Appending a tris-Imidazole Ligand with a $\mathbf{T y r}^{244}$ Mimic on the distal Face of Bromo-acetamidoporphyrin
 (Supplementary Material)

James P Collman,* Richard A Decreau, Simona Costanzo
Department of Chemistry, Stanford University, Stanford, California 94305-5080 jpc@stanford.edu

Table of Contents

Material and Methods
Synthesis and Characterization

- Pyridine-3,5-bis-carbaldehyde (18) S-2/3
- Pyridine-3,5-bis-tosylhydrazide (19) S-3, S-10
- Pyridine-3,5-bis(hydroxymethylene) (20)

S-3

- Pyridine-3,5-Bis-N-methyl-methylamine (16)

S-3/4, S-11, S-12, S-13
-(N-Allyl- N-methyl-aminomethyl-1-methyl-1H-2-imidazolyl)-bis(5-methylaminomethyl-1-methyl-1H-2-imidazolyl)-methyl Methyl ether (23)

S-4, S-14, S-15

General acylation procedure

- $\alpha, \beta, \alpha, \beta$-Tetra-(o-bromoacetamidophenyl)porphyrin (24a)

S-4, S-16, S-17, S-40

- α_{4}-Tetra-(o-bromoacetamidophenyl)porphyrin (24e)

S-4
$-\alpha_{3}$-Tris-(o-bromoacetamidophenyl)- β-(o-N-triphenylmethylaminophenyl)porphyrin
(24c):
S-5, S-18, S-19, S-40
Pyridine- and tri-imidazoles-strap binding procedures ($\alpha \beta \alpha \beta$ porphyrins)

- $\alpha, \beta, \alpha, \beta$ - Pyridine-strapped-dibromoacetamidophenyl porphyrin (26a)S-6, S-20, S-21,

S-40

- $\alpha, \beta, \alpha, \beta$ - Pyridine-strapped-dichloroacetamidophenyl porphyrin (26b) S-6, S-22, S23,
$-\alpha, \beta, \alpha, \beta-$ Methoxyphenyl-containing-tris-imidazole- strapped / pyridine-strapped porphyrin (8a)

S-6, S-24, S-25, S-41
$-\alpha, \beta, \alpha, \beta-\quad$ allyl-protected-containing-tris-imidazole-strapped / pyridine-strapped
porphyrin (9)
S-6, S-26, S-27, S-41
Tripodal triimidazole ligand attachement ($\alpha, \alpha, \alpha, \beta$ porphyrins)

- α_{3}-Triimidazole-capped- β-trityl-porphyrin (10) S-7, S-28, S-29, S-41

TACN and cyclen capping procedures ($\alpha, \alpha, \alpha, \beta$ and $\alpha, \alpha, \alpha, \alpha$ porphyrins)

- α_{3}-Triazacyclononane-capped- β-(o-N-triphenylmethylaminophenyl)porphyrin (12):

S-7/8, S-30, S-31, S-42

- α_{4}-Tetrazacyclododecane-capped porphyrin (13):

S-8, S-32, S-33, S-42

Dimethylethylenediamine-strap binding procedures ($\alpha, \alpha, \alpha, \alpha$ porphyrins)

- α_{4}-Cis,cis-bis-dimethylethylenediamine-straped (14):

S-8, S-34, S-35, S-42

- α_{2}-Cis-dimethylethylenediamine-straped- α_{2}-dibromoacetamido-porphyrin (15):

S-8, S-36, S-37, S-42
Distal Imidazoles Attachment ($\alpha \alpha \alpha \beta$ porphyrin)
Phenol deprotection reaction

- $\alpha, \beta, \alpha, \beta$-phenol-containing-tris-imidazole- strapped / pyridine-strapped porphyrin (8b) S-9, S-38, S-39, S-41
References

Materials and Methods. All reagents were used as supplied commercially unless otherwise noted. $\alpha, \beta, \alpha, \beta$ - and $\alpha, \alpha, \alpha, \alpha$-Tetrakis-aminophenylporphyrin 25a, ${ }^{\text {la }}, \alpha, \alpha, \alpha,-$ tris-(o-aminophenyl)- β-(o-N-triphenylmethylaminophenyl)porphyrin 25b, ${ }^{\text {1b-c }} \alpha, \alpha, \alpha$, -tris(o-chloroacetamidophenyl)- β-(o - N -triphenylmethylaminophenyl)porphyrin 24d, ${ }^{1 \mathrm{~b}} \mathrm{~N}$-(2cyanoethyl)imidazole 28, ${ }^{1 \mathrm{~b}}$ dipodal ligand bis-(5-methylaminomethyl-1-methyl-1H-2-imidazolyl)(1'-(2''-methoxyphenyl)-1'H-2'-imidazolyl) Methyl Methyl Ether $\mathbf{2 2}^{2}$ and tripodal ligand tris(5-methylaminomethyl-1-methyl-1H-2-imidazolyl)-methyl methyl ether $\mathbf{2 7}^{2}$ were prepared according to previously published procedures. Spectral data of pyridine-3,5-biscarbinol ${ }^{5 \mathrm{abb}}$ pyridine-3,5-diester ${ }^{5 \mathrm{c}}$, pyridine-3,5-bis-carbaldehyde, ${ }^{3 \mathrm{ce}} \alpha_{3^{-}}$ imidazole- β-trityl porphyrin $\mathbf{1 1},{ }^{\text {b }}$ were as previously published. Routine mass spectra were obtained from the Stanford University Mass Spectrometry laboratory and from the University of California, San Francisco Mass Spectrometry Facility of the Stanford PAN facility. All compounds showed up together with their sodium adduct or sometimes with their solvates. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded at 400 MHz and 500 MHz on Mercury400 and Inova-500 respectively, in the solvent specified, and referenced to the residual proton signals. UV/Vis spectra were recorded on a HP8452 diode array spectrophotometer.

