Donor-Stabilized Cations and Imine Transfer from \mathbf{N}-Silylphosphoranimines

Eric Rivard, Keith Huynh, Alan J. Lough and Ian Manners*
Department of Chemistry, Davenport Laboratories, University of Toronto 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
\section*{Supporting Information}

(1) Experimental Section
(2) Table 1. Equilibrium between [3]Cl and free $\mathbf{1}$ and DMAP in the presence of added chloride ion
(3) Table 2. Crystal data and structure refinement for [3]OTf
(4) Table 3. Atomic coordinates and equivalent isotropic displacement parameters for [3]OTf
(5) Table 4. Bond lengths and angles for [3]OTf
(6) Table 5. Anisotropic parameters for [3]OTf
(7) Table 6. Hydrogen coordinates and isotropic displacement parameters for [3]OTf

Experimental Section

All reactions and manipulations were carried out under an atmosphere of prepurified nitrogen or argon (Air Products) using common Schlenk techniques or an inert atmosphere glove box (M-Braun). Solvents were dried and collected using a Grubbs-type solvent purification system manufactured by M-Braun. ${ }^{1}{ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were obtained on a Varian Gemini 300 spectrometer (300.1 and 121.5 MHz) and were referenced either to protic impurities in the solvent ($\left.{ }^{1} \mathrm{H}\right)$ or externally to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right)$ in $\mathrm{CDCl}_{3}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ or $\mathrm{D}_{2} \mathrm{O}$ (insert). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were obtained on a Varian Unity 400 spectrometer (100.5 and 79.4 MHz) and were both referenced externally to SiMe_{4} in CDCl_{3}. Mass spectra were obtained with the use of a VG-250S mass spectrometer using a 70 eV electron impact ionization source. Melting points (uncorrected) were obtained in 0.5 mm (o.d.) glass capillaries which were flame sealed under nitrogen. Elemental analyses were performed at the University of Toronto using a Perkin-Elmer 2400 Series CHN Analyzer. 4-Dimethylaminopyridine (DMAP) was obtained from Aldrich and used as received. The silver salts $\mathrm{Ag}[\mathrm{OTf}], \mathrm{Ag}\left[\mathrm{BF}_{4}\right]$ and $\mathrm{Ag}\left[\mathrm{SbF}_{6}\right]$ were also obtained from Aldrich and were dried under dynamic vacuum at $100^{\circ} \mathrm{C}$ for 24 h prior to use. Triphenylphosphine (BDH Chemicals) and tetra-n-octylammonium bromide (Aldrich) were dried in vacuo for 24 h prior to use. $\left[\mathrm{Ph}_{3} \mathrm{P}=\mathrm{N}=\mathrm{PPh}_{3}\right] \mathrm{Cl}$ (Aldrich) was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried in vacuo at $100{ }^{\circ} \mathrm{C}$ for 16 h before use. Tri-n-butylphosphine (Aldrich) was vacuum distilled and stored under an atmosphere of nitrogen. $\mathrm{Cl}_{3} \mathrm{P}=\mathrm{NSiMe}_{3}$ (1) was prepared according to a literature procedure. ${ }^{2}$

Xray Structure Determination of [3]OTf. Data were collected on a Nonius Kappa-CCD diffractometer using graphite-monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$). A combination of $1^{\circ} \phi$ and ω (with κ offsets) scans were used to collect sufficient data. The data frames were integrated and scaled using the Denzo-SMN package. ${ }^{3}$ The structures were solved and refined with the SHELXTL-PC v6.12 software package. ${ }^{4}$ Refinement was by full-matrix least squares on F^{2} using data (including negative intensities) with hydrogen atoms bonded to carbon atoms included in calculated positions and treated as riding atoms.

