An Efficient Synthesis of 3-Substituted 3H-Pyrimidin-4-ones

Jae Uk Jeong,* Xiaohong Chen, Attiq Rahman, Dennis S. Yamashita, and Juan I. Luengo

Department of Medicinal Chemistry, MMPD CEDD, GlaxoSmithKline, 1250
South Collegeville Road, Collegeville, Pennsylvania 19426
Jae.U.Jeong@gsk.com
General Experimental. Thomas-Hoover (Uni-Melt) capillary melting point apparatus was used to determine all the melting points (not corrected). Spectra for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were obtained using a Bruker Avance 400 instrument. NMR solvents used were either CDCl_{3} or DMSO-d6. Infrared spectra were obtained with a Perkin-Elmer Travel-IR. Mass spectra was obtained using a LCMS unit incorporating Shimadzu LC pumps, Javelin reversed-phased Aquasil C18 columns, UV and ELS detectors, and Perkin-Elmer Sciex API 150EX mass spectrophotometer with an electrospray ion source in positive ion mode. All reactions were run under nitrogen atmosphere and monitored by use of TLC or LCMS. Flash chromatography was done using pre-packed silica gel columns from Biotage.

Representative procedure for enamide esters 7:

(Z)-3-Acetylamino-but-2-enoic acid methyl ester (7a) ${ }^{1}$

$7 a$

$7 \mathbf{a}^{\prime}$

$7 \mathrm{a}(E)$

To a solution of methyl acetoacetate $(0.93 \mathrm{ml}, 8.61 \mathrm{mmol})$ in toluene $(17 \mathrm{ml})$ were added ammonium acetate $(3.98 \mathrm{~g}, 51.67 \mathrm{mmol})$ and 2 ml of acetic acid at rt. The reaction mixture was heated to reflux for 2 hr . A Dean-Stark trap was placed in between the reaction flask and a reflux condenser. Most of solvents and ammonium acetate were removed through a Dean-Stark trap. The clear resultant residue was cooled down to rt followed by the addition of acetic anhydride (4.5 $\mathrm{ml})$ and acetic acid (1 ml). After heating at $70{ }^{\circ} \mathrm{C}$ for 2 hr , the reaction mixture was cooled down to rt and was quenched with $1 \mathrm{~N} \mathrm{HCl}(30 \mathrm{ml})$, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with saturated aqueous NaHCO_{3} and brine. After drying over MgSO_{4} and concentration in vacuo, the residue was subjected to flash column chromatography on silica gel to
provide three products with a gradient of $5-60 \% \mathrm{EtOAc}$ in hexane as eluent. 7a ($0.93 \mathrm{~g}, 69 \%$, white crystalline): mp $42-43{ }^{\circ} \mathrm{C}$ (lit. ${ }^{\text {la }} \mathrm{mp} 42-43{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{\mathrm{f}}=0.72(20 \%$ EA/Hex); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~d}, 3 \mathrm{H}, J=1.0 \mathrm{~Hz}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $4.93(\mathrm{~d}, 1 \mathrm{H}, J=1.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 22.4,25.7,51.5,96.4,155.7,169.4$, 167.0. 7a' $(93 \mathrm{mg}, 7 \%) ; \mathrm{Rf}=0.64(50 \% \mathrm{EA} / \mathrm{Hex}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.25(\mathrm{~s}$, $3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 5.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .7 \mathbf{a}(\boldsymbol{E})(98 \mathrm{mg}, 7 \%) ; \mathrm{Rf}=0.45$ ($50 \% \mathrm{EA} / \mathrm{Hex}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 6.63$ (br s, 1H), 6.78 ($\mathrm{s}, 1 \mathrm{H}$).

(Z)-3-Acetylamino-2-methyl-but-2-enoic acid ethyl ester (7b)

Using the same procedure for the preparation of $\mathbf{7 a}, 1.66 \mathrm{~g}(87 \%$, oil) of 7b was obtained. $\mathrm{Rf}=0.60(20 \% \mathrm{EA} / \mathrm{Hex}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.33(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz})$, $1.85(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~d}, 3 \mathrm{H}, J=1.0 \mathrm{~Hz}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 4.20(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.6,14.2,17.3,25.5,60.4,103.1,150.3,169.0,170.2$.

