Lewis Acid Promoted Carbon-Carbon bond Cleavage of Aziridines: Divergent Cycloaddition Pathways of the Derived Ylides
 Patrick D. Pohlhaus, Roy K. Bowman, and Jeffrey S. Johnson*
 Department of Chemistry, University of North Carolina at Chapel Hill,

Chapel Hill, North Carolina 27599-3290

Supporting Information

Experimental Section

Materials and Methods: General. Infrared (IR) spectra were obtained using a Nicolet 560-E.S.P. infrared spectrometer. Proton and carbon nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) were recorded on the following instruments: Bruker model Avance $400\left({ }^{1} \mathrm{H}\right.$ NMR at 400 MHz and ${ }^{13} \mathrm{C}$ NMR at 100 MHz$)$ and Varian Gemini 300 (${ }^{1} \mathrm{H}$ NMR at 300 MHz and ${ }^{13} \mathrm{C}$ at 75 MHz) spectrometers with tetramethylsilane (TMS) as the internal standard for ${ }^{1} \mathrm{H}$ NMR at 0.00 ppm and CDCl_{3} solvent resonance as the internal standard for ${ }^{13} \mathrm{C}$ NMR at $77.16 \mathrm{ppm} .{ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{sep}=$ septet, $\mathrm{m}=$ multiplet), coupling constants (Hz), and integration. Structural assignments were made using a combination of COSY, NOESY, HMQC, and HMBC experiments (see Appendix for spectra). Combustion analyses were performed by Atlantic Microlab Inc., Norcross, GA. Analytical thin layer chromatography (TLC) was performed on Whatman 0.25 mm silica gel 60 plates. Visualization was accomplished with UV light and aqueous ceric ammonium molybdate solution followed by heating. Purification of the reaction products was carried out by flash chromatography using Sorbent Technologies silica gel $60(32-63 \mu \mathrm{~m})$. All reactions were carried out under an atmosphere of nitrogen in flamedried glassware with magnetic stirring. Yield refers to isolated yield of analytically pure material. Yields are reported for a specific experiment and as a result may differ slightly from those found in the tables and equations, which are averages of at least two experiments. Toluene, tetrahydrofuran, and methylene chloride were dried by passage through a column of neutral alumina under nitrogen prior to use. Triazolines were prepared using Carrie's procedure from the corresponding aryl azide and benzylidene malonate. ${ }^{1}$ Aryl azides were prepared from a known procedure. ${ }^{2}$ Benzylidene malonates were prepared via Knoevenagel condensations. ${ }^{3}$ Unless otherwise noted, reagents were obtained from commercial sources and used without further purification. Zinc (II) chloride was dried at $150^{\circ} \mathrm{C}$ under vacuum overnight.

General procedure (A) for aziridine synthesis and Lewis acid-promoted cycloaddition. In an inert atmosphere glove box, a flame-dried Schlenk tube with a magnetic stir bar was charged with 0.22 mmol of triazoline and 3 mL of toluene. Outside of the glove box, this solution was heated to $150^{\circ} \mathrm{C}$ for 14 h . After cooling, the tube was transferred into the glove box where it was concentrated in vacuo. To the remaining residue was added ZnCl_{2} (1.2 equiv), 1.6 mL of solvent, and the dipolarophile (3-22 equiv). The tube was sealed and the reaction was stirred for 76 h at $23^{\circ} \mathrm{C}$ outside of the glove box. The reaction was diluted with 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 10 ml of saturated aqueous NaHCO_{3}. The aqueous layer was extracted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were combined, washed with 20 mL of saturated aqueous NaCl ,
dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed with a rotary evaporator. The product was purified by flash chromatography, eluting with the indicated solvent system to afford the pure pyrrolidine or tetrahydroquinoline product.

General procedure (B) for aziridine synthesis and Lewis acid-catalyzed cycloaddition. In an inert atmosphere glove box, a flame-dried Schlenk tube with a magnetic stir bar was charged with 0.22 mmol of triazoline and 3 mL of toluene. Outside of the glove box, this solution was heated to $150^{\circ} \mathrm{C}$ for 14 h . After cooling the tube was transferred into the glove box where it was concentrated in vacuo. The catalyst was prepared in the glovebox by stirring 0.04 mmol of ZnCl_{2} and 0.04 mmol of N, N -dibenzylidene-cyclohexane-1,2-diamine in 2 mL of THF for one hour. To the aziridine generated from the triazoline thermolysis was added (N, N-dibenzylidene-cyclohexane-1,2-diamine) ZnCl_{2} (0.2 equiv) as a heterogeneous mixture in THF and concentrated in vacuo. The residue was treated with 1.6 mL of solvent and the dipolarophile (3-22 equiv). The tube was sealed and the reaction was stirred for 76 h at $45^{\circ} \mathrm{C}$ outside of the glove box. The reaction was diluted with 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 10 ml of saturated aqueous NaHCO_{3}. The aqueous layer was extracted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were combined, washed with 20 mL of saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed with a rotary evaporator. The product was purified by flash chromatography, eluting with the indicated solvent system to afford the pure pyrrolidine or tetrahydroquinoline product.