Preparation of [DMAP $\left.\cdot \mathbf{C l}_{\mathbf{2}} \mathbf{P}=\mathbf{N S i M e}_{3}\right] \mathbf{O S O}_{\mathbf{2}} \mathbf{C F}_{\mathbf{3}}$, [3]OTf. To a mixture of DMAP ($1.06 \mathrm{~g}, 8.67$ $\mathrm{mmol})$ and $\mathrm{Ag}\left[\mathrm{OSO}_{2} \mathrm{CF}_{3}\right](2.21 \mathrm{~g}, 8.63 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise a 3 mL solution of $\mathrm{Cl}_{3} \mathrm{P}=\mathrm{NSiMe}_{3}(1.94 \mathrm{~g}, 8.63 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$ (in the absence of light). A white precipitate formed immediately and the reaction was stirred for 1 h . The reaction mixture was then filtered and slow evaporation of the filtrate under nitrogen (16 h) afforded large colorless needles of [3]OTf ($3.26 \mathrm{~g}, 82 \%$). Attempts to generate a stable phosphoranimine cation by the treatment of $\mathbf{1}$ with $\mathrm{Ag}[\mathrm{OTf}]$ in the presence of pyridine, bipyridine or without base, led to the formation of poly(dichlorophosphazene) [${ }^{31} \mathrm{P}$ NMR $\left.\left(\mathrm{CDCl}_{3}\right): \delta=-18.0 \mathrm{ppm}(\mathrm{s})\right]$ and $\mathrm{Me}_{3} \operatorname{SiOTf}\left[{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=0.51 \mathrm{ppm}(\mathrm{s}) ;{ }^{19} \mathrm{~F}\right.$ NMR $\left.\left(\mathrm{CDCl}_{3}\right): \delta=-78.0 \mathrm{ppm}(\mathrm{s})\right]$.
Data for [3]OTf: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=-39.8 \mathrm{ppm}(\mathrm{s}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.30(\mathrm{~s}$, $\mathrm{SiMe}_{3}, 9 \mathrm{H}$), $3.51\left(\mathrm{~s}, \mathrm{NMe}_{2}, 6 \mathrm{H}\right.$), 7.31 (dd, $J=2.7$ and 8.4 Hz , ortho- $\mathrm{ArH}, 2 \mathrm{H}$) and 8.46 ppm (dd, $J=7.4$ and 10.7 Hz , meta-ArH, 2H) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=5.0 \mathrm{~Hz}, \mathrm{SiMe}_{3}\right)$, 41.5 (s, NMe_{2}), $108.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=8.0 \mathrm{~Hz}\right.$, ortho-C (DMAP)), $120.5\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=166.1 \mathrm{~Hz}, \mathrm{OTf}\right), 138.7$ (d, ${ }^{3} J_{\mathrm{CP}}=5.0 \mathrm{~Hz}$, meta-C (DMAP)) and $157.8 \mathrm{ppm}\left(\mathrm{s}\right.$, para-C (DMAP)). ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=-$ $78.2 \mathrm{ppm}(\mathrm{s}, \mathrm{OTf}) .{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=2.5 \mathrm{ppm}\left(\mathrm{d},{ }^{2} J_{\mathrm{SiP}}=11.9 \mathrm{~Hz}\right) . \mathrm{mp}\left({ }^{\circ} \mathrm{C}\right): 98-102$ (dec). EI-MS ($70 \mathrm{eV}, m / z, \%$): $312\left(\mathrm{M}^{+}-\mathrm{OTf}, 2\right), 208\left(\mathrm{Cl}_{3} \mathrm{P}=\mathrm{NSiMe}_{3}-\mathrm{Me}, 1\right), 189$ $\left(\mathrm{Cl}_{2} \mathrm{P}=\mathrm{NSiMe}_{3}, 4\right), 155\left(\mathrm{ClP}=\mathrm{NSiMe}_{3}, 8\right), 121\left(\mathrm{DMAP}^{+}, 100\right), 69\left(\mathrm{CF}_{3}{ }^{+}, 64\right)$. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ PSSi (460.3): \%C: 28.70; \%H: 4.16; \%N: 9.13. Found: \%C: 28.50; \%H: 3.98; $\% \mathrm{~N}$: 9.05 .

