Supporting Information

Photoinduced Electron-transfer Bicyclopropenyl-benzene Rearrangements of 2,2',3,3'Tetraphenylbicyclopropenyls: A New Mechanism via Dewar Benzene

Hiroshi Ikeda,* Yosuke Hoshi, Yuka Kikuchi, Futoshi Tanaka, and Tsutomu Miyashi
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

(1) Analyses of time-dependent change in the product ratios: $\mathrm{A}_{\mathrm{CD}}^{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ solution containing $\mathbf{3}(0.06 \mathrm{mmol}, 0.1$ M) and DCA ($0.01 \mathrm{mmol}, 0.02 \mathrm{M}^{31}$) in a Pyrex NMR tube was degassed by five repeated freeze $\left(-196{ }^{\circ} \mathrm{C}\right)-\mathrm{pump}\left(10^{-2}\right.$ Torr)-thaw $\left(0^{\circ} \mathrm{C}\right)$ cycles and then sealed at 10^{-2} Torr. The solution was irradiated through a cutoff filter ($\lambda>410 \mathrm{~nm}$ for DCA) with a 2 kW Xe lamp at $20 \pm 1^{\circ} \mathrm{C}$. The product ratios during photoreaction were determined by $200 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR analyses (errors are ca. $\pm 2 \%$). The material balance was determined also by ${ }^{1} \mathrm{H}$ NMR analyses using 1,1,2,2- or 1,1,1,2tetrachloroethane as an internal standard for integration.
(2) Time-dependent changes in the product ratios in the DCA-sensitized PET reaction of 3a.

Figure S1: Time-dependent changes in the product ratios in the DCA-sensitized PET reaction of 3a. A 0.6 mL solution was irradiated with a 2 kW Xe lamp through a cutoff filter. [3a] $=0.1 \mathrm{M}$. M. B. $=95 \%$
(3) Isolation of 6 and 7: A photolysate obtained by similar PET reaction of $\mathbf{3}(0.2 \mathrm{mmol})$ and DCA (0.04 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) for 80 min was separated by HPLC $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, n-hexane) after removal of solvent at room temperature in the dark. Structures of 6 and 7 were confirmed by chemical reactions (thermolyses) and spectroscopy, especially by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$

NMR analyses. The physical data shown below were identical with those of 6 and 7 obtained independently by Ag^{+}catalysed reactions.

6a: Colorless columns $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-n\right.$-hexane); mp $162-163{ }^{\circ} \mathrm{C}$; MS (EI, 70 eV$) \mathrm{m} / \mathrm{z}$ (relative intensity) $410\left(100, \mathrm{M}^{+}\right), 395$ ($8, \mathrm{M}^{+}{ }^{-} \mathrm{Me}$), 317 (12); IR (KBr) $v 2949,1597,1494,1441,775,761,743,725,692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.70(\mathrm{~s}, 6 \mathrm{H}), 7.21-7.31(\mathrm{~m}, 12 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.9(2 \mathrm{C}), 55.9(2 \mathrm{C}), 127.1(8 \mathrm{C})$, 127.5 (4 C), 128.4 (8 C), 135.9 (4 C), 147.5 (4 C); Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{26}$: C, 93.62; H, 6.38. Found: C, 93.44; H, 6.30.

7a (thermally labile, purity 90%): Colorless oil; MS (EI, 70 eV) m / z (relative intensity) $410\left(100, \mathrm{M}^{+}\right) 395\left(3, \mathrm{M}^{+}-\mathrm{Me}\right)$, 317 (5); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.03(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 7.18-7.32(\mathrm{~m}, 12 \mathrm{H}), 7.36(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.56$ (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.2,14.3,59.1,63.2,126.0,126.5,127.0$ (2 C), 127.1 (2 C), 127.48, 127.52 (2 C), 127.7, 128.1 (2 C), 128.2 (2 C), 128.3 (2 C), 128.5 (2 C), 128.6 (2 C), 135.2, 135.3, 135.8, 139.1, 142.5, 143.6, 148.5, 150.0.