2-(4-Phenyl-2,3,3a,9b-tetrahydro-4H-furo[3,2-c]quinolin-5-yl)-malonic acid diethyl ester (4). The title compound was prepared according to General Procedure A using $80.0 \mathrm{mg}(0.218 \mathrm{mmol})$ of triazoline, 3 mL of $\mathrm{C}_{7} \mathrm{H}_{8}$, then $35.3 \mathrm{mg}(0.259 \mathrm{mmol})$ of ZnCl_{2}, $360 \mu \mathrm{~L}(4.73 \mathrm{mmol})$ of dihydrofuran, and 1.6 mL of $\mathrm{C}_{7} \mathrm{H}_{8}$. After 76 h at $23{ }^{\circ} \mathrm{C}$ and extractive workup, ${ }^{1} \mathrm{H}$ NMR of the unpurified product ($\delta 4.66$ vs. $\delta 5.14$) gave the isomeric composition of the product: $\mathbf{4} / \mathbf{3}=3.2: 1 .{ }^{1} \mathrm{H}$ NMR ($\delta 4.66$ vs. $\delta 5.04$) gave the diastereomer ratio of $\mathbf{4}$ with respect to another isomer of unknown relative stereochemistry: 10:1. The isomers were separated and purified by flash chromatography with a $5-20 \% \mathrm{EtOAc} /$ hexanes linear gradient to afford $49.5 \mathrm{mg}(55 \%)$ of the product $(4+3)$, as a clear oil which contained 3% of a $[4+2]$ adduct of unknown relative stereochemistry.

Analytical data for 4: IR (thin film, cm^{-1}) 3057, 2983, 2937, 2872, 1755, 1738, 1605, 1581, 1497, 1456, 1369, 1265, 1178, 1161, 1103, 1032, 737, 704, ${ }^{1} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{ddd}, J=8.3,7.5$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{ddd}, J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H})$, $4.66(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.76(\mathrm{~m}, 4 \mathrm{H})$, 2.66 (dddd, $J=7.7,7.7 .5 .7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{t}, J$
$=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \oint 167.72,167.69$, $143.68,141.71,130.90,128.90,128.78$, 128.11, 128.01, 122.30, 118.80, 113.18, 74.39, $65.71,65.00,63.18,61.76,44.14,29.82$, $29.77,14.15,13.87$; TLC (20% EtOAc/pet. ether) $\mathrm{R}_{f} 0.31$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{5}$: C, 70.40 ; H, 6.65 ; $\mathrm{N}, 3.42$. Found: C, 70.07; H, 6.65; N, 3.34.

Analytical data for 4,5-Diphenyl-hexahydro-furo[2,3-c]pyrrole-6,6-dicarboxylic acid diethyl ester (3): IR (thin film, cm^{-1}) 3061, 3028, 2980, 2937, 2895, 1755, 1720, $1601,1581,1504,1454,1389,1367,1292,1267,1225,1176,1138,1117,1059,1034$, 928, 862, 750,704 ; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H})$, 7.20-7.16 (m, 1H), 7.07-7.02 (m, 2H), 6.85-6.82 (m, 2H), $6.78(\mathrm{tt}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.29(\mathrm{~m}, 1 \mathrm{H})$, 4.06-3.98 (m, 1H), 3.92-3.84 (m, 1H); 3.64 (ddd, $J=8.1,8.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.45(\mathrm{~m}$, $2 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{\mathfrak{3}}$) $\delta 168.42,167.62,145.18,140.02,128.52,128.30,127.74,127.18,121.00$, $119.76,87.97,81.47,69.35,67.76,61.63,61.42,47.06,28.81,14.36,13.84$; TLC (20% EtOAc/pet. ether) $\mathrm{R}_{f} 0.36$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{5}$: C, 70.40 ; H, 6.65; N, 3.42. Found: C, 70.25; H, 6.73; N, 3.35.