7b

$7 \mathrm{~b}(E)$

7b(E) (80 mg, 5\%); Rf = $0.06(20 \% \mathrm{EA} / \mathrm{Hex}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{t}, 3 \mathrm{H}, J$ $=7.1 \mathrm{~Hz}), 1.78(\mathrm{~d}, 3 \mathrm{H}, J=1.5 \mathrm{~Hz}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~d}, 3 \mathrm{H}, J=1.3 \mathrm{~Hz}), 4.13(\mathrm{q}$, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 6.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

Using the same procedure for the preparation of $7 \mathbf{7 a}, 2.10 \mathrm{~g}(81 \%)$ of $7 \mathbf{c}$ was obtained as a white solid: mp 52-53 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.36\left(10 \%\right.$ EA/Hex); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.22(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 4.14$ (q, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}$), 7.10-7.33 (m, 5H). $7 \mathrm{c}(\boldsymbol{E})(50 \mathrm{mg}, 2 \%) ; \mathrm{R}_{\mathrm{f}}=0.40(50 \%$ EA/Hex); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H})$, $3.73(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 6.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.23-7.38(\mathrm{~m}, 5 \mathrm{H})$.
(Z)-2-Benzyl-3-[(1-phenyl-methanoyl)-amino]-but-2-enoic acid ethyl ester (7d)

Using the same procedure for the preparation of $7 \mathrm{a}, 2.5 \mathrm{~g}$ (81%) of 7 d was obtained as a white solid: mp 79-81 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.32\left(50 \%\right.$ EA/Hex); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{q}, 2 \mathrm{H}, J=7.1$ Hz), 7.20-8.04 (m, 10H).

Representative procedure for pyrimidinones 8:

2,6-Dimethyl-3-phenyl-3H-pyrimidin-4-one (8a)

To a solution of aniline $(0.14 \mathrm{ml}, 1.56 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was slowly added $0.78 \mathrm{ml}(1.56 \mathrm{mmol})$ of a 2.0 M solution of $\mathrm{Me}_{3} \mathrm{Al}$ in heptane (Aldrich) at rt under nitrogen. After stirring 20 min at rt , enamide was added. The reaction mixture was stirred for 5 h at rt . The reaction was quenched by the slow addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (or 10% (w/w) aq. citric acid) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with saturated aq. NaHCO_{3} and brine. After drying over MgSO_{4} and concentration in vacuo, the resultant residue was subjected to flash column chromatography on silica gel to afford the desired pyrimidinone 8a ($87 \mathrm{mg}, 84 \%$, white solid): $\mathrm{mp} 94-95{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.12(50 \%$ EA/Hex); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.58$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.2,24.4,111.3,127.9,129.8,130.4,137.7,158.9$, 162.9, 163.5; FT-IR (thin film from CDCl_{3}): 1678, $1529 \mathrm{~cm}^{-1}$; LCMS $\left(\mathrm{MH}^{+}\right)$: 201.1 (100\%).

3-Benzyl-2,6-Dimethyl-3H-pyrimidin-4-one (8b)

Yield: $116 \mathrm{mg}\left(85 \%\right.$, colorless oily solid); $\mathrm{R}_{\mathrm{f}}=0.16(50 \% \mathrm{EA} / \mathrm{Hex}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 5.31(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.38(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 23.5,24.1,47.1,110.9,127.0,128.2,129.4,135.7$, 159.4, 163.0, 163.2; FT-IR (thin film from CDCl_{3}): 1666, $1536 \mathrm{~cm}^{-1} ;$ LCMS $\left(\mathrm{MH}^{+}\right): 215.1$ (100\%).

3-Benzyl-2,5,6-trimethyl-3H-pyrimidin-4-one (8c)

Yield: $110 \mathrm{mg}\left(74 \%\right.$, colorless oil); $\mathrm{R}_{\mathrm{f}}=0.31(50 \% \mathrm{EA} / \mathrm{Hex}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $2.15(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 7.22-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.3,22.0,23.2,47.8,118.3,127.0,128.1,129.3,136.0,155.7,158.3$, 163.4; FT-IR (thin film from CDCl_{3}): 1656, $1546 \mathrm{~cm}^{-1}$; LCMS $\left(\mathrm{MH}^{+}\right): 229.1$ (100\%).