6b ${ }^{3 b}$: Colorless cubes $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-n\right.$-hexane); mp $145-146{ }^{\circ} \mathrm{C}$; MS (EI, 70 eV) m/z (relative intensity) 396 ($\left.100, \mathrm{M}^{+}\right) 381$ ($6, \mathrm{M}^{+}-\mathrm{Me}$), 303 (7); $\mathrm{IR}(\mathrm{KBr}) v 2951,1195,1441,1325,772,748,725,692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.78$ $(\mathrm{s}, 3 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.33(\mathrm{~m}, 12 \mathrm{H}), 7.41-7.53(\mathrm{~m}, 8 \mathrm{H})\left[\mathrm{lit} .{ }^{3 \mathrm{~b}} \tau 8.22(\mathrm{~s}, 3 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H})\right] ;{ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}) $\delta 15.8,50.6,52.9,126.6(4 \mathrm{C}), 127.1(4 \mathrm{C}), 127.5(2 \mathrm{C}), 127.6(2 \mathrm{C}), 128.4(4 \mathrm{C}), 128.5(4 \mathrm{C}), 136.0(2 \mathrm{C}), 136.1$ (2 C), 143.9 (2 C), 148.7 (2 C); Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{24}$: C, $93.90 ; \mathrm{H}, 6.10$. Found: C, 93.60; H, 6.29.

7b (thermally labile, purity 94%): Colorless oil; MS (EI, 70 eV) m / z (relative intensity) $396\left(100, \mathrm{M}^{+}\right), 381\left(5, \mathrm{M}^{+}{ }_{-}\right.$ $\mathrm{Me}), 303$ (5); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.29(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.28(\mathrm{~m}, 10 \mathrm{H}), 7.33-7.39(\mathrm{~m}, 6 \mathrm{H})$, 7.53-7.62 (m, 4 H$) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 16.6,57.0,58.6,126.0,126.2$ (2 C), 126.7, 126.9 (2 C), 127.3 (2 C), 127.5 (2 C), 127.6, 128.0, 128.3 (2 C), 128.35 (2 C), 128.38 (2 C), 128.5 (2 C), 135.4, 135.6, 136.2, 140.9, 144.3, 145.25, 145.31, 146.0.
(4) Determination of $\boldsymbol{\Phi}_{\mathbf{c}}$: (1) Determination of usual quantum efficiency (Φ): $\mathrm{A}_{\mathrm{CH}_{2}} \mathrm{Cl}_{2}$ solution (3 mL) containing 3 $(0.03 \mathrm{mmol}, 10 \mathrm{mM})$ and DCA $(0.47 \mathrm{mM})$ was irradiated with light of wavelength at $\lambda_{\max }=437 \pm 12 \mathrm{~nm}$ under N_{2} at $20 \pm$ $1{ }^{\circ} \mathrm{C}$. Light of this wavelength was obtained from a 500 W Hg -Xe lamp through aqueous CuSO_{4} solution filter, a Toshiba cutoff filter UV-37, and an interference filter ($\lambda_{\max }=437 \mathrm{~nm}$). Aberchrome 540P was used as an actinometer. The conversion was $10 \pm 5 \%$ in all cases. After irradiation and removal of solvent at room temperature in the dark, the photolysate was analyzed by ${ }^{1} \mathrm{H}$ NMR. The values of Φ were obtained as the mean values of three separate runs. (2) Conversion of Φ to $\Phi_{\text {cor }}$: The Φ values were converted to $\Phi_{\text {cor }}$ using the Stern-Volmer constants in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(k_{\mathrm{q}} \tau=217\right.$ and $214 \mathbf{M}^{-1}$ for $\mathbf{3 a}$ and $\mathbf{3 b}$, respectively) and the following equations: $\Phi_{\mathrm{cor}}=\Phi \times\left(1+k_{\mathrm{q}} \tau[\mathbf{3}]\right) / k_{\mathrm{q}} \tau[\mathbf{3}]$, where $[\mathbf{3}]=10$ mM .
(5) The Cartesian coordinates and the $\Sigma \rho$ and Σq values for $3 a^{\bullet+}$ and $3 b^{\bullet+}($ ROB3LYP/6-31G(p)).