Synthesis and Characterization

Pyridine-3,5-bis-carbaldehyde (18)

Route A. Following reported procedure ${ }^{5 f}$ and modified as follows. A suspension of pyridine-3,5-dicarboxylic acid ($1 \mathrm{~g}, 5.983 \mathrm{mmol}$) in toluene (11 mL) was put under nitrogen atmosphere then thionyl chloride (30 mL) was added followed by DMF (2 drops, $10 \mu \mathrm{~L}$). The mixture was refluxed under agitation for 1 hour until it became a yellow solution. Thionyl chloride and toluene were evaporated and the oily residue containing 3,5-bis(acyl chloride)pyridine 3 crystallized at room temperature, and was immediately re-dissolved in dry THF (100 mL) under N_{2} atmosphere by sonication. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ under agitation then 2.2 equiv. of lithium tri-tertbutoxyaluminumhydride (0.5 M in diglyme) were added over 20 minutes. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then the cool bath was removed and the mixture was stirred for an additional 30 min . The mixture was cooled again and water $(0.3 \mathrm{~mL})$ was added and the mixture was stirred for 15 min . The mixture was filtered and the cake was copiously washed with ethanol (50 mL). $18(0.226 \mathrm{~g}, 28 \%)$.
Route B: 3,5-bis(p-toluenesulphonpyridoylhydrazide ($1 \mathrm{~g}, 1.992 \mathrm{mmol}$) was dissolved in glycol (100 mL), heated at $150{ }^{\circ} \mathrm{C}$ and while stirring, a large excess of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (ca 20 g) was added in one portion, causing effervescence. After 5 min , the reaction was stopped by addition of hot water (50 mL) and allowed to cool at room temperature. The reaction mixture was washed with diethyl ether ($2 \times 100 \mathrm{~mL}$), dried and the solvent evaporated under reduced pressure to afford a mixture which was chromatographed as described in Route A. 18 ($0.067 \mathrm{~g}, 25 \%$).
Route C: An adaptation of the procedure described for 2,6-lutidine ${ }^{3 g}$ was applied here. A mixture of 3,5-dimethylpyridine ($0.617 \mathrm{~mL}, 5.761 \mathrm{mmol}$) and selenium dioxide (3.0 g ,
27.079 mmol) in dioxane-water ($96: 4$ vol., 100 mL) was refluxed for 12 h and filtered through celite while hot. The filtrate was evaporated and the residue was purified by two sets of chromatography $\left(\mathrm{SiO}_{2}, 20 \times 2 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Ethyl acetate $5: 1$ vol. as eluent, gradient elution). After evaporation of solvents 4 was obtained as a pale yellow solid ($194 \mathrm{mg}, 25 \%$). 18 ($0.155 \mathrm{~g}, 20 \%$).
Route D: Pyridine-3,5-dicarbinol ($0.150 \mathrm{~g}, 1.079 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) and manganese oxide tunings (0.100 g) were introduced. Then the mixture was allowed to stir for 2 h at room temperature and was filtered. Evaporation of the solvent afforded a yellowish oily solid chromatographed under conditions as described in route A. 18 ($0.046 \mathrm{~g}, 32 \%$).

Mp 89-93 ${ }^{\circ} \mathrm{C}$, lit..$^{3 \mathrm{cec}} \mathrm{mp} 95{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{I}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) was as described in the literature. ${ }^{3 \mathrm{cec}} \mathrm{M} . \mathrm{S} .: \mathrm{m} / \mathrm{e}=136.0 \mathrm{M}+\mathrm{H}^{+}$for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{2}\left(\mathrm{LSIMS}^{+}\right)$; Rf $0.30\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate $7: 3$ vol.).