5-Benzyl-2,6-dimethyl-3-phenyl-3H-pyrimidin-4-one (8d)

This reaction was quenched by cold 1 N aq. HCl solution after the starting material was consumed. Yield: $177 \mathrm{mg}\left(98 \%\right.$, light yellow oil); $\mathrm{R}_{\mathrm{f}}=0.21(20 \% \mathrm{EA} / \mathrm{Hex})$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 7.09-7.42(\mathrm{~m}, 10 \mathrm{H})$; ${ }^{13}{ }^{3}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 22.3,24.2,32.18,120.2,122.2,124.52,126.5,127.9,128.8$, $129,129.3,129.7,130.4,138.1,139.9,156.2,159.4,163.3$; FT-IR (thin film from CDCl_{3}): 1660, 1538, 1453 cm^{-1}; LCMS (MH ${ }^{+}$): 290.4 (100\%).

3,5-Dibenzyl-2,6-dimethyl-3H-pyrimidin-4-one (8e)

This reaction was quenched by cold 1 N aq. HCl solution after the starting material was consumed. Yield: 152 mg (87%, white solid): $\mathrm{mp} 71-72{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}=0.25(30 \%$ EA/Hex); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 5.30(\mathrm{~s}$, 2H), 7.19-7.40 (m, 10H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 22.2,23.3,32.3,47.8,121.7$, $125.5,126.5,126.7,127.1,128.1,128.3,128.7,128.8,129.1,129.3,135.9,140.0$, 156.7, 159.4, 163.3; FT-IR (thin film from CDCl_{3}): 1656, $1598,1537 \mathrm{~cm}^{-1}$; LCMS $\left(\mathrm{MH}^{+}\right): 304.4$ (100\%).

5-Benzyl-3-cyclohexyl-2,6-dimethyl-3H-pyrimidin-4-one (8f)

This reaction was quenched by cold 1 N aq. HCl solution after the starting material was consumed. Yield: 108 mg (64%, white solid): $\mathrm{mp} 128-129{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.28$ ($20 \% \mathrm{EA} / \mathrm{Hex}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{~m}, 4 \mathrm{H}), 1.64(\mathrm{~m}, 4 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H})$, $2.25(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 7.10-7.28(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.8,24.3,25.4,26.8,28.6,31.9,61.9,122.9,126.3,128.7$, 128.7, 140.2, $155.9,158.2,163.6$; FT-IR (thin film from CDCl_{3}): 1643, 1540 , 1452, $1402 \mathrm{~cm}^{-1}$; LCMS (MH^{+}): 296.4 (100\%).

5-benzyl-3-(3-ethoxy-propyl)-2,6-dimethyl-3-pyrimidin-4-one (8g)

Yield: 121 mg (77%, light yellow oil): $\mathrm{R}_{\mathrm{f}}=0.10$ (20% EA/Hex); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.18-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.98-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 3.46-$ $3.51(\mathrm{~m}, 4 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 4.10-4.13(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.28(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.17,21.71,22.55,28.41,31.76,42.71 .66 .29,67.36,121.06,126.01$, 128.33, 128.37, 139.70, 155.91, 158.66, 162.61; FT-IR (thin film from DCM) 1656, $1543 \mathrm{~cm}^{-1}$; LCMS (MH^{+}): 301.4.

Benzyl-dimethylamino-dimethyl-3-pyrimidin-4-one (8h)

Yield: 86 mg (70%, light yellow solid): $\mathrm{mp} 62-63{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}=0.35$ ($20 \% \mathrm{EA} / \mathrm{Hex}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}, 6 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 7.17-7.30$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 22.09,22.49,31.77,43.47,123.38,126.42,128.68$, 128.81, 139.98, 158.68, 159.56, 163.11; FT-IR (thin film from DCM): 1657, 1543 cm^{-1}; LCMS (MH ${ }^{+}$): 258.4.

5-Benzyl-6-methyl-2,3-diphenyl-3H-pyrimidin-4-one (8i)

This reaction was quenched by cold 1 N aq. HCl solution after the starting material was consumed. Yield: 117 mg (72%, white solid): $\mathrm{mp} 149-151{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.31$ ($30 \% \mathrm{EA} / \mathrm{Hex}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 6.98-7.39(\mathrm{~m}$,
$15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 29.8,39.7,130.3,133.9,135.7,136.1,136.4,136.6$, 137.1, $142.4,145.1,147.1,164.1,166.8,170.3$; FT-IR (thin film from CDCl_{3}): 1662, 1620, $1493 \mathrm{~cm}^{-1}$; LCMS (MH^{+}): 352.4 (100\%).