Table S1. The Cartesian Coordinates, the Sum of the Partial Spin and Charge Densities ($\Sigma \rho$ and Σq) of $\mathbf{3} \mathbf{a}^{\bullet+}$ Obtained by ROB3LYP/6-31G(p) Calculations (PC GAMESS ver. 6.3)

Cartesian Coordinates					$\Sigma \rho$	Σq
No	Atom	x	y	Z		
1	C	-0.578180059	-0.601643192	0.000000000	+0.068315	-0.125195
2	C	0.578180059	0.601643192	0.000000000	$+0.068315$	-0.125195
3	C	0.044441275	-1.994028396	0.000000000	+0.029135	-0.223340
4	C	-0.044441275	1.994028396	0.000000000	$+0.029135$	-0.223340
5	C	-1.851076405	-0.286314400	0.668823831	+0.135174	-0.010606
6	C	1.851076405	0.286314400	-0.668823831	$+0.135174$	-0.010606
7	C	-1.851076405	-0.286314400	-0.668823831	+0.135174	-0.010606
8	C	1.851076405	0.286314400	0.668823831	$+0.135174$	-0.010606
9	C	-2.529757465	-0.205526834	1.926000500	+0.009422	-0.036729
10	C	2.529757465	0.205526834	-1.926000500	$+0.009422$	-0.036729
11	C	-2.529757465	-0.205526834	-1.926000500	+0.009422	-0.036729
12	C	2.529757465	0.205526834	1.926000500	+0.009422	-0.036729
13	C	-1.877916894	-0.637881917	3.089019655	+0.017847	-0.089822
14	C	1.877916894	0.637881917	-3.089019655	+0.017847	-0.089822
15	C	-1.877916894	-0.637881917	-3.089019655	+0.017847	-0.089822
16	C	1.877916894	0.637881917	3.089019655	+0.017847	-0.089822
17	C	-3.838586836	0.286260837	2.022389493	+0.016955	-0.043581
18	C	3.838586836	-0.286260837	-2.022389493	+0.016955	-0.043581
19	C	-3.838586836	0.286260837	-2.022389493	+0.016955	-0.043581
20	C	3.838586836	-0.286260837	2.022389493	+0.016955	-0.043581
21	C	-2.519770591	-0.583964845	4.313838055	+0.001074	-0.142107
22	C	2.519770591	0.583964845	-4.313838055	+0.001074	-0.142107
23	C	-2.519770591	-0.583964845	-4.313838055	+0.001074	-0.142107
24	C	2.519770591	0.583964845	4.313838055	+0.001074	-0.142107
25	C	-4.475730728	0.342695143	3.248605042	+0.000622	-0.148279
26	C	4.475730728	-0.342695143	-3.248605042	+0.000622	-0.148279
27	C	-4.475730728	0.342695143	-3.248605042	+0.000622	-0.148279
28	C	4.475730728	-0.342695143	3.248605042	+0.000622	-0.148279
29	C	-3.818347171	-0.092973667	4.395183862	+0.018616	-0.093168
30	C	3.818347171	0.092973667	-4.395183862	+0.018616	-0.093168
31	C	-3.818347171	-0.092973667	-4.395183862	+0.018616	-0.093168
32	C	3.818347171	0.092973667	4.395183862	+0.018616	-0.093168
33	H	-0.880182835	-1.020312598	3.024472390	+0.000105	+0.159776
34	H	0.880182835	1.020312598	-3.024472390	+0.000105	+0.159776
35	H	-0.880182835	-1.020312598	-3.024472390	+0.000105	+0.159776
36	H	0.880182835	1.020312598	3.024472390	+0.000105	+0.159776
37	H	-4.347186402	0.624590313	1.144789643	$+0.000050$	+0.148634
38	H	4.347186402	-0.624590313	-1.144789643	+0.000050	+0.148634
39	H	-4.347186402	0.624590313	-1.144789643	$+0.000050$	+0.148634
40	H	4.347186402	-0.624590313	1.144789643	$+0.000050$	+0.148634
41	H	-2.018537999	-0.923426701	5.196207373	+0.000006	+0.162835