2-(5-Phenyl-3,4,4a,10b-tetrahydro-2H,5H-pyrano[3,2-c]quinolin-6-yl)-malonic acid diethyl ester (6a). The title compound was prepared according to General Procedure A using $80.0 \mathrm{mg}(0.218 \mathrm{mmol})$ of triazoline, 3 mL of $\mathrm{C}_{7} \mathrm{H}_{8}$, then $35.6 \mathrm{mg}(0.261 \mathrm{mmol})$ of $\mathrm{ZnCl}_{2}, 300 \mu \mathrm{~L}(3.29 \mathrm{mmol})$ of dihydropyran, and 1.6 mL of THF. After 76 h at $23{ }^{\circ} \mathrm{C}$ and extractive workup, ${ }^{1} \mathrm{H}$ NMR of the unpurified product ($\delta 4.50$ vs. $\delta 4.94$) gave the ratio of $\mathbf{6 a}$ with respect to a [3+2] isomer of unknown relative stereochemistry: 12:1. The crude product was purified by flash chromatography with a $7.5-17.5 \%$ EtOAc/hexanes linear gradient to afford $77.0 \mathrm{mg}(83 \%)$ of the product as a clear oil.

Analytical data for 6a: IR (thin film, cm^{-1}) 3062, 3030, 2980, 2939, 2862, 1759, 1736, 1603, 1579, 1495, 1464, 1454, 1390, 1367, 1304, 1271, 1217, 1176, 1159, 1090, $1072,1041,1030,943,916,893,866,779,739,704,{ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$) $\oint 7.33$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{ddd}, J=8.6,7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{ddd}, J=$ $7.4,7.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.21-4.09 (m, 2H), 3.92-3.71 (m, 3H), 3.67-3.61 (m, 1H), 2.19 (dddd, $J=6.3,6.3,4.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.95(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) ; 167.92,167.51$, 143.87, $142.18,129.42,128.78,128.60,127.70,127.58,121.87,118.18,112.57,71.33,66.22$, 64.76, 64.57, 61.83, 61.65, 39.33, 25.37, 23.99, 14.13, 13.77; TLC (20% EtOAc/pet. ether) $\mathrm{R}_{f} 0.40$; Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{5}$: C, $70.90 ; \mathrm{H}, 6.90$; N, 3.31. Found: C, 70.69; H, 6.95; N, 3.24.

2-[5-(4-Chloro-phenyl)-3,4,4a,10b-tetrahydro-2H,5H-pyrano[3,2-c]quinolin-6-yl]malonic acid dimethyl ester (6b). The title compound was prepared according to General Procedure A using $81.5 \mathrm{mg}(0.218 \mathrm{mmol})$ of triazoline, 3 mL of $\mathrm{C}_{7} \mathrm{H}_{8}$, then 35.6 $\mathrm{mg}(0.261 \mathrm{mmol})$ of $\mathrm{ZnCl}_{2}, 300 \mu \mathrm{~L}(3.29 \mathrm{mmol})$ of dihydropyran, and 1.6 mL of THF. After 76 h at $23{ }^{\circ} \mathrm{C}$ and extractive workup, ${ }^{1} \mathrm{H}$ NMR of the unpurified product ($\delta 4.51 \mathrm{vs}$. $\delta 4.93$) gave the ratio of $\mathbf{6 b}$ with respect to a [3+2] isomer of unknown relative stereochemistry: 7.6:1. The crude product was purified by flash chromatography with a $10-20 \% \mathrm{EtOAc} / \mathrm{hexanes}$ gradient to afford $68.3 \mathrm{mg}(73 \%)$ of the product as a white foam.

Analytical data for $\mathbf{6 b}$: IR (thin film, cm^{-1}) $3654,3488,3044,2951,2861,2724$, 1907, 1743, 1603, 1578, 1492, 1496, 1435, 1397, 1368, 1305, 1162, 1090, 1041, 1014, $921,896,839,826,750,705,660,645,608 ;{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{ddd}, J=7.5,7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.80-3.71 (m, 1H), 3.71 (s, 3H), 3.66-3.59 (m, 1H), 3.37 (s, 3H), 2.19-2.11 (m, 1H), 1.80$1.49(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$); 168.14, 167.66, 143.36, 140.71, 133.45, 129.35, 128.91, 128.73(two overlapping resonances), 121.52, 118.53, 112.01, 70.56, $65.30,64.15,63.91,52.68,52.60,39.33,25.23,24.25$; TLC (20% EtOAc/pet. ether) R_{f} 0.26 ; Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClNO}_{5}$: C, 64.26 ; H, 5.63 ; N, 3.26. Found: C, 64.03; H, 5.73; N, 3.15.