Preparation of $\left[\mathbf{D M A P} \cdot \mathbf{C l}_{2} \mathbf{P}=\mathbf{N S i M e} \mathbf{3}_{3} \mathbf{C l},[\mathbf{3}] \mathbf{C l}\right.$. To a solution of $\mathrm{Cl}_{3} \mathrm{P}=\mathrm{NSiMe}_{3}(93 \mathrm{mg}, 0.41$ mmol) in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise a 0.5 mL solution of DMAP ($47 \mathrm{mg}, 0.38 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting colorless solution was stirred for 16 h and the volatiles (including any excess $\mathrm{Cl}_{3} \mathrm{P}=\mathrm{NSiMe}_{3}$) were removed in vacuo to give a white solid ($110 \mathrm{mg}, 82 \%$).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=-39.2 \mathrm{ppm}(\mathrm{s}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.08\left(\mathrm{~s}, \mathrm{SiMe}_{3}, 9 \mathrm{H}\right), 3.46(\mathrm{~s}$, $\mathrm{NMe}_{2}, 6 \mathrm{H}$), 7.65 (dd, ortho- $\mathrm{ArH}, 2 \mathrm{H}, J=3.0$ and 8.1 Hz) and $8.37 \mathrm{ppm}(\mathrm{dd}$, meta- $\mathrm{ArH}, 2 \mathrm{H}, J=$ 8.4 and 10.1 Hz). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=1.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=4.5 \mathrm{~Hz}, \mathrm{SiMe}_{3}\right), 42.1\left(\mathrm{~s}, \mathrm{NMe}_{2}\right), 109.7$ (d, ${ }^{2} J_{\mathrm{CP}}=8.6 \mathrm{~Hz}$, ortho-C (DMAP)), 138.6 (d, ${ }^{3} J_{\mathrm{CP}}=5.9 \mathrm{~Hz}$, meta-C (DMAP)) and 157.8 ppm (s, para-C (DMAP)). ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=2.4 \mathrm{ppm}\left(\mathrm{d},{ }^{2} J_{\text {SiP }}=11.1 \mathrm{~Hz}\right)$.

To investigate the equilibrium nature of $[\mathbf{3}] \mathbf{C l}$, sequential amounts of chloride ion, as $\left[\mathrm{Ph}_{3} \mathrm{P}=\mathrm{N}=\mathrm{PPh}_{3}\right] \mathrm{Cl}$, was added to a freshly prepared solution of $[3] \mathrm{Cl}$ in CDCl_{3} (see Table 1). One equiv. of bromide ion, $\left.{ }^{\mathrm{n}} \mathrm{Oct}_{4} \mathrm{~N}\right] \mathrm{Br}$, did not react with the $[3]^{+}$cation.

Preparation and Decomposition of $\left[\mathbf{D M A P} \cdot \mathbf{C l}_{2} \mathbf{P}=\mathbf{N S i M e}_{3}\right] \mathbf{B F}_{4},[3] \mathbf{B F}_{4}$. In the absence of light, a solution of $\mathrm{Cl}_{3} \mathrm{P}=\mathrm{NSiMe}_{3}(0.28 \mathrm{~g}, 0.12 \mathrm{mmol})$ in 1 mL of dichloromethane was added to a mixture of DMAP $(0.15 \mathrm{~g}, 0.12 \mathrm{mmol})$ and $\mathrm{Ag}\left[\mathrm{BF}_{4}\right](0.25 \mathrm{~g}, 0.13 \mathrm{mmol})$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction was stirred for 1 h to give a white suspension. The AgCl was filtered off and the volatiles were removed from the filtrate to give a white solid ($0.31 \mathrm{~g}, 62 \%$) which was identified as [3] $\mathbf{B F}_{4}$ by NMR spectroscopy. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=-39.8(\mathrm{~s}) \mathrm{ppm} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=$ $0.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 3.44\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NMe}_{2}\right), 7.20(\mathrm{br}, 2 \mathrm{H}$, ortho ArH) and 8.40 ppm (br, meta ArH).
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=-151.4 \mathrm{ppm}$ (pseudoquartet, $\mathrm{BF}_{4}{ }^{-}$).
Compound $[3] \mathbf{B F}_{4}$ gradually decomposed over the period of 3 days in CDCl_{3} to give $\left[\mathrm{Cl}_{2} \mathrm{P}=\mathrm{N}\right]_{3}$ and DMAP• BF_{3} (see below).
Data for decomposition products: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=20.0 \mathrm{ppm}\left(\mathrm{s},\left[\mathrm{Cl}_{2} \mathrm{P}=\mathrm{N}\right]_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=3.20\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NMe}_{2}\right), 6.66(\mathrm{~d}, 2 \mathrm{H}$, ortho $\mathrm{ArH}, J=7.0 \mathrm{~Hz})$ and $8.1 \mathrm{ppm}(\mathrm{br}$, meta ArH). ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=-151.6 \mathrm{ppm}(\mathrm{m}) .{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=-0.02$ (br). Lit. for DMAP $\cdot \mathrm{BF}_{3}: 5{ }^{5} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=3.16(\mathrm{~s}), 6.61(\mathrm{~d}, J=7.0 \mathrm{~Hz})$ and $8.09 \mathrm{ppm}(\mathrm{br}) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=-152.7 \mathrm{ppm}(\mathrm{m}) .{ }^{11} \mathrm{~B} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=0.34 \mathrm{ppm}(\mathrm{br})$.

