,8a- hexahydroquinoxaline AKJ-I-138, (R, R) : [171029-70-2], (S,S): [171029-71-3], (12)	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \text { Ni } \end{aligned}$
	N, N^{\prime}-bis(o-vanillidene)-ophenylenediamine AKJ-I-75, [10319-00-3], (6)	$\underset{\sim}{\infty}$	$\begin{aligned} & \text { on } \\ & \text { on } \\ & 0 \end{aligned}$	\sum_{Δ}^{m}	$\begin{aligned} & \text { a } \\ & \underset{\sim}{2} \end{aligned}$	\bigcirc		2,3-di-(2-hydroxy-3-methoxyphenyl)quinoxaline AKJ-I-83, no CAS\#	
	($+/-$)- N, N ' ${ }^{\prime}$-bis (o-vanillidene)- trans-1,2-diaminocyclohexane BJR-I-98, (R, R) : [431878-13-6] (S, S): [177898-70-3], (7)	$\stackrel{\underset{\infty}{\infty}}{\stackrel{\sim}{\sim}}$	$\begin{aligned} & \text { ồ } \\ & 000 \\ & 00 \end{aligned}$		$\stackrel{\approx}{\infty}$	令 ¢ in		(+/-)-2,3-di-(2-hydroxy-3-methoxyphenyl)-trans-4a,5,6,7,8,8a-hexahydroquinoxaline AKJ-I-100, no CAS\#	
	N, N '-bis(salicylidene)-ophenylenediamine BJR-I-155, [3946-91-6], (2)	$\begin{aligned} & \stackrel{8}{Ð} \\ & = \end{aligned}$		O	$\frac{\pi}{d}$			(+/-)-2,3-di-(2-hydroxyphenyl)-1,2dihydroquinoxaline BB-I-18, no CAS\#	$\begin{aligned} & \text { of on } \\ & \text { o. } \\ & \text { in } \end{aligned}$
	N-(salicylidene)- N^{\prime}-(o-vanillidene)-o-phenylenediamine BJR-II-114, no CAS\# (8)	$\stackrel{8}{\mathrm{c}}$	ôo	$\sum_{\Delta}^{\mathrm{L}}$	$\stackrel{\pi}{\underset{\sim}{7}}$	\bigcirc		2-(2-hydroxyphenyl)-3-(2-hydroxy-3-methoxyphenyl)-quinoxaline BJR-II-115, no CAS\#	$\begin{aligned} & 0_{0}^{\infty} \\ & \infty \\ & 0.0 \end{aligned}$
Bn	N, N^{\prime}-bis(benzylidene)- p phenylenediamine BJR-I-126, [797-20-6], (9)	$\underset{\infty}{\infty}$		$\sum^{\text {n }}$	$\stackrel{\sim}{\infty}$	in	oligomers $\mathrm{DP}=4.34$	BJR-I-128, no CAS\#	$\begin{aligned} & \text { Nob } \\ & \text { No } \\ & \text { Hi } \end{aligned}$

(*) These two substrates were not isolated prior to cyclization; the substrate masses represent the theoretical yield of in situ formation.
(1) Bresciani, P. N.; Calligaris, M.; Nardin, G.; Randaccio, L. Acta Cryst., Sect. B 1978, B34(4), 1360-1363.
(2) Heagle, E.; Ber. 1892, 26, 2755.
(3) McAllister, R. M.; Weber, J. H. J. Organomet. Chem. 1974, 77(1), 91-105.
(4) Mukhopadhyay, M.; Reddy, M. M.; Maikap, G. C.; Iqbal, J. J. Org. Chem. 1995, 60, 2670-2676.
(5) Weers, J. J.; O'Brien, T. J.; Thomasson, C. E. European Patent 475,641, 1992.
(6) Dey, D. K.; Saha, M. K.; Das, M. K.; Bhartiya, N.; Bansal, R. K.; Rosair, G.; Mitra, S. Polyhedron 1999, 18(20), 2687-2696.
(7) (a) Lin, M.-H.; RajanBabu, T. V. Org. Lett. 2002, 4, 1607-1610. (b) Torayama, H.; Nishide, T.; Asada, H.; Fujiwara, M.; Matsushita, T. Chem. Lett. 1996, 5, 387-388.
(8) This unsymmetrical dialdimine was prepared by modification of a literature procedure: Boghaei, D. M.; Mohebi, S. Tetrahedron 2002, 58(26), 5357-5366
(9) (a) Landenburg, A.; Ber. 1878, 11, 599. (b) Hodgkin, J. H.; Heller, J. Macromolecules 1969, 2, 556-558.
(10) Tanaka, S.; Yokoyama, K.; Takashima, M. Japanese Patent 40,012,294, 1965.
(11) Bost, R. W.; Towell, E. E. J. Am. Chem. Soc. 1948, 70, 903-905.
(12) Jimeno, M. L.; de Paz, J. L. G.; Rodriguez, J.; Rodriguez, M.; Ochoa, C. Anales de Quimica 1994, 90(7-8), 423-431.