6c

2-(9-Methoxy-5-phenyl-3,4,4a,10b-tetrahydro-2H,5H-pyrano[3,2-c]quinolin-6-yl)-

 malonic acid dimethyl ester ($\mathbf{6 c}$). The title compound was prepared according to General Procedure A using $80.5 \mathrm{mg}(0.218 \mathrm{mmol})$ of triazoline, 3 mL of $\mathrm{C}_{7} \mathrm{H}_{8}$, then 35.6 $\mathrm{mg}(0.261 \mathrm{mmol})$ of $\mathrm{ZnCl}_{2}, 300 \mu \mathrm{~L}(3.29 \mathrm{mmol})$ of dihydropyran, and 1.6 mL of THF. After 76 h at $23{ }^{\circ} \mathrm{C}$ and extractive workup, ${ }^{1} \mathrm{H}$ NMR of the unpurified product ($\delta 4.49 \mathrm{vs}$. $\delta 4.89$) gave the ratio of $\mathbf{6 c}$ with respect to a [3+2] isomer of unknown relative stereochemistry: $26: 1$. The crude product was purified by flash chromatography with a $15-25 \% \mathrm{EtOAc} /$ hexanes linear gradient to afford $60.8 \mathrm{mg}(66 \%)$ of the product as a white foam.Analytical data for title 6c: IR (thin film, cm^{-1}) 2999, 2950, 2859, 1742, 1505, 1453, 1434, 1357, 1229, 1160, 1087, 1066, 1043, 923, 905, 870, 805, 760, 737, 704; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77(\mathrm{dd}, J=9.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=6.6$
$\mathrm{Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.62$ (m, 1H), 3.37 (s, 3H), 2.19 (dddd, $J=7.1,7.1,4.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.59-$ 1.48 (m, 2H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$); 168.53, 168.08, 152.36, 142.16, 137.71, 128.58 , 127.67, 127.42, 122.67, 115.09, 114.35, 113.19, 71.30, 65.74, 64.70, 64.38, 55.81, 52.52, 52.50, 39.47, 25.35, 24.04; TLC (20\% EtOAc/pet. ether) $\mathrm{R}_{f} 0.16$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{6}$: C, $67.75 ; \mathrm{H}, 6.40$; N, 3.29. Found: C, $67.83 ; \mathrm{H}, 6.48 ; \mathrm{N}, 3.28$.

5-Naphthalen-1-yl-1-phenyl-1,5-dihydro-[1,2,3]triazole-4,4-dicarboxylic acid dimethyl ester. The title compound was prepared by combining 2.9 g of 2-Naphthalen1 -ylmethylene-malonic acid dimethyl ester (10.9 mmol) and 2.6 g of phenyl azide (21.8 mmol) in a small vial. After 42 d at $60^{\circ} \mathrm{C}$, the crude product was purified by flash chromatography with a $15-20 \%$ EtOAc/hexanes gradient to afford $667 \mathrm{mg}(16 \%)$ of the product as a yellow solid.

Analytical data for title compound: IR (Nujol mull, cm^{-1}) 1742, 1598, 1461, 1377, $1282,1228,1130,750 ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 8.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{ddd}, J=8.2,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (ddd, $J=8.2,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.09$ (dd, $J=$ $7.2,0.98 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{tt}, J=6.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 166.10,164.75,138.63,133.84,131.44,129.60,129.44$, 128.98 , 128.76, 127.27, 126.29, 125.81, 125.34, 123.72, 123.25, 115.80, 95.97, 59.22, 54.45, 52.37; TLC (20\% EtOAc/pet. ether) $\mathrm{R}_{f} 0.22$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 67.86; H, 4.92; N, 10.79. Found: C, 67.93; H, 5.05; N, 10.55.

6d
2-(5-Naphthalen-1-yl-3,4,4a,10b-tetrahydro-2H,5H-pyrano[3,2-c]quinolin-6-yl)malonic acid dimethyl ester (6d). The title compound was prepared according to General Procedure A using $84.9 \mathrm{mg}(0.218 \mathrm{mmol})$ of triazoline, 3 mL of $\mathrm{C}_{7} \mathrm{H}_{8}$, then 33.0 $\mathrm{mg}(0.242 \mathrm{mmol})$ of $\mathrm{ZnCl}_{2}, 300 \mu \mathrm{~L}(3.29 \mathrm{mmol})$ of dihydropyran, and 1.6 mL of THF. After 76 h at $23{ }^{\circ} \mathrm{C}$ and extractive workup, ${ }^{1} \mathrm{H}$ NMR of the unpurified product ($\delta 4.64$ vs. $\delta 4.90$) gave the diastereomer ratio of $\mathbf{6 d}$ with respect to another isomer of unknown relative stereochemistry: $4.2: 1$. The material was purified by flash chromatography with
a $5-20 \% \mathrm{EtOAc} /$ hexanes linear gradient to afford 49.0 mg (51\%) of the product as clear crystals that contained 13% of a diastereomer.