5-Benzyl-3-cyclohexyl-6-methyl-2-phenyl-3H-pyrimidin-4-one (8j)

Yield: 102 mg (62%, white solid): $\mathrm{mp} 117-119{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.26(20 \% \mathrm{EA} / \mathrm{Hex}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.79-0.91(\mathrm{~m}, 2 \mathrm{H}), 1.05-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.55-$ $1.70(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.68(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H})$, 7.09-7.45 (m, 10H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 22.2,25.2,26.5,29.1,32.0,33.7,63.3$, $123.8,126.5,127.2,127.6,128.8,128.9,129.2,130.1,136.4,140.1,158.2,158.3$, 163.5; FT-IR (thin film from CDCl_{3}): 1649, $1597,1492,1452 \mathrm{~cm}^{-1}$; LCMS (MH^{+}): 358.5 (100\%).

An experimental procedure for the preparation of 2,6-dimethyl-3-phenyl-3H-pyrimidin-4-one (8a) from β-keto ester (6a) without purification of intermediates

To a solution of methyl acetoacetate $(0.93 \mathrm{ml}, 8.61 \mathrm{mmol})$ in toluene (17 ml) were added ammonium acetate $(3.98 \mathrm{~g}, 51.67 \mathrm{mmol})$ and 2 ml of acetic acid at rt. The reaction mixture was heated to reflux for 2 hr . A Dean-Stark trap was placed in between the reaction flask and a reflux condenser. Most of solvents and ammonium acetate were removed through a Dean-Stark trap. The clear resultant residue was cooled down to rt followed by the addition of acetic anhydride (4.5 $\mathrm{ml})$ and acetic acid (1 ml). After heating at $70{ }^{\circ} \mathrm{C}$ for overnight, the reaction mixture was cooled down to rt and was quenched with $1 \mathrm{~N} \mathrm{HCl}(30 \mathrm{ml})$, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with saturated aqueous NaHCO_{3} and brine. After drying over MgSO_{4} and concentration in vacuo, half of the crude E / Z mixture of the enamide esters $7 \mathbf{a} / 7 \mathbf{a}(\boldsymbol{E})$ was carried out for the next reaction. To a solution of aniline ($0.91 \mathrm{ml}, 9.99 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was slowly added $5.0 \mathrm{ml}(9.99 \mathrm{mmol})$ of a 2.0 M solution of $\mathrm{Me}_{3} \mathrm{Al}$ in heptane (Aldrich) at rt under nitrogen. After stirring 20 min at rt , the solution of crude E / Z mixture of the enamide esters $7 \mathbf{a} / 7 \mathbf{a}(\boldsymbol{E})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added drpowise to the above solution. The reaction mixture was stirred for 5 h at rt . The reaction was quenched by the slow addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$
(or 10% (w/w) aq. citric acid) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($25 \mathrm{~mL} \times 3$). The organic layer was washed with saturated aq. NaHCO_{3} and brine. After drying over MgSO_{4} and concentration in vacuo, the resultant residue was subjected to flash column chromatography on silica gel to afford the desired pyrimidinone 8a as a white solid ($447 \mathrm{mg}, 52 \%$ for three steps).

(Z)-3-Amino-but-2-enoic acid (9)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.84(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{R}_{\mathrm{f}}=0.51(20 \%$ EA/Hex).

5-Benzyl-2,4-dimethyl-[1,3]oxazin-6-one (10)

Yield: $45 \mathrm{mg}\left(42 \%\right.$, white solid) from 2c with $t-\mathrm{BuNH}_{2}$ and $\mathrm{Me}_{3} \mathrm{Al}$ as shown in Scheme 2 under the standard reaction condition for the preparation of 8a; mp 120$121{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.23(20 \% \mathrm{EA} / \mathrm{Hex}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $3.75(\mathrm{~s}, 2 \mathrm{H}), 7.11-7.29(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.3$ (two carbons), 31.4, $117.4,126.6,128.3,128.6,138.2,160.6,160.8,163.7$; FT-IR (thin film from $\left.\mathrm{CDCl}_{3}\right):$ 1731, $1633,1580,1272 \mathrm{~cm}^{-1} ;$ LCMS $\left(\mathrm{MH}^{+}\right): 216.2,234.2$ (100\%).
(Z)-3-Acetylamino-2-benzyl-but-2-enoic acid tert-butylamide (11)