NMR Analysis of Turnover Numbers．General Procedure：In a 250 mL round bottom flask， 10.0 mmol of the desired substrate and 1.0 mmol of $\mathrm{NaCN}(0.050 \mathrm{~g}, \mathbf{1 0} \mathbf{~ m o l} \%)$ were dissolved in 50 mL of N, N－dimethylformamide．The reactions were then allowed to stir at room temperature．At the specified times， 2 mL aliquots were removed and placed into a separate flask；solvent was removed by rotary evaporation and high vacuum before the addition of CDCl_{3} and ${ }^{1} \mathrm{H}$ NMR analysis．

Substrate				Product			$\begin{aligned} & \dot{\Xi} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				宕	号
	\simeq	\sim	\bigcirc		$\begin{aligned} & \text { 合 } \\ & \stackrel{1}{1} \\ & \stackrel{y}{4} \end{aligned}$	̇	$\stackrel{8}{8}$	$\stackrel{\circ}{\circ}$	$\underset{\sim}{8}$	$\stackrel{\infty}{\infty}$	$\stackrel{\square}{\circ}$	$\stackrel{\circ}{\circ}$
						N	$\stackrel{\underset{\sigma}{\circ}}{\underset{\sigma}{2}}$	\because	$\stackrel{n}{2}$	$\stackrel{\circ}{\circ}$	\％	๙ू
						I	$\begin{aligned} & \pm \\ & \underset{\infty}{\infty} \\ & \dot{\infty} \end{aligned}$	$⿳ ⿲ 丶 丶 ㇒ 一 八 \circ 亍$	合	$\stackrel{\rightharpoonup}{+}$	$\dot{\infty}$	$\stackrel{\infty}{\circ}$
	∞	\sim	＋			\＃	$\stackrel{\infty}{\underset{亡}{\dot{̇}}}$	$\begin{aligned} & \underset{\infty}{\infty} \\ & \stackrel{\oplus}{2} \end{aligned}$	$\underset{\underset{\sim}{\lambda}}{\underset{\sim}{\lambda}}$	$\underset{\infty}{\infty}$	$\stackrel{\square}{\square}$	势
						$\stackrel{\infty}{+}$	$\underset{\infty}{\underset{\infty}{\sqrt[n]{2}}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{i}} \\ & \hline \end{aligned}$	$\begin{gathered} \text { 寽 } \end{gathered}$	İ	$\stackrel{\infty}{\stackrel{\circ}{\text { ® }}}$	$\stackrel{\infty}{\stackrel{\infty}{m}}$
						저	$\begin{aligned} & \ddagger \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\underset{\infty}{\infty}$	$\stackrel{\circ}{n}$	－	$\stackrel{\sim}{i}$	$\stackrel{2}{i}$
						\pm	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{y}{\circ} \end{aligned}$	$\stackrel{ \pm}{\stackrel{\rightharpoonup}{\circ}}$	$\underset{ \pm}{\prime}$	$\stackrel{\infty}{\infty}$	ल̈	$\stackrel{\sim}{\sim}$
	\bigcirc	\sim	n			\pm	$\underset{\infty}{\underset{\infty}{\mathrm{O}}}$	$\underset{\sim}{\infty}$	$\underset{\sim}{\dot{\sim}}$	$\stackrel{\circ}{\text {－}}$	\bigcirc	$\stackrel{8}{\infty}$
						$\stackrel{\odot}{+}$	$\stackrel{\underset{\infty}{\circ}}{\stackrel{\rightharpoonup}{\infty}}$	$\stackrel{9}{4}$	$\begin{aligned} & 0 \\ & \hline 0 \end{aligned}$	$\underset{\infty}{\infty}$	$\stackrel{\square}{\square}$	$\stackrel{2}{9}$
	\checkmark	\sim	\cdots			$\stackrel{\infty}{+}$		$\stackrel{+}{=}$	\&	$\begin{gathered} \stackrel{+}{\circ} \\ \underset{子}{2} \end{gathered}$	$\stackrel{\square}{i}$	$\stackrel{\square}{i}$
						N		$\underset{\infty}{\circ}$	$\underset{\underset{\sim}{t}}{\underset{\sim}{2}}$	$\stackrel{\infty}{\infty}$	－	$\frac{9}{6}$
						$\stackrel{\circ}{\circ}$	$$	$\stackrel{\text { 찻 }}{ }$	$\stackrel{\text { ¹－}}{\text { ¢ }}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\bigcirc}{\gtrless}$	$\stackrel{\circ}{\circ}$
						정	$\underset{\underset{\sim}{\infty}}{\underset{\sim}{\infty}}$	¢	$\stackrel{3}{\text { ® }}$	＋	\cdots	$\stackrel{n}{n}$