Analytical data for 6d: IR (Nujol mull, cm^{-1}) 2357, 1753, 1742, 1604, 1501, 1460, 1377, 1335, 1242, 1202, 1170, 1126, 1081, 1067, 783, $748,{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.61-7.55 (m, 1H), 7.53-7.50 (m, 1H), 7.45 (ddd, $J=7.5,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.29$ (m, 2H), 7.26-7.19 (m, 1H), 6.87 (dd, $J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.49$ (d, J $=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.56(\mathrm{~m}, 2 \mathrm{H})$, $3.05(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.58(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$); 168.23, 167.42, 143.67, 137.25, 134.08, 130.60, 129.31, 128.57, 128.07, 126.66, 125.70, 125.22(two overlapping resonances), 124.55, 122.44, 120.32, 118.13, 110.70 , 69.37, 64.52, 61.91, 60.76, 52.69, 52.47, 37.84, 25.81, 25.24; TLC (20% $\mathrm{EtOAc} /$ Pet. Ether) $\mathrm{R}_{f} 0.31$; Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{5}: \mathrm{C}, 72.79$; H, 6.11; N, 3.14. Found: C, 72.55; H, 6.15; N, 3.09.

$2-((6 \alpha, 6 a \beta, 7 \alpha, 10 \alpha, 10 a \beta)-5,6,6 a, 7,8,9,10,10 a-o c t a h y d r o-7,10-m e t h a n o-6-p h e n y l-$ phenanthridin-5-yl)malonic acid dimethyl ester (6e). The title compound was prepared according to General Procedure A using $80 \mathrm{mg}(0.236 \mathrm{mmol})$ of triazoline, 3 mL of $\mathrm{C}_{7} \mathrm{H}_{8}$, then $35 \mathrm{mg}(0.26 \mathrm{mmol})$ of $\mathrm{ZnCl}_{2}, 67.0 \mathrm{mg}(0.708 \mathrm{mmol})$ of norbornylene, and 1.6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 76 h at $23{ }^{\circ} \mathrm{C}$ and extractive workup, ${ }^{1} \mathrm{H} \mathrm{NMR}$ of the unpurified product ($\delta 2.80$ vs. $\delta 2.72$) gave the diastereomer ratio of $\mathbf{6 e}$ with respect to another isomer of unknown relative stereochemistry: 9:1. The isomers were purified by flash chromatography with a $15-22.5 \%$ EtOAc/hexanes linear gradient to afford 80.9 mg (85%) of the product as a white foam which contained 10% of a diastereomer.

Alternatively, the title compound was prepared according to General Procedure B using $80 \mathrm{mg}(0.236 \mathrm{mmol})$ of triazoline, 3 mL of $\mathrm{C}_{7} \mathrm{H}_{8}, 20 \mathrm{mg}(0.047 \mathrm{mmol})$ of (N, N -dibenzylidene-cyclohexane-1,2-diamine) $\mathrm{ZnCl}_{2}, 67.0 \mathrm{mg}(0.708 \mathrm{mmol})$ of norbornylene, and 1.6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 76 h at $45^{\circ} \mathrm{C}$ and extractive workup, the crude product was purified by flash chromatography with a $15-22.5 \% \mathrm{EtOAc} /$ hexanes linear gradient to afford $83.0 \mathrm{mg}(86 \%)$ of the product as a white foam which contained 15% of a diastereomer.

Analytical data for 6e: IR (thin film, cm^{-1}), 3060, 3027, 2952, 2869, 1762, 1741, $1598,1496,1452,1434,1371,1340,1282,1247,1230,1193,1120,1072,1029$, 938, 929, 890, 827, 806, 750, 736, 700; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19-7.03(\mathrm{~m}$, $7 \mathrm{H}), 6.83-6.80(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}$, $3 \mathrm{H}), 2.80(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{dd}, J=9.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.79$ $(\mathrm{d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J$ $=9.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) ; 168.17,167.95,144.75,144.05,130.48$,
129.72, 128.41, 127.63, 126.87, 126.61, 119.27, 113.63, 63.90(two overlapping resonances), 52.90, 52.57, 52.10, 47.32, 44.02, 43.76, 34.29, 30.80, 28.93; TLC ($20 \% \mathrm{EtOAc} /$ pet. ether) $\mathrm{R}_{f} 0.42$; Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{4}$: C, 74.05 ; H, 6.71; N, 3.45. Found: C, 74.20; H, 6.77; N, 3.49