In Situ Preparation of [DMAP•Cl $\left.\mathbf{F}_{\mathbf{2}} \mathbf{P}=\mathbf{N S i M e}_{3}\right] \mathbf{S b F}_{6},\left[\mathbf{3]}^{2} \mathbf{S b F}_{6}\right.$. In the absence of light, a 0.5 mL solution of $1(90 \mathrm{mg}, 0.40 \mathrm{mmol})$ in CDCl_{3} was added quickly to a stirred mixture of $\mathrm{Ag}\left[\mathrm{SbF}_{6}\right]$ $(138 \mathrm{mg}, 0.40 \mathrm{mmol})$ and DMAP ($49 \mathrm{mg}, 0.40 \mathrm{mmol}$) in 1 mL of CDCl_{3}. The resulting grey suspension was stirred for 1 h and the AgCl was filtered off. Analysis of the resulting colorless filtrate by NMR indicated the formation of [3]SbF 6 (95% pure; trace of unreacted $\mathbf{1}^{1,}{ }^{31} \mathrm{P}:-54.0$ $\mathrm{ppm}(\mathrm{s})$, was present). Compound [3] $\mathbf{S b F}_{6}$ was stable in solution for up to two weeks without any noticeable sign of decomposition.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=-40.2 \mathrm{ppm}(\mathrm{s}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=0.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 3.38(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{NMe}_{2}$), 7.04 (dd, 2 H , ortho $\mathrm{ArH}, J=3.2$ and 7.1 Hz) and 8.34 ppm (dd, meta $\mathrm{ArH}, J=8.1$ and 11.1 Hz$).{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=-110$ (very broad) and -135 ppm (very broad) $\left(\mathrm{SbF}_{6}{ }^{-}\right)$.

Preparation of $\mathbf{P h}_{\mathbf{3}} \mathbf{P}=\mathbf{N}-\mathbf{P C l}_{\mathbf{2}}(\mathbf{7})$ from $\mathbf{P h}_{\mathbf{3}} \mathbf{P}$ and $\mathbf{C l}_{\mathbf{3}} \mathbf{P}=\mathbf{N S i M e} \mathbf{3}_{3}$. A solution of $\mathrm{Ph}_{3} \mathbf{P}(0.34 \mathrm{~g}, 1.3$ $\mathrm{mmol})$ in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to a solution of $\mathbf{1}(0.29 \mathrm{~g}, 1.3 \mathrm{mmol})$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction was stirred for 3 h and removal of the volatiles afforded a white solid which was characterized as the previously known phosphoranimine $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{N}-\mathrm{PCl}_{2}(7)^{6}(0.43 \mathrm{~g}, 89 \%)$. Repeating the reaction in CDCl_{3} also identified ClSiMe_{3} as a byproduct ${ }^{1} \mathrm{H}$ NMR: $\delta=0.45 \mathrm{ppm}$ (s)].

Data for 7: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=165.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=75.0 \mathrm{~Hz},-\mathrm{PCl}_{2}\right)$ and $15.8 \mathrm{ppm}\left(\mathrm{d},{ }^{2} J_{\mathrm{PP}}=75.0\right.$ $\left.\mathrm{Hz}, \mathrm{Ph}_{3} P=\mathrm{N}-\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=7.5-8.0 \mathrm{ppm}(\mathrm{m})$.