NMR Analysis of Turnover Numbers. General Procedure: In a 250 mL round bottom flask, 10.0 mmol of the desired substrate and 4.0 mmol of $\mathrm{NaCN}(0.196 \mathrm{~g}, \mathbf{4 0} \mathbf{~ m o l} \%)$ were dissolved in 50 mL of N, N-dimethylformamide. The reactions were then allowed to stir at room temperature. At the specified times, 2 mL aliquots were removed and placed into a separate flask; solvent was removed by rotary evaporation and high vacuum before the addition of CDCl_{3} and ${ }^{1} \mathrm{H}$ NMR analysis.

Substrate		$$		Product		$\begin{aligned} & \text { n } \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \equiv \end{aligned}$				$\begin{aligned} & \sum \\ & \vdots \\ & i 1 \\ & i \\ & i \\ & 0 \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { O} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
	∞	N	\checkmark		$\begin{aligned} & \frac{0}{n} \\ & \frac{1}{4} \\ & \frac{1}{2} \end{aligned}$	$\underset{\sim}{*}$	$\begin{aligned} & \text { N } \\ & \text { in } \end{aligned}$	$\stackrel{\ddots}{\forall}$	$\overline{\widehat{o}}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	Nọ	$\bar{\square}$
						$\stackrel{\infty}{+}$	\bullet $\stackrel{+}{+}$	$\stackrel{\ddots}{i}$	n $\stackrel{n}{+}$	$\stackrel{\bigcirc}{=}$	$\underset{\infty}{+}$	$\stackrel{\rightharpoonup}{N}$
						\pm	$\underset{\sim}{n}$	$\begin{aligned} & n \\ & 0 \end{aligned}$	$\underset{\sim}{\sim}$	$\stackrel{\circ}{\mathrm{c}}$	웅	$\stackrel{\text { m }}{\text { i }}$

${ }^{1}$ H NMR Spectra

5,6-di-(2-hydroxyphenyl)-2,3-dihydropyrazine

5,6-di-(2-hydroxyphenyl)-2,3-dihydropyrazine plus $\mathrm{D}_{2} \mathrm{O}$

2,3-di-(2-hydroxyphenyl)-quinoxaline.

(+/-)-2,3-di-(2-hydroxyphenyl)-trans-4a,5,6,7,8,8a-hexahydroquinoxaline.

2,3-di-(2-furyl)-quinoxaline.

(+/-)-2,3-di-(2-furyl)-trans-4a,5,6,7,8,8a-hexahydroquinoxaline.