2-((6 $\alpha, 6 \mathrm{a} \beta, 7 \alpha, 10 \alpha, 10 \mathrm{a} \beta)-5,6,6 \mathrm{a}, 7,8,9,10,10 \mathrm{a}-0 \mathrm{ctahydro-7,10-methano-6-(4-}$ chlorophenyl)-phenanthridin-5-yl)malonic acid dimethyl ester (6f). The title compound was prepared according to General Procedure A using $88 \mathrm{mg}(0.236 \mathrm{mmol})$ of triazoline, 3 mL of $\mathrm{C}_{7} \mathrm{H}_{8}$, then $35 \mathrm{mg}(0.26 \mathrm{mmol})$ of $\mathrm{ZnCl}_{2}, 67.0 \mathrm{mg}(0.708 \mathrm{mmol})$ of norbornylene, and 1.6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 76 h at $23{ }^{\circ} \mathrm{C}$ and extractive workup, ${ }^{1} \mathrm{H}$ NMR of the unpurified product ($\delta 2.78$ vs. $\delta 2.70$) gave the diastereomer ratio of $\mathbf{6 f}$ with respect to another isomer of unknown relative stereochemistry: $2.8: 1$. The isomers were purified by flash chromatography with a $10-25 \% \mathrm{EtOAc} /$ hexanes linear gradient to afford $78 \mathrm{mg}(75 \%)$ of the product as a white foam which contained 23% of a diastereomer.

Analytical data for title 6f: IR (thin film, cm^{-1}), 3062, 2952, 2869, 1764, 1739, 1598, 1579, 1490, 1454, 1434, 1396, 1371, 1340, 1295, 1282, 1232, 1170, 1091, 1031, 1014, 910, 823, 750, 730; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15-7.06(\mathrm{~m}, 4 \mathrm{H})$, $6.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ $(\mathrm{s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.19-2.11 (m, 1H), $1.77(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 1 \mathrm{H})$, 1.39-1.26 (m, 2H), $1.04(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$); 167.98, 167.76, 144.33, 142.85, 132.41, 130.44, 129.87, 128.86, 128.41, 126.82, 119.49, $113.54,63.81,62.76,52.90,52.62,52.18,47.68,43.91$ (two overlapping resonances), 34.28, 30.93, 28.78; TLC (20% EtOAc/Pet. Ether) $\mathrm{R}_{f} 0.41$; Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{Cl}$: C, 68.25 ; H, 5.96; N, 3.18. Found: C, 67.99 ; H, 5.99; N, 3.20. The relative stereochemistry of the major isomer was further confirmed by X-ray crystallography: see Appendix.

$\xrightarrow[\text { 2) norbornylene, } \mathrm{ZnCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}]{\text { 1) } \mathrm{C}_{7} \mathrm{H}_{8}, 150^{\circ} \mathrm{C}}$

2-((6 $\alpha, 6 \mathrm{a} \beta, 7 \alpha, 10 \alpha, 10 a \beta)-5,6,6 a, 7,8,9,10,10 a-o c t a h y d r o-7,10-m e t h a n o-2-m e t h o x y-6-$ phenyl-phenanthridin-5-yl)malonic acid dimethyl ester ($\mathbf{6 g}$). The title compound was prepared according to General Procedure A using $87 \mathrm{mg}(0.236 \mathrm{mmol})$ of triazoline, 3 mL of $\mathrm{C}_{7} \mathrm{H}_{8}$, then $35 \mathrm{mg}(0.26 \mathrm{mmol})$ of $\mathrm{ZnCl}_{2}, 67.0 \mathrm{mg}(0.708 \mathrm{mmol})$ of norbornylene, and 1.6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 76 h at $23^{\circ} \mathrm{C}$ and extractive workup, the crude product was purified by flash chromatography with a $10-25 \% \mathrm{EtOAc} /$ hexanes linear gradient to afford $85 \mathrm{mg}(82 \%)$ of the product as a white foam.

Analytical data for $\mathbf{6 g}$: IR (thin film, cm^{-1}), 2950, 2869, 2834, 1762, 1739, 1506, 1452, 1432, 1303, 1295, 1226, 1195, 1162, 1043, 1031, 910, 802, 734, 700; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.79-6.76(\mathrm{~m}$, $2 \mathrm{H}), 6.64(\mathrm{dd}, J=9.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=9.1,4.67 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.61(\mathrm{~m}$, $1 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 1 \mathrm{H}), \quad 1.41-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 168.3,168.21,152.98$, 143.60, 138.82, 131.90, 128.4, 127.88, $126.97,115.18,115.02,111.67,64.29,64.21,55.60,52.63,52.49,52.05,46.67$, 44.51, 43.36, 34.29, 30.58, 29.04; TLC ($20 \% \mathrm{EtOAc} /$ pet. ether) $\mathrm{R}_{f} 0.32$; Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{5}$: C, $71.70 ; \mathrm{H}, 6.71$; N, 3.22. Found: C, $71.51 ; \mathrm{H}, 6.72 ; \mathrm{N}, 3.14$