In Situ Preparation of ${ }^{\mathbf{n}} \mathrm{Bu}_{3} \mathrm{P}=\mathbf{N}-\mathrm{PCl}_{2}$ (8) from ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{P}$ and $\mathrm{Cl}_{3} \mathbf{P}=\mathrm{NSiMe}_{3}$. To a solution of $\mathbf{1}$ $(0.52 \mathrm{~g}, 2.3 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{P}(0.60 \mathrm{~mL}, 2.4 \mathrm{mmol})$ dropwise. Analysis of the resulting yellow solution after 2 h revealed the formation of $\mathrm{PCl}_{3}(\delta=218.0 \mathrm{ppm}(\mathrm{s}) ; c a .5$ $\%),{ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{P}=\mathrm{NSiMe}_{3}(\delta=-8.8 \mathrm{ppm}(\mathrm{s}) ; c a .5 \%),{ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{P}=\mathrm{N}-\mathrm{PCl}_{2}(\mathbf{8})\left[\delta=158.0\left(\mathrm{~d}^{2}{ }^{2} J_{\mathrm{PP}}=85.0 \mathrm{~Hz},-\right.\right.$ $P \mathrm{Cl}_{2}$) and $40.7 \mathrm{ppm}\left(\mathrm{d},{ }^{2} J_{\mathrm{PP}}=85.0 \mathrm{~Hz},{ }^{\mathrm{n}} \mathrm{Bu}_{3} P=\mathrm{N}\right.$) ; 1:1 ratio; ca. 55%] and an unidentified species at $\delta=105.1(\mathrm{~s}, c a .25 \%)$ and $35.1 \mathrm{ppm}(\mathrm{s}, c a .10 \%)$. Stirring the reaction for further 6 days gave an 80% (in situ) yield of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{P}=\mathrm{N}-\mathrm{PCl}_{2}{ }^{7}$ and unknown species (ca. 20%) with ${ }^{31} \mathrm{P}$ NMR resonances at $\delta=72(\mathrm{br})$ and $35 \mathrm{ppm}(\mathrm{s})$. Attempts to isolate pure $\mathbf{8}$ have yet to be successful.

References:

(1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
(2) Wang, B.; Rivard, E.; Manners, I. Inorg. Chem. 2002, 41, 1690.
(3) Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 367.
(4) Sheldrick, G. M. SHELXTL-Windows NT. V6.12, Bruker Analytical X-Ray Systems Inc., Madison, WI, 2001.
(5) Lesley, M. J. G.; Woodward, A.; Taylor, N. J.; Marder, T. M.; Cazenobe, I.; Ledoux, I.; Zyss, J.; Thornton, A.; Bruce, D. W.; Kakkar, A. K. Chem. Mater. 1998, 10, 1355.
(6) Riesel, L.; Friebe, R. Z. Anorg. Allg. Chem. 1981, 474, 105
(7) Riesel, L.; Friebe, R. Z. Anorg. Allg. Chem. 1991, 604, 85.

Table 1 Equilibrium between [3]Cl and free $\mathbf{1}$ and DMAP in the presence of added chloride ion ${ }^{\text {a }}$				
$\begin{gathered} \text { Molar equiv. } \\ \mathrm{Cl}_{3} \mathrm{P}=\mathrm{NSiMe}_{3}{ }^{\mathrm{b}} \\ \text { of chloride }{ }^{\mathrm{c}} \end{gathered}$	$\mathrm{Mol} \%$ of [3]Cl ${ }^{\text {b }}$	Mol	\%	of
0	95	5		
0.25	80	20		
0.5	60	40		
0.75	25	75		
1.0	0	100		

${ }^{\text {a }}$ As determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy. ${ }^{\mathrm{b}}$ Initial concentration of [3]Cl ($0.3-0.4 \mathrm{M}$); reaction time, 1.5 h. ${ }^{\mathrm{c}}$ Source of chloride: $\left[\mathrm{Ph}_{3} \mathrm{P}=\mathrm{N}=\mathrm{PPh}_{3}\right] \mathrm{Cl}$.

Table 2. Crystal data and structure refinement for [3]OTf.