2,3-di-(2-hydroxy-3-methoxy-phenyl)-quinoxaline.

(+/-)-2,3-di-(2-hydroxy-3-methoxy-phenyl)-trans-4a,5,6,7,8,8a-hexahydroquinoxaline.

(+/-)-2,3-di-(2-hydroxyphenyl)-1,2-dihydroquinoxaline.

2-(2-hydroxyphenyl)-3-(2-hydroxy-3-methoxyphenyl)-quinoxaline.

oligo-[N, N '-bis(benzylidene)- p-phenylenediamine]

X-Ray Structure Data for 5,6-di-(2-hydroxyphenyl)-2,3-dihydropyrazine (SM08)

$$
\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}
$$

Labeled view with 50% probability ellipsoids

Table 1. Crystal structure and data refinement for data for 5,6-di-(2-hydroxyphenyl)-2,3-dihydro-pyrazine (SM08): $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for SM08. U(eq) is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	U(eq)
$\mathrm{O}(1)$	316(2)	10768(1)	1369(1)	32(1)
$\mathrm{O}(2)$	10051(2)	6674(2)	2255(1)	33(1)
N(1)	2615(2)	8573(2)	698(1)	29(1)
$\mathrm{N}(2)$	6623(2)	7158(2)	982(1)	28(1)
C(1)	4282(3)	10737(2)	2161(1)	25(1)
C(2)	2328(3)	11508(2)	2042(1)	26(1)
C(3)	2455(3)	13092(2)	2617(1)	29(1)
C(4)	4500(3)	13937(2)	3284(1)	30(1)
C(5)	6461(3)	13215(2)	3384(1)	29(1)
C(6)	6344(3)	11641(2)	2832(1)	26(1)
C(7)	4206(3)	9099(2)	1517(1)	26(1)
C(8)	2840(3)	7096(2)	-32(1)	34(1)
C(9)	5417(3)	7143(2)	-53(1)	32(1)
C(10)	5980(3)	8049(2)	1745(1)	25(1)
C(11)	6900(3)	7966(2)	2803(1)	24(1)
C(12)	5752(3)	8456(2)	3625(1)	25(1)
C(13)	6600(3)	8366(2)	4617(1)	28(1)
C(14)	8675(3)	7788(2)	4812(1)	30(1)
C(15)	9818(3)	7258(2)	4020(1)	29(1)
C(16)	8925(3)	7295(2)	3010(1)	26(1)

Table 3. Bond lengths [\AA] and angles [${ }^{\circ}$] for 5,6-di-(2-hydroxyphenyl)-2,3-dihydro-pyrazine (SM08): $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$.

$\mathrm{O}(1)-\mathrm{C}(2)$	$1.352(2)$
$\mathrm{O}(2)-\mathrm{C}(16)$	$1.3535(19)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.288(2)$
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.465(2)$
$\mathrm{N}(2)-\mathrm{C}(10)$	$1.286(2)$
$\mathrm{N}(2)-\mathrm{C}(9)$	$1.468(2)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.404(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.417(2)$
$\mathrm{C}(1)-\mathrm{C}(7)$	$1.472(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.393(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.382(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.393(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.377(2)$
$\mathrm{C}(7)-\mathrm{C}(10)$	$1.517(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.508(3)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.470(2)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.400(2)$
$\mathrm{C}(11)-\mathrm{C}(16)$	$1.417(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.379(2)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.397(2)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.375(2)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.395(2)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	$117.09(13)$
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(9)$	$116.38(13)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$118.05(15)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	$121.40(14)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	$120.26(14)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$117.83(14)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$122.20(14)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$119.96(15)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$120.46(15)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120.22(15)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$119.83(15)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$121.41(14)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(1)$	$118.00(14)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(10)$	$118.79(14)$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(10)$	$123.14(13)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$108.42(14)$
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	$119.98(13)$
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	