(\pm)-(3S,5S)-3-Ethoxy-1,5-diphenyl-pyrrolidine-2,2-dicarboxylic acid diethyl ester (7a). The title compound was prepared according to General Procedure A using 80.0 mg $(0.218 \mathrm{mmol})$ of triazoline, 3 mL of $\mathrm{C}_{7} \mathrm{H}_{8}$, then $35.6 \mathrm{mg}(0.261 \mathrm{mmol})$ of $\mathrm{ZnCl}_{2}, 340 \mu \mathrm{~L}$ $(3.55 \mathrm{mmol})$) of ethyl vinyl ether, and 1.6 mL of $\mathrm{C}_{7} \mathrm{H}_{8}$. After 76 h at $23^{\circ} \mathrm{C}$, and extractive workup, ${ }^{1} \mathrm{H}$ NMR of the unpurified product ($\delta 4.97$ vs. $\delta 5.05$) gave the diastereomer ratio of the product: $\mathbf{7 a} / 7 \mathbf{b}=1.6: 1$. The isomers were purified by adsorption onto SiO_{2} followed by flash chromatography with a $5-20 \% \mathrm{EtOAc} /$ hexanes linear gradient to afford $54.5 \mathrm{mg}(61 \%)$ of the product $(\mathbf{7 a}+7 \mathbf{b})$ as a clear oil.

Analytical data for 7a: IR (thin film, cm^{-1}) 3062, 3026, 2980, 2929, 2902, 2873, $1741,1732,1601,1504,1454,1367,1350,1327,1302,1242,1178,1128,1080,1061$, $1028,926,868,816,750,700 ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.28-$ $7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{tt}, J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55-$ $6.51(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{dd}, J=7.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=5.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.41(\mathrm{~m}$, $1 \mathrm{H}), 4.37-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.12-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.79$ (ddd, $J=12.7,7.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{ddd}, J=12.7,6.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.02(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$); 169.59, 167.82, 144.93, 143.52, 128.41, 128.30, 126.85, 126.81, 118.76, 116.61, 85.11, $79.55,65.88$, 64.02, 61.80, 61.64, 40.32, 15.06, 14.40, 13.93; TLC (10\% EtOAc/pet.
ether) $\mathrm{R}_{f} 0.18$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{5}$: C, $70.05 ; \mathrm{H}, 7.10 ; \mathrm{N}, 3.40$. Found: Combustion analysis failed.

Analytical data for (\pm)-(3R,5S)-3-Ethoxy-1,5-diphenyl-pyrrolidine-2,2dicarboxylic acid diethyl ester (7b): IR (thin film, cm^{-1}) 2981, 2924, 1741, 1601, 1504, 1450, 1350, 1329, 1242, 1211, 1178, 1161, 1122, 1095, 1063, 748, 692, ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}) 7.08-7.03(\mathrm{~m}$, $2 \mathrm{H}), 6.68(\mathrm{tt}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54-6.50(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62$ $(\mathrm{dd}, J=9.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.55-$ $3.48(\mathrm{~m} \mathrm{1H}), 2.74(\mathrm{ddd}, J=12.1,9.4,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{ddd}, J=12.1,6.3,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 170.19,167.72,145.43,144.08,128.84,128.44,127.05,126.08,118.03$, $114.74,84.13,66.87,63.87,62.10,61.75,39.94,29.86,15.44,14.24,14.22$; TLC (10% $\mathrm{EtOAc} /$ Pet. Ether) R_{f} 0.20; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{5}$: C, 70.05; H, 7.10; N, 3.40. Found: Combustion analysis failed.