Yield: $8 \mathrm{mg}(6 \%) ; \mathrm{R}_{\mathrm{f}}=0.15(20 \% \mathrm{EA} / \mathrm{Hex}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.09(\mathrm{~s}, 9 \mathrm{H})$, $2.07(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.12-7.29(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 17.2,25.7,28.5,33.7,51.3,108.4,127.0,127.6,129.1,138.5$, 147.7, 169.4, 169.9; FT-IR (thin film from CDCl_{3}): $1680,1630,1531,1445 \mathrm{~cm}^{-1}$; LCMS (MH^{+}): 289.2 (100\%).
(Z)-3-Acetylamino-2-benzyl-but-2-enoic acid (12)

Yield: $15 \mathrm{mg}\left(13 \%\right.$, white solid); $\mathrm{R}_{\mathrm{f}}=0.04(20 \% \mathrm{EA} / \mathrm{Hex}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 2.17 (s, 3H), 2.49 (s, 3H), 3.77 (s, 2H), 7.18-7.33 (m, 5H), 10.50 (br s, 1H), 11.67 (s, 1H); LCMS (MH ${ }^{+}$): 234.2 (100\%).

5-Benzyl-4-methyl-2-phenyl-[1,3]oxazin-6-one (13)

To a solution of $\mathbf{7 d}(100 \mathrm{mg}, 0.31 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was slowly added $0.47 \mathrm{ml}(0.93 \mathrm{mmol})$ of a 2.0 M solution of $\mathrm{Me}_{3} \mathrm{Al}$ in heptane (Aldrich) at rt under nitrogen. The reaction mixture was stirred at rt under nitrogen overnight. The reaction was quenched by the slow addition $10 \%(\mathrm{w} / \mathrm{w})$ aq. citric acid and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with saturated aq. NaHCO_{3} and brine. After drying over MgSO_{4} and concentration in vacuo, the resultant residue was subjected to flash column chromatography on silica gel to afford 74 $\mathrm{mg}(87 \%)$ of the desired product $\mathbf{1 3}$ as a white solid: mp 99-101 ${ }^{\circ} \mathrm{C}$ ($\mathrm{lit.}^{2}{ }^{2} \mathrm{mp} 99-$ $\left.101{ }^{\circ} \mathrm{C}\right) ; \mathrm{R}_{\mathrm{f}}=0.68(30 \% \mathrm{EA} / \mathrm{Hex}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.29(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H})$, 7.08-7.60 (m, 8H), 8.06-8.15 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.6, ~ 28.7,29.1,30.6$, $44.2,116.8,125.1,125.5,126.3,127.4,127.7,128.8,131.1,131.8,137.2,139.9$, 159.2, 159.6, 160.4, 168.4; FT-IR (thin film from CDCl_{3}): 1737, 1619, 1552, $1450 \mathrm{~cm}^{-1} ;$ LCMS (MH ${ }^{+}$: 277.3 (100\%).

N-((Z)-2-cyclohexylcarbamoyl-1-methyl-3-phenyl-propenzyl)-benzamide (14)

Yield: $20 \mathrm{mg}(5 \%)$ from the reaction shown in Scheme $3 ; \mathrm{R}_{\mathrm{f}}=0.45(30 \%$ EA/Hex); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.82-0.91(\mathrm{~m}, 2 \mathrm{H}), 0.98-1.08(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.29$ (m, 2H), 1.35-1.39 (m, 2H), 1.55-1.63 (m, 2H) $2.52(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.71-3.78$ $(\mathrm{m}, 1 \mathrm{H}), 5.31-5.39(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.50(\mathrm{~m}, 8 \mathrm{H}), 7.91-7.78(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 23.7,24.4,28.9,31.7,35.3,47.3,62.2,125.8,126.3,127.6,127.7$, 131.0, 132.2, 136.9, 165.9, 168.3, 205.7; LCMS (MH ${ }^{+}$): 376.5 (100\%).