42	H	2.018537999	0.923426701	-5.196207373	+0.000006	+0.162835
43	H	-2.018537999	-0.923426701	-5.196207373	+0.000006	+0.162835
44	H	2.018537999	0.923426701	5.196207373	+0.000006	+0.162835
45	H	-5.474305422	0.721226624	3.314886802	+0.000004	+0.167182
46	H	5.474305422	-0.721226624	-3.314886802	+0.000004	+0.167182
47	H	-5.474305422	0.721226624	-3.314886802	+0.000004	+0.167182
48	H	5.474305422	-0.721226624	3.314886802	+0.000004	+0.167182
49	H	-4.314554957	-0.050373326	5.342732918	+0.000056	+0.170215
50	H	4.314554957	0.050373326	-5.342732918	+0.000056	+0.170215
51	H	-4.314554957	-0.050373326	-5.342732918	+0.000056	+0.170215
52	H	4.314554957	0.050373326	5.342732918	+0.000056	+0.170215
53	H	-0.733265691	-2.744282904	0.000000000	+0.001428	+0.122223
54	H	0.733265691	2.744282904	0.000000000	+0.001428	+0.122223
55	H	0.661249424	-2.141554505	-0.875790767	+0.000630	+0.118807
56	H	-0.661249424	2.141554505	0.875790767	+0.000630	+0.118807
57	H	0.661249424	-2.141554505	0.875790767	+0.000630	+0.118807
58	H	-0.661249424	2.141554505	-0.875790767	+0.000630	+0.118807

Heat of Formation: -1226.2109053997 a.u.

Table S2. The Cartesian Coordinates, the Sum of the Partial Spin and Charge Densities ($\Sigma \rho$ and Σq) of $\mathbf{3 b}^{\boldsymbol{\bullet}}$ Obtained by ROB3LYP/6-31G(p) Calculations (PC GAMESS ver. 6.3)

Cartesian Coordinates

No	Atom	x	y	z	$\Sigma \rho$	Σq
1	C	-0.559549225	-0.639476666	0.000000000	+0.033709	-0.129180
2	C	0.539463289	0.446694960	0.000000000	+0.008038	-0.127390
3	C	-0.037659591	-2.070746738	0.000000000	+0.005954	-0.231190
4	H	0.122636513	1.441623378	0.000000000	+0.034269	+0.187870
5	C	-1.872751714	-0.274072149	-0.650569266	+0.009224	-0.050900
6	C	-1.872751714	-0.274072149	0.650569266	+0.009224	-0.050900
7	C	1.854499770	0.271795248	-0.684860900	+0.278684	+0.005144
8	C	1.854499770	0.271795248	0.684860900	+0.278684	+0.005144
9	C	-2.533864619	-0.145178871	-1.930244985	+0.000220	-0.010730
10	C	-2.533864619	-0.145178871	1.930244985	+0.000220	-0.010730
11	C	-1.960843095	-0.712484975	-3.071453528	+0.001083	-0.122360
12	C	-1.960843095	-0.712484975	3.071453528	+0.001083	-0.122360
13	C	-3.752086937	0.528302358	-2.051367655	+0.001096	-0.066330
14	C	-3.752086937	0.528302358	2.051367655	+0.001096	-0.066330
15	C	-2.591354160	-0.611884936	-4.302496420	+0.000087	-0.134420
16	C	-2.591354160	-0.611884936	4.302496420	+0.000087	-0.134420
17	C	-4.379054458	0.630972572	-3.282854930	+0.000005	-0.139530
18	C	-4.379054458	0.630972572	3.282854930	+0.000005	-0.139530
19	C	-3.800907947	0.062154979	-4.411549968	+0.001098	-0.112480
20	C	-3.800907947	0.062154979	4.411549968	+0.001098	-0.112480
21	H	-1.038028888	-1.250150360	-2.987926818	+0.000053	+0.138567
22	H	-1.038028888	-1.250150360	2.987926818	+0.000053	+0.138567
23	H	-4.202845862	0.972367629	-1.188791387	+0.000003	+0.142513