$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(7)$	$118.58(14)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(7)$	$122.08(13)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	$117.82(14)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$121.70(13)$
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(10)$	$120.39(14)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$121.83(14)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$119.25(15)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$120.52(15)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$120.42(14)$
$\mathrm{O}(2)-\mathrm{C}(16)-\mathrm{C}(15)$	$117.80(14)$
$\mathrm{O}(2)-\mathrm{C}(16)-\mathrm{C}(11)$	$122.22(14)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	$119.99(14)$

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for SM08. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	$29(1)$	$32(1)$	$33(1)$	$4(1)$	$0(1)$	$9(1)$
$\mathrm{O}(2)$	$33(1)$	$40(1)$	$33(1)$	$11(1)$	$10(1)$	$15(1)$
$\mathrm{N}(1)$	$34(1)$	$27(1)$	$26(1)$	$5(1)$	$1(1)$	$6(1)$
$\mathrm{N}(2)$	$32(1)$	$24(1)$	$27(1)$	$6(1)$	$7(1)$	$6(1)$
$\mathrm{C}(1)$	$28(1)$	$25(1)$	$23(1)$	$9(1)$	$7(1)$	$6(1)$
$\mathrm{C}(2)$	$28(1)$	$30(1)$	$25(1)$	$11(1)$	$7(1)$	$7(1)$
$\mathrm{C}(3)$	$31(1)$	$29(1)$	$32(1)$	$11(1)$	$11(1)$	$11(1)$
$\mathrm{C}(4)$	$37(1)$	$24(1)$	$32(1)$	$7(1)$	$11(1)$	$9(1)$
$\mathrm{C}(5)$	$31(1)$	$26(1)$	$30(1)$	$6(1)$	$3(1)$	$3(1)$
$\mathrm{C}(6)$	$28(1)$	$26(1)$	$28(1)$	$10(1)$	$7(1)$	$7(1)$
$\mathrm{C}(7)$	$28(1)$	$26(1)$	$25(1)$	$9(1)$	$6(1)$	$7(1)$
$\mathrm{C}(8)$	$42(1)$	$28(1)$	$28(1)$	$3(1)$	$-2(1)$	$10(1)$
$\mathrm{C}(9)$	$46(1)$	$29(1)$	$23(1)$	$7(1)$	$7(1)$	$11(1)$
$\mathrm{C}(10)$	$26(1)$	$20(1)$	$27(1)$	$5(1)$	$6(1)$	$3(1)$
$\mathrm{C}(11)$	$26(1)$	$19(1)$	$27(1)$	$5(1)$	$5(1)$	$4(1)$
$\mathrm{C}(12)$	$26(1)$	$19(1)$	$29(1)$	$5(1)$	$4(1)$	$4(1)$
$\mathrm{C}(13)$	$33(1)$	$24(1)$	$26(1)$	$4(1)$	$6(1)$	$5(1)$
$\mathrm{C}(14)$	$32(1)$	$27(1)$	$28(1)$	$7(1)$	$-1(1)$	$2(1)$
$\mathrm{C}(15)$	$25(1)$	$26(1)$	$35(1)$	$10(1)$	$3(1)$	$5(1)$
$\mathrm{C}(16)$	$26(1)$	$23(1)$	$31(1)$	$7(1)$	$7(1)$	$5(10$

Table 5. Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for SM08.

$H(1)$	534	9919	981	48
$H(2)$	9248	6621	1677	50
$H(3)$	1126	13593	2551	35
$H(4)$	4569	15015	3675	36
$H(5)$	7875	13807	3832	35
$H(6)$	7688	11156	2907	40
$H(8 A)$	1993	7060	-730	40
$H(8 B)$	2147	6104	184	38
$H(9 A)$	5611	6170	-556	38
$H(9 B)$	6108	8139	-268	30
$H(12)$	4349	8861	3495	34
$H(13)$	5782	8695	5161	34
$H(14)$	9301	7760	5497	4162
$H(15)$	11225	6863		

X-Ray Structure Data for 2,3-di-(2-hydroxyphenyl)-quinoxaline (SM12)

$$
\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}
$$

Labeled view with 50% probability ellipsoids
Table 1. Crystal data and structure refinement for 2,3-di-(2-hydroxyphenyl)quinoxaline (SM12): $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$.