Identification code	k0384
Empirical formula	C11 H19 Cl2 F3 N3 O3 P S Si
Formula weight	460.31
Temperature	150(1) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=8.0840(4) \AA \quad \alpha=88.5630(19)^{\circ}$.
	$\mathrm{b}=8.6430(4) \AA \quad \beta=86.5950(18)^{\circ}$.
	$\mathrm{c}=14.6080(7) \AA \quad \gamma=85.038(2)^{\circ}$.
Volume	1014.84(8) \AA^{3}
Z	2
Density (calculated)	$1.506 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.602 \mathrm{~mm}^{-1}$
F(000)	472
Crystal size	$0.24 \times 0.16 \times 0.08 \mathrm{~mm}^{3}$
Theta range for data collection	2.77 to 27.54°.
Index ranges	$-10<=\mathrm{h}<=10,-11<=\mathrm{k}<=11,-18<=\mathrm{l}<=18$
Reflections collected	13104
Independent reflections	4659 [$\mathrm{R}(\mathrm{int}$) $=0.0986$]
Completeness to theta $=27.54^{\circ}$	99.5 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.970 and 0.783
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4659 / 0 / 232
Goodness-of-fit on F^{2}	0.987
Final R indices [I >2 sigma(I)]	$\mathrm{R} 1=0.0550, \mathrm{wR} 2=0.1243$
R indices (all data)	$\mathrm{R} 1=0.1090, \mathrm{wR} 2=0.1513$
Extinction coefficient	0.005(2)
Largest diff. peak and hole	0.451 and -0.535 e. \AA^{-3}

Table 3. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for [3]OTf. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
$\mathrm{Cl}(1)$	$2350(1)$	$3626(1)$	$6608(1)$	$37(1)$
$\mathrm{Cl}(2)$	$5498(1)$	$4335(1)$	$7610(1)$	$38(1)$
$\mathrm{P}(1)$	$4565(1)$	$2644(1)$	$6939(1)$	$28(1)$
$\mathrm{Si}(1)$	$6815(1)$	$2056(1)$	$5196(1)$	$29(1)$
$\mathrm{N}(1)$	$4045(3)$	$1394(3)$	$7818(2)$	$25(1)$
$\mathrm{N}(2)$	$3097(3)$	$-1681(3)$	$9967(2)$	$27(1)$
$\mathrm{N}(3)$	$5660(4)$	$1814(4)$	$6219(2)$	$32(1)$
$\mathrm{C}(1)$	$3033(4)$	$1869(4)$	$8581(2)$	$29(1)$
$\mathrm{C}(2)$	$2718(4)$	$895(4)$	$9285(2)$	$27(1)$
$\mathrm{C}(3)$	$3394(4)$	$-679(4)$	$9288(2)$	$24(1)$
$\mathrm{C}(4)$	$4441(4)$	$-1141(4)$	$8492(2)$	$31(1)$
$\mathrm{C}(5)$	$4741(4)$	$-121(4)$	$7808(2)$	$31(1)$
$\mathrm{C}(7)$	$1982(5)$	$-1292(5)$	$10774(2)$	$35(1)$
$\mathrm{C}(8)$	$3730(5)$	$-3335(4)$	$9891(3)$	$33(1)$
$\mathrm{C}(9)$	$7726(5)$	$112(4)$	$4841(3)$	$39(1)$
$\mathrm{C}(10)$	$5420(5)$	$2895(5)$	$4316(3)$	$40(1)$
$\mathrm{C}(11)$	$8467(5)$	$3337(5)$	$5392(3)$	$40(1)$
$\mathrm{S}(1)$	$9386(1)$	$-3591(1)$	$8633(1)$	$30(1)$
$\mathrm{F}(1)$	$8649(3)$	$-1395(3)$	$7411(2)$	$62(1)$
$\mathrm{F}(2)$	$11106(3)$	$-2527(3)$	$7206(2)$	$65(1)$
$\mathrm{F}(3)$	$9035(4)$	$-3691(3)$	$6860(2)$	$69(1)$
$\mathrm{O}(1)$	$10414(4)$	$-5033(3)$	$8570(2)$	$52(1)$

Table 4. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $[3]$ OTf.