Representative procedure for quinazolinones (3):

To a solution of o-toluidine $(0.332 \mathrm{ml}, 3.11 \mathrm{mmol})$ was added a solution of trimethylaluminum in heptane $(1.55 \mathrm{ml}, 3.11 \mathrm{mmol})$ and the mixture was stirred for 30 min at room temperature. Methyl-2-acetamido-benzoate ($200 \mathrm{mg}, 1.04$ mmol) was then added to the reaction mixture which was refluxed for 18 h . The reaction mixure was then quenched with $10 \%(\mathrm{wt} / \mathrm{wt})$ aq. citric acid acid solution, extracted twice with $\mathrm{DCM}(50 \mathrm{ml})$, dried over MgSO_{4}, then concentrated in-vacuo. Purification on silica gel column afforded the desired quinazolinone 3 ($188 \mathrm{mg}, 72 \%$, pale white solid): mp 113-114 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{3} \mathrm{mp} 114-115^{\circ} \mathrm{C}$); $\mathrm{R}_{\mathrm{f}}=0.33$ ($20 \% \mathrm{EA} / \mathrm{Hex}$); ${ }^{1} \mathrm{H}$ NMR (DMSO-d6) $\delta 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 7.30-8.25$ (m, $8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 17.82,24.31,121.15,127.02,127.19,127.55,128.07$, 128.31, 130.01, 131.96, 135.02, 135.76, 137.20, 148.05, 154.75, 162.07; FT-IR (thin film from DCM): $\mathbf{1 6 8 2} \mathrm{cm}^{-1}, 1599 \mathrm{~cm}^{-1}$; LCMS $\left(\mathrm{MH}^{+}\right): 251.2$.

2-Methyl-8-nitro-3-phenyl-3-H-quinazolin-4-one (16);

134 mg (76%) of 16 was obtained as a yellow solid: $\mathrm{mp} 195-196{ }^{\circ} \mathrm{C}$ (yellow solid); $\mathrm{R}_{\mathrm{f}}=0.38(20 \% \mathrm{EA} / \mathrm{Hex}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.31(\mathrm{~s}, 3 \mathrm{H}), 7.26-7.28(\mathrm{~m}$, $2 \mathrm{H}), 7.50-7.70(\mathrm{~m}, 4 \mathrm{H}), 8.07(\mathrm{~m}, 1 \mathrm{H}), 8.47(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 25.29$, $122.89,126.05,128.10,128.76,130.16,130.67,131.40,137.37,140.36,146.91$, 157.86, 161.11; FT-IR (thin film from DCM): $\mathbf{1 6 9 2} \mathrm{cm}^{-1}, \mathbf{1 6 7 2} \mathrm{~cm}^{-1}, 1583 \mathrm{~cm}^{-1}$; LCMS (MH^{+}): 282.4

2-Acetylamino-3-nitro-N-phenyl-benzamide (17);

$29 \mathrm{mg}(15 \%)$ of $\mathbf{1 7}$ was obtained from the synthesis of $\mathbf{1 6} ; \mathrm{mp} 205-206{ }^{\circ} \mathrm{C}$ (yellow solid); ${ }^{1} \mathrm{H}$ NMR (DMSO-d6) 2.51 (s, 3H), 7.10-8.10 (m, 8H), 10.16 (s, $1 \mathrm{H}), 10.54(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (DMSO-d6) 23.20, 120.31, 124.24, 126.40, 126.43,
$128.59,129.04,133.12,134.63,139.35,146.20,164.61,169.12 ;$ LCMS $\left(\mathrm{MH}^{+}\right):$ 300.4

Synthesis of 2-Methyl-8-nitro-3-phenyl-3-H-quinazolin-4-one (16) from 2-Acetylamino-3-nitro-N-phenyl-benzamide (17); To a solution of 17 (15 mg , 0.05 mmol) in DCM (or DCE) at room temperature was added a solution of $\mathrm{Me}_{3} \mathrm{Al}$ in heptane $(0.075 \mathrm{ml}, 0.150 \mathrm{mmol})$ and the reaction mixture was refluxed for 20 h . Yield of $\mathbf{1 6}$ from crude reaction mixture determined from LCMS to be $80 \%(\mathrm{DCM})$ and $93 \%(\mathrm{DCE})$.

References:
(1) (a) Lubell, W. D.; Kitamura, M; Noyori, R. Tetrahedron: Asymmetry 1991, 2, 543. (b) Zhu, G.; Chen, Z.; Zhang, X. J. Org. Chem. 1999, 64, 6907.
(2) Beccalli, E. M.; Benincori, T.; Marchesini, A. Synthesis 1988, 630.
(3) Rathman, T. L.; Sleevi, M. C.; Krafft, M. E.; Wolfe, J. F. J. Org. Chem. 1980, 45, 2169.