Identification code	SM12
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	314.33
Temperature	110(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=5.9430(9) \AA$ $\alpha=74.255(2)^{\circ}$. $\mathrm{b}=8.6856(13) \AA$ $\beta=81.050(2)^{\circ}$. $\mathrm{c}=14.988(2) \AA$ $\gamma=83.614(2)^{\circ}$.
Volume	733.64(19) \AA^{3}
Z	2
Density (calculated)	$1.423 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient F(000)	$\begin{aligned} & 0.093 \mathrm{~mm}^{-1} \\ & 328 \end{aligned}$
Crystal size	$0.4 \times 0.2 \times 0.07 \mathrm{~mm}^{3}$
Theta range for data collection	2.44 to 25.00°.
Index ranges	$-7<=\mathrm{h}<=7,-10<=\mathrm{k}<=10,-17<=\mathrm{l}<=17$
Reflections collected	9322
Independent reflections	$2472[\mathrm{R}(\mathrm{int})=0.0229]$
Completeness to theta $=25.00^{\circ}$	96.1 \%
Absorption correction	None
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2472 / 0 / 225
Goodness-of-fit on F^{2}	1.091
Final R indices [$\mathrm{I}>2$ sigma(I)]	$\mathrm{R} 1=0.0572, \mathrm{wR} 2=0.1430$
R indices (all data)	$\mathrm{R} 1=0.0625, \mathrm{wR} 2=0.1515$
Largest diff. peak and hole	0.581 and -0.291 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2,3-di-(2hydroxyphenyl)quinoxaline (SM12): $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
$\mathrm{O}(1)$	14115(2)	9087(1)	1776(1)	33(1)
$\mathrm{O}(2)$	4079(2)	4771(1)	2350(1)	34(1)
$\mathrm{N}(1)$	7517(2)	6157(2)	1227(1)	27(1)
$\mathrm{N}(2)$	11134(2)	8059(2)	972(1)	27(1)
C (1)	9961(2)	7559(2)	1812(1)	25(1)
C(2)	8295(2)	6379(2)	1960(1)	25(1)
C(3)	8569(3)	6807(2)	347(1)	27(1)
C(4)	7795(3)	6539(2)	-439(1)	29(1)
C(5)	9048(3)	7020(2)	-1302(1)	31(1)
C(6)	11080(3)	7788(2)	-1413(1)	31(1)
C(7)	11812(3)	8121(2)	-668(1)	29(1)
C(8)	10537(3)	7649(2)	226(1)	27(1)
C(9)	10307(3)	8377(2)	2522(1)	26(1)
C(10)	12327(3)	9137(2)	2455(1)	28(1)
C(11)	12532(3)	10000(2)	3097(1)	30(1)
C(12)	10724(3)	10188(2)	3767(1)	31(1)
C(13)	8685(3)	9498(2)	3821(1)	29(1)
C(14)	8493(3)	8602(2)	3206(1)	28(1)
C(15)	7486(3)	5317(2)	2885(1)	27(1)
C(16)	5433(3)	4557(2)	3033(1)	28(1)
C(17)	4731(3)	3546(2)	3901(1)	30(1)
C(18)	6067(3)	3226(2)	4619(1)	31(1)
C(19)	8142(3)	3901(2)	4471(1)	30(1)
C(20)	8842(3)	4931(2)	3614(1)	28(1)

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 2,3-di-(2-hydroxyphenyl)quinoxaline (SM12).

$\mathrm{O}(1)-\mathrm{C}(10)$	$1.3579(19)$
$\mathrm{O}(2)-\mathrm{C}(16)$	$1.3605(19)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.3236(19)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.366(2)$
$\mathrm{N}(2)-\mathrm{C}(1)$	$1.325(2)$
$\mathrm{N}(2)-\mathrm{C}(8)$	$1.368(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.454(2)$
$\mathrm{C}(1)-\mathrm{C}(9)$	$1.480(2)$
$\mathrm{C}(2)-\mathrm{C}(15)$	$1.484(2)$
$\mathrm{C}(3)-\mathrm{C}(8)$	$1.410(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.412(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.370(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.410(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.368(2)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.412(2)$
$\mathrm{C}(9)-\mathrm{C}(14)$	$1.403(2)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.411(2)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.397(2)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.380(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.393(2)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.383(2)$
$\mathrm{C}(15)-\mathrm{C}(20)$	$1.404(2)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.411(2)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.389(2)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.386(2)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.385(2)$
$\mathrm{C}(9)-\mathrm{C}(20)$	$1.384(2)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	$119.78(13)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(8)$	$119.73(13)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$119.50(13)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(9)$	$116.16(13)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)$	$124.09(13)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$118.95(14)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	$116.68(13)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	$124.27(13)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	$119.89(14)$