$\mathrm{Cl}(1)-\mathrm{P}(1)$	1.9947(12)
$\mathrm{Cl}(2)-\mathrm{P}(1)$	2.0040(13)
$\mathrm{P}(1)-\mathrm{N}(3)$	1.490(3)
$\mathrm{P}(1)-\mathrm{N}(1)$	1.713(3)
$\mathrm{Si}(1)-\mathrm{N}(3)$	1.733(3)
$\mathrm{Si}(1)-\mathrm{C}(11)$	1.846(4)
$\mathrm{Si}(1)-\mathrm{C}(9)$	1.849(4)
$\mathrm{Si}(1)-\mathrm{C}(10)$	1.854(4)
$\mathrm{N}(1)-\mathrm{C}(5)$	1.380(4)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.392(4)
$\mathrm{N}(2)$-C(3)	$1.325(4)$
$\mathrm{N}(2)-\mathrm{C}(7)$	1.468(4)
$\mathrm{N}(2)-\mathrm{C}(8)$	1.480(4)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.339(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.422(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	1.440(5)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.341(5)$
$\mathrm{S}(1)-\mathrm{O}(2)$	1.438(3)
$\mathrm{S}(1)-\mathrm{O}(1)$	1.439(3)
$\mathrm{S}(1)-\mathrm{O}(3)$	1.439(3)
$\mathrm{S}(1)-\mathrm{C}(12)$	1.822(4)
$\mathrm{F}(1)-\mathrm{C}(12)$	1.341(4)
$\mathrm{F}(2)-\mathrm{C}(12)$	1.333(4)
$\mathrm{F}(3)-\mathrm{C}(12)$	1.318(5)
$\mathrm{N}(3)-\mathrm{P}(1)-\mathrm{N}(1)$	110.73(15)
$\mathrm{N}(3)-\mathrm{P}(1)-\mathrm{Cl}(1)$	118.92(13)
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{Cl}(1)$	102.36(10)
$\mathrm{N}(3)-\mathrm{P}(1)-\mathrm{Cl}(2)$	117.90(13)
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{Cl}(2)$	101.91(11)
$\mathrm{Cl}(1)-\mathrm{P}(1)-\mathrm{Cl}(2)$	102.68(6)
$\mathrm{N}(3)-\mathrm{Si}(1)-\mathrm{C}(11)$	108.60(17)
$\mathrm{N}(3)-\mathrm{Si}(1)-\mathrm{C}(9)$	107.37(17)
$\mathrm{C}(11)-\mathrm{Si}(1)-\mathrm{C}(9)$	110.65(18)

$\mathrm{N}(3)-\mathrm{Si}(1)-\mathrm{C}(10)$	109.16(16)
C(11)-Si(1)-C(10)	111.36(18)
$\mathrm{C}(9)-\mathrm{Si}(1)-\mathrm{C}(10)$	109.60(19)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$	117.9(3)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{P}(1)$	119.3(2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{P}(1)$	122.6(2)
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(7)$	123.3(3)
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(8)$	120.5(3)
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(8)$	115.8(3)
$\mathrm{P}(1)-\mathrm{N}(3)-\mathrm{Si}(1)$	144.1(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	121.7(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	121.6(3)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	123.4(3)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121.0(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	115.6(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	120.8(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	122.3(3)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(1)$	115.75(18)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(3)$	114.50(16)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(3)$	115.36(18)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(12)$	102.37(19)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(12)$	103.64(17)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(12)$	102.51(17)
$\mathrm{F}(3)-\mathrm{C}(12)-\mathrm{F}(2)$	106.1(3)
$\mathrm{F}(3)-\mathrm{C}(12)-\mathrm{F}(1)$	108.0(3)
$\mathrm{F}(2)-\mathrm{C}(12)-\mathrm{F}(1)$	106.7(3)
$\mathrm{F}(3)-\mathrm{C}(12)-\mathrm{S}(1)$	112.5(3)
$\mathrm{F}(2)-\mathrm{C}(12)-\mathrm{S}(1)$	111.8(3)
$\mathrm{F}(1)-\mathrm{C}(12)-\mathrm{S}(1)$	111.4(3)

Symmetry transformations used to generate equivalent atoms:

Table 5. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for [3]OTf. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U}^{11}+\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Cl}(1)$	$32(1)$	$40(1)$	$38(1)$	$3(1)$	$-4(1)$	$6(1)$
$\mathrm{Cl}(2)$	$49(1)$	$35(1)$	$33(1)$	$3(1)$	$-6(1)$	$-14(1)$
$\mathrm{P}(1)$	$28(1)$	$28(1)$	$26(1)$	$3(1)$	$0(1)$	$-3(1)$
$\mathrm{Si}(1)$	$26(1)$	$32(1)$	$28(1)$	$0(1)$	$3(1)$	$-4(1)$
$\mathrm{N}(1)$	$29(2)$	$22(1)$	$25(2)$	$-4(1)$	$3(1)$	$0(1)$
$\mathrm{N}(2)$	$29(2)$	$25(2)$	$27(2)$	$0(1)$	$1(1)$	$1(1)$
$\mathrm{N}(3)$	$30(2)$	$35(2)$	$30(2)$	$3(1)$	$4(1)$	$-2(1)$
$\mathrm{C}(1)$	$25(2)$	$28(2)$	$32(2)$	$1(2)$	$3(1)$	$1(2)$
$\mathrm{C}(2)$	$27(2)$	$25(2)$	$28(2)$	$-3(2)$	$5(1)$	$-2(2)$
$\mathrm{C}(3)$	$22(2)$	$26(2)$	$24(2)$	$0(1)$	$-1(1)$	$-3(1)$
$\mathrm{C}(4)$	$29(2)$	$24(2)$	$36(2)$	$0(2)$	$5(2)$	$4(2)$
$\mathrm{C}(5)$	$31(2)$	$27(2)$	$32(2)$	$-2(2)$	$6(2)$	$1(2)$
$\mathrm{C}(7)$	$34(2)$	$42(2)$	$29(2)$	$6(2)$	$3(2)$	$-3(2)$
$\mathrm{C}(8)$	$39(2)$	$23(2)$	$37(2)$	$3(2)$	$-1(2)$	$0(2)$
$\mathrm{C}(9)$	$35(2)$	$37(2)$	$46(2)$	$-6(2)$	$6(2)$	$-4(2)$
$\mathrm{C}(10)$	$41(2)$	$46(2)$	$32(2)$	$7(2)$	$2(2)$	$-9(2)$
$\mathrm{C}(11)$	$35(2)$	$45(2)$	$41(2)$	$-4(2)$	$0(2)$	$-13(2)$
$\mathrm{S}(1)$	$28(1)$	$31(1)$	$29(1)$	$-2(1)$	$3(1)$	$2(1)$
$\mathrm{F}(1)$	$71(2)$	$57(2)$	$51(2)$	$21(1)$	$11(1)$	$18(1)$
$\mathrm{F}(2)$	$46(2)$	$82(2)$	$61(2)$	$14(2)$	$27(1)$	$-5(1)$
$\mathrm{F}(3)$	$88(2)$	$85(2)$	$34(1)$	$-12(1)$	$-2(1)$	$-14(2)$
$\mathrm{O}(1)$	$59(2)$	$40(2)$	$51(2)$	$-1(1)$	$6(1)$	$25(2)$
$\mathrm{O}(2)$	$39(2)$	$49(2)$	$40(2)$	$-12(1)$	$-3(1)$	$-9(1)$
$\mathrm{O}(3)$	$29(1)$	$49(2)$	$45(2)$	$5(1)$	$6(1)$	$-8(1)$
$\mathrm{C}(12)$	$37(2)$	$47(2)$	$36(2)$	$1(2)$	$8(2)$	$6(2)$

Table 6. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for k 0384 .

	x	y	z	U(eq)
H(1A)	2552	2911	8603	34
$\mathrm{H}(2 \mathrm{~A})$	2027	1266	9796	32
H(4A)	4924	-2180	8452	37
H(5A)	5459	-453	7299	37
H(7A)	1478	-226	10705	53
H(7B)	2619	-1380	11326	53
H(7C)	1106	-2011	10828	53
H(8A)	4946	-3414	9807	50
H(8B)	3262	-3784	9365	50
H(8C)	3400	-3902	10453	50
H(9A)	8376	-372	5334	59
H(9B)	8453	215	4285	59
H(9C)	6833	-537	4716	59
H(10A)	4903	3907	4517	59
H(10B)	4553	2195	4230	59
H(10C)	6066	3028	3734	59
H(11A)	9154	2885	5878	60
H(11B)	7961	4362	5577	60
H(11C)	9163	3445	4825	60