24	H	-4.202845862	0.972367629	1.188791387	+0.000003	+0.142513
25	H	-2.149116942	-1.062601892	-5.167337796	+0.000001	+0.148075
26	H	-2.149116942	-1.062601892	5.167337796	+0.000001	+0.148075
27	H	-5.312301996	1.149320965	-3.362547443	+0.000001	+0.156814
28	H	-5.312301996	1.149320965	3.362547443	+0.000001	+0.156814
29	H	-4.288867868	0.140306404	-5.361160506	+0.000004	+0.157322
30	H	-4.288867868	0.140306404	5.361160506	+0.000004	+0.157322
31	C	2.531374614	0.244704126	-1.918894368	+0.037995	-0.073080
32	C	2.531374614	0.244704126	1.918894368	+0.037995	-0.073080
33	C	1.802239766	0.494530178	-3.098927745	+0.041003	-0.051150
34	C	1.802239766	0.494530178	3.098927745	+0.041003	-0.051150
35	C	3.916275719	-0.004081815	-2.006339423	+0.038882	-0.008750
36	C	3.916275719	-0.004081815	2.006339423	+0.038882	-0.008750
37	C	2.439680534	0.500370755	-4.323148636	+0.002691	-0.153360
38	C	2.439680534	0.500370755	4.323148636	+0.002691	-0.153360
39	C	4.545814940	-0.002410422	-3.232138393	+0.002716	-0.160600
40	C	4.545814940	-0.002410422	3.232138393	+0.002716	-0.160600
41	C	3.808458139	0.251319501	-4.389449886	+0.043901	-0.066660
42	C	3.808458139	0.251319501	4.389449886	+0.043901	-0.066660
43	H	0.751080078	0.684806670	-3.035886378	+0.000107	+0.190026
44	H	0.751080078	0.684806670	3.035886378	+0.000107	+0.190026
45	H	4.479483728	-0.199941409	-1.119275878	+0.000125	+0.157416
46	H	4.479483728	-0.199941409	1.119275878	+0.000125	+0.157416
47	H	1.886183341	0.697425636	-5.216666151	+0.000015	+0.180429
48	H	1.886183341	0.697425636	5.216666151	+0.000015	+0.180429
49	H	5.595861982	-0.193713724	-3.298296489	+0.000016	+0.179532
50	H	5.595861982	-0.193713724	3.298296489	+0.000016	+0.179532
51	H	4.30185419	0.254190861	-5.339544296	+0.000126	+0.185435
52	H	4.301854119	0.254190861	5.339544296	+0.000126	+0.185435
53	H	-0.865475117	-2.764577603	0.000000000	+0.000071	+0.129056
54	H	0.568471651	-2.278083967	-0.875287955	-0.00016	+0.094489
55	H	0.568471651	-2.278083967	0.875287955	-0.00016	+0.094489

Heat of Formation: -1187.1892213029 a.u.

Note and Reference

(31) The sample solution was slightly suspended with DCA. The actual concentrations of DCA are the saturated ones, which are ca. $2 \times 10^{-3} \mathrm{M}$ at $20^{\circ} \mathrm{C} .32$
(32) Ikeda, H.; Aburakawa, N.; Tanaka, F.; Fukushima, T.; Miyashi, T. Eur. J. Org. Chem. 2001, 3445-3452.
(End)