$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$120.27(14)$
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.68(14)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$119.33(14)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.76(14)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$120.96(14)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$119.21(15)$
$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(3)$	$119.36(14)$
$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	$12.68(14)$
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$119.90(14)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)$	$118.13(14)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(1)$	$119.94(13)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(1)$	$121.34(14)$
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	$117.41(14)$
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$122.65(14)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$119.94(14)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$120.45(14)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120.38(14)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$119.48(15)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$121.50(14)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)$	$117.96(14)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(2)$	$120.76(14)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(2)$	$121.06(14)$
$\mathrm{O}(2)-\mathrm{C}(16)-\mathrm{C}(17)$	$117.62(14)$
$\mathrm{O}(2)-\mathrm{C}(16)-\mathrm{C}(15)$	$122.37(14)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$120.01(15)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	$120.77(15)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	$119.93(14)$
$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(18)$	$119.82(14)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$	$121.37(15)$

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2,3-di-(2-hydroxyphenyl)quinoxaline (SM12): $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$. The anisotropic displacement factor exponent takes the form: $-2 \mathrm{p}^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U}^{11}+\ldots+2 \mathrm{hka} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	$27(1)$	$36(1)$	$37(1)$	$-14(1)$	$0(1)$	$-5(1)$
$\mathrm{O}(2)$	$31(1)$	$40(1)$	$33(1)$	$-6(1)$	$-7(1)$	$-9(1)$
$\mathrm{N}(1)$	$25(1)$	$27(1)$	$29(1)$	$-7(1)$	$-4(1)$	$-1(1)$
$\mathrm{N}(2)$	$28(1)$	$25(1)$	$28(1)$	$-5(1)$	$-3(1)$	$-2(1)$
$\mathrm{C}(1)$	$22(1)$	$23(1)$	$28(1)$	$-4(1)$	$-2(1)$	$-1(1)$
$\mathrm{C}(2)$	$22(1)$	$24(1)$	$29(1)$	$-7(1)$	$-4(1)$	$1(1)$
$\mathrm{C}(3)$	$27(1)$	$23(1)$	$28(1)$	$-4(1)$	$-4(1)$	$2(1)$
$\mathrm{C}(4)$	$29(1)$	$25(1)$	$34(1)$	$-7(1)$	$-7(1)$	$-3(1)$
$\mathrm{C}(5)$	$37(1)$	$26(1)$	$28(1)$	$-6(1)$	$-8(1)$	$1(1)$
$\mathrm{C}(6)$	$36(1)$	$26(1)$	$27(1)$	$-3(1)$	$-1(1)$	$-1(1)$
$\mathrm{C}(7)$	$30(1)$	$25(1)$	$30(1)$	$-4(1)$	$-2(1)$	$-3(1)$
$\mathrm{C}(8)$	$28(1)$	$22(1)$	$30(1)$	$-6(1)$	$-6(1)$	$1(1)$
$\mathrm{C}(9)$	$28(1)$	$22(1)$	$27(1)$	$-3(1)$	$-6(1)$	$-3(1)$
$\mathrm{C}(10)$	$27(1)$	$25(1)$	$29(1)$	$-3(1)$	$-4(1)$	$-1(1)$
$\mathrm{C}(11)$	$31(1)$	$28(1)$	$31(1)$	$-3(1)$	$-11(1)$	$-5(1)$
$\mathrm{C}(12)$	$39(1)$	$26(1)$	$28(1)$	$-6(1)$	$-9(1)$	$-4(1)$
$\mathrm{C}(13)$	$34(1)$	$27(1)$	$25(1)$	$-4(1)$	$-4(1)$	$-3(1)$
$\mathrm{C}(14)$	$29(1)$	$27(1)$	$26(1)$	$-3(1)$	$-5(1)$	$-3(1)$
$\mathrm{C}(15)$	$27(1)$	$27(1)$	$29(1)$	$-9(1)$	$-1(1)$	$-4(1)$
$\mathrm{C}(16)$	$28(1)$	$27(1)$	$29(1)$	$-8(1)$	$-4(1)$	$-2(1)$
$\mathrm{C}(17)$	$28(1)$	$27(1)$	$34(1)$	$-7(1)$	$0(1)$	$-6(1)$
$\mathrm{C}(18)$	$36(1)$	$26(1)$	$28(1)$	$-3(1)$	$1(1)$	$-3(1)$
$\mathrm{C}(19)$	$32(1)$	$28(1)$	$28(1)$	$-6(1)$	$-6(1)$	$0(1)$
$\mathrm{C}(20)$	$28(1)$	$25(1)$	$31(1)$	$-8(1)$	$-4(1)$	$-1(1)$