(\pm)-(3S,5S)-3-Methoxy-3-methyl-1,5-diphenyl-pyrrolidine-2,2-dicarboxylic acid diethyl ester (8a). The title compound was prepared according to General Procedure A using $80.0 \mathrm{mg}(0.218 \mathrm{mmol})$ of triazoline, 3 mL of $\mathrm{C}_{7} \mathrm{H}_{8}$, then $33.0 \mathrm{mg}(0.242 \mathrm{mmol})$ of $\mathrm{ZnCl}_{2}, 313 \mu \mathrm{~L}(3.27 \mathrm{mmol})$ of 2-methoxypropene, and 1.6 mL of $\mathrm{C}_{7} \mathrm{H}_{8}$. After 76 h at 23 ${ }^{\circ} \mathrm{C}$, and extractive workup, ${ }^{1} \mathrm{H}$ NMR of the unpurified product ($\delta 4.99$ vs. $\delta 5.12$) gave the diastereomer ratio of the product: $\mathbf{8 a} / \mathbf{8} \mathbf{b}=1.4: 1$. The isomers were purified by adsorption onto SiO_{2} followed by flash chromatography with a $5-20 \% \mathrm{EtOAc} /$ hexanes linear gradient to afford $67.0 \mathrm{mg}(75 \%)$ of the product $(\mathbf{8 a}+\mathbf{8 b})$ as a clear oil.

Alternatively, the title compound was prepared according to General Procedure B using $80.0 \mathrm{mg}(0.218 \mathrm{mmol})$ of triazoline, 3 mL of $\mathrm{C}_{7} \mathrm{H}_{8}$, then $18.6 \mathrm{mg}(0.044 \mathrm{mmol})$ of (N, N-dibenzylidene-cyclohexane-1,2-diamine) $\mathrm{ZnCl}_{2}, \quad 313 \mu \mathrm{~L}(3.27 \mathrm{mmol})$ of 2 methoxypropene, and 1.6 mL of $\mathrm{C}_{7} \mathrm{H}_{8}$. After 76 h at $23{ }^{\circ} \mathrm{C}$, and extractive workup, ${ }^{1} \mathrm{H}$ NMR of the unpurified product gave the diastereomer ratio of the product: $\mathbf{8 a} / \mathbf{8 b}=1.2: 1$. The isomers were purified by adsorption onto SiO_{2} followed by flash chromatography with a $5-20 \% \mathrm{EtOAc} /$ hexanes linear gradient to afford $68.0 \mathrm{mg}(76 \%)$ of the product $(\mathbf{8 a}+\mathbf{8 b})$ as a clear oil.

Analytical data for 8a: IR (thin film, cm^{-1}) 3061, 3026, 2980, 2937, 2902, 2829, $1751,1601,1578,1506,1464,1452,1379,1350,1329,1261,1232,1205,1192,1167$, $1136,1109,1078,1039,993,891,866,764,748,702,646 ;{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{tt}, J$ $=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40-6.36(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.22-$ $4.11(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{dd}, J=13.5,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{dd}, J=13.2,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz , CDCl_{3}); $\delta 169.56,166.59,146.07,144.14,128.44,128.22,126.69,126.38,117.46$, $114.19,88.80,83.54,65.16,61.94,61.24,49.28,39.99,17.94,14.33,14.12$; TLC (20%

EtOAc/Pet. Ether) R_{f} 0.41; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{5}$: C, 70.05; H, 7.10; N, 3.40. Found: Analysis Failed

Analytical data for (\pm)-(3R,5S)-3-Methoxy-3-methyl-1,5-diphenyl-pyrrolidine-2,2-dicarboxylic acid diethyl ester (8b): IR (thin film, cm^{-1}) 3061, 3026, 2981, 2956, 2931, 2850, 1763, 1743, 1601, 1504, 1450, 1377, 1365, 1323, 1265, 1219, 1186, 1155, $1126,1076,1038,908,864,750,704,692 ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.47-7.44 (m, $2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{tt}, \mathrm{J}=7.3,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.36-6.33(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{dd}, \mathrm{J}=9.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.10(\mathrm{~m}$, $2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{dd}, \mathrm{J}=11.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, \mathrm{J}=12.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{t}$, $\mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.95,167.97,145.88,143.76,128.58,128.36,126.84,126.62,117.87,114.90,86.42$, 82.23, 63.64, 61.85, 61.47, 51.23, 45.41, 20.48, 14.30, 14.10; TLC ($20 \% \mathrm{EtOAc} / \mathrm{Pet}$. Ether) $\mathrm{R}_{\mathrm{f}} 0.34$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{5}$: C, 70.05 ; H, 7.10; N, 3.40. Found: C, 70.10; H, 7.03; N, 3.40.

Literature Cited

(1) Texier, F.; Carrie, R. Bull. Soc. Chim. Fr. 1971, 4119-4128.
(2) Tanno, M.; Sueyoshi, S.; Kamiya, S. Chem. Pharm. Bull. 1982, 30, 3125-3132.
(3) Fraser, W.; Suckling, C. J.; Wood, H. C. S. J. Chem. Soc. Perkin Trans. 1. 1990, 3137-3144.

Appendix. NMR spectra

Ph

(

Ph

1

1


```
Ortep diagram for 6f
```