Table 5. Hydrogen coordinates $\left(x 10^{4}\right)$ and isotropic displacement parameters ($\AA^{2} x$ 10) for 2,3-di-(2hydroxyphenyl)quinoxaline (SM12): $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$.

	x	y	z	$U(e q)$
H(1O1)	$13560(30)$	$8780(30)$	$1316(15)$	$48(6)$
H(1O2)	$4900(40)$	$5260(30)$	$1748(16)$	$59(6)$
		$\quad \mathrm{S} 20$		

H(4A)	6420	6031	-371	35
H(5A)	8541	6835	-1832	37
H(6A)	11954	8078	-2013	37
H(7A)	13163	8664	-752	35
H(11A)	13925	10459	3073	36
H(12A)	10872	10792	4194	37
H(13A)	7435	9642	4278	35
H(14A)	7102	8129	3247	33
H(17A)	3319	3069	4003	36
H(18A)	5560	2544	5212	37
H(19A)	9082	3658	4957	36
$H(20 A)$	10270	5386	3518	33

Table 6. Torsion angles [${ }^{\circ}$] for 2,3-di-(2-hydroxyphenyl)quinoxaline (SM12): $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$.

$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	9.7(2)
$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(9)$	-164.78(13)
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	11.8(2)
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	-164.65(13)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	-18.6(2)
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	$155.39(14)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	157.55(14)
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	-28.4(2)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	2.8(2)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	178.18(14)
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-171.50(14)
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	3.8(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-0.5(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-2.3(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	1.7(2)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(3)$	5.0(2)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	-177.78(14)
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{N}(2)$	-11.8(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{N}(2)$	172.82(14)
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	170.93(14)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	-4.4(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(2)$	-175.53(14)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	1.7(2)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(14)$	146.65(14)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(14)$	-27.6(2)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	-24.5(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	161.33(14)
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(1)$	-175.23(13)
$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(1)$	-4.0(2)
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	4.0(2)
$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	175.24(14)
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	175.73(13)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-3.5(2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	1.1(2)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	0.9(2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	-0.3(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	-2.1(2)
$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	-173.48(14)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(15)-\mathrm{C}(20)$	151.67(15)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)-\mathrm{C}(20)$	-24.6(2)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(15)-\mathrm{C}(16)$	-22.8(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)-\mathrm{C}(16)$	160.92(14)
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{O}(2)$	-175.59(14)
$\mathrm{C}(2)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{O}(2)$	-1.0(2)
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	4.2(2)
$\mathrm{C}(2)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	178.88(14)
$\mathrm{O}(2)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	177.57(14)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	-2.3(2)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	-0.8(2)
C(17)-C(18)-C(19)-C(20)	1.9(2)
C(18)-C(19)-C(20)-C(15)	0.2(2)
C(16)-C(15)-C(20)-C(19)	-3.3(2)
C(2)-C(15)-C(20)-C(19)	-177.91(14)