Pyridine-3,5-bis-tosylhydrazide (19)

Following McFayden-Stevens method, ${ }^{\text {3h-j }}$ a solution of pyridine-3,5-bisacylchloride 3 (1.2 $\mathrm{g}, 5.9 \mathrm{mmol}$) in dichloromethane-pyridine mixture ($2: 1 \mathrm{vol} .10 \mathrm{~mL}$) was slowly introduced to a solution of p-toluenesulfonylhydrazine ($2.7 \mathrm{~g}, 14.2 \mathrm{mmol}$) and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 4 h . The mixture was poured in a water-hexanes mixture ($1: 1$ vol., 50 mL) and vigorously shaken until a white precipitate appears. The solid is filtered off and recrystallized from methanol. 2.485 g (82%). Mp (methanol): $135-140{ }^{\circ} \mathrm{C}$; ${ }^{\mathrm{I}} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.89(\mathrm{~s}, 2 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ $8.2 \mathrm{~Hz}), 7.32(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=7.32 \mathrm{~Hz}), 2.38(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{M} . \mathrm{S} .: \mathrm{m} / \mathrm{e}=471 \mathrm{M}+\mathrm{H}^{+}$for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}_{2}$ (ESI^{+}); Rf $0.2\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} /\right.$ methanol 95:5 vol.).

Pyridine-3,5-bis(hydroxymethylene) (20)
Route A: Following reported procedures from the di-ester (methyl or ethyl), ${ }^{3 b-e} \mathbf{4}$ was obtained in 5\% and 10% yield respectively.
Route B: Beads of polymer supported borohydride ${ }^{3 \mathrm{k}}(0.8 \mathrm{~g}, 2 \mathrm{mmol} / \mathrm{g}$ of bead) are loaded in a dry round-bottom flask with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. The flask was plunged in an ice bath and N_{2} was bubbled for 10 min . Then a solution of $17(0.6 \mathrm{~g}, 3.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was introduced dropwise ($1 \mathrm{~mL} / \mathrm{min}$), and the reaction mixture was stirred at room temperature for 30 min . The reaction mixture was filtered, the cake washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the solvent evaporated under reduced pressure to yield 6 as a pale yellow solid. ($0.185 \mathrm{~g}, 43 \%$). Mp (methanol) $80-83{ }^{\circ} \mathrm{C}$; lit. ${ }^{3 \mathrm{a}} \mathrm{mp} 84-85{ }^{\circ} \mathrm{C}$; Rf $0.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ / ethyl acetate 7:3 vol.). Rf $0.3\left(\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol 7:3 vol. $)$.

Pyridine-3,5-Bis- N-methyl-methylamine (16)

A solution of compound $\mathbf{1 8}(0.150 \mathrm{~g}, 1.1 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NH}_{2}(20 \mathrm{~mL}, 40 \%$ in water) and methanol (40 mL) was stirred at room temperature for 16 h , and then NaBH_{4} was cautiously added to the solution. The resulting mixture was cooled to room temperature and evaporated to dryness in vacuo. The resulting solid was extracted with hot chloroform, and the extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$ $95: 5$ vol.) to give an oil identified as $7 \mathbf{d}(0.090 \mathrm{~g}, 50 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.43(\mathrm{~s}, 2 \mathrm{H}) ; 7.65(\mathrm{~s}, 1 \mathrm{H}) ; 3.80(\mathrm{~s}, 4 \mathrm{H}) ; 2.45(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : δ
148.57, 135.59, 135.14, 53.15, 36.00; M.S.: $\mathrm{m} / \mathrm{e}=165.1 \mathrm{M}+\mathrm{H}^{+}$for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\left(\mathrm{EI}^{+}\right), 136.0$ $\left(\mathrm{MH}^{+}-2 \mathrm{CH}_{3}\right), 106.6\left(\mathrm{MH}^{+}-2 \mathrm{CH}_{3} \mathrm{NH}\right)$; Rf $0.3\left(\mathrm{SiO}_{2}, \mathrm{NH}_{3}\right.$ saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$ 95:5 vol.)
(N-Allyl- N-methyl-aminomethyl-1-methyl-1H-2-imidazolyl)-bis(5-methylaminomethyl-1-methyl-1H-2-imidazolyl)-methyl Methyl ether (23)
A mixture of Tris-(N-Allyl- N-methyl-aminomethyl-1-methyl-1H-2-imidazolyl)-methyl Methyl ether ${ }^{2}(0.345 \mathrm{~g}, 0.643 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.151 \mathrm{~g}, 0.131 \mathrm{mmol})$ and p-tolylsulfinic acid $(0.376 \mathrm{~g}, 2.114 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was stirred at room temperature for 29 h under $\mathrm{N}_{2} . \mathrm{Na}_{2} \mathrm{CO}_{3}(0.438 \mathrm{~g}, 4.141 \mathrm{mmol})$ was added to the mixture and stirring was carried on for 3 h . The solid was filtered off, washed with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the filtrate was concentrated. The residue was purified by preparative silica gel thin-layer chromatography ($\mathrm{SiO}_{2}, 1000 \mu \mathrm{~m}$, eluent NH_{3}-saturated $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (19:1 vol.). Compound 23 was isolated as a yellowish semi-solid compound ($0.090 \mathrm{~g}, 31 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.95(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}) ; 5.81(\mathrm{~m}, 1 \mathrm{H}) ; 5.16(\mathrm{~m}, 2 \mathrm{H})$, $3.74(\mathrm{~s}, 4 \mathrm{H}) ; 3.41(\mathrm{~m}, 12 \mathrm{H}), 2.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.46 \mathrm{~Hz}), 2.92(\mathrm{~m}, 6 \mathrm{H}), 2.47(\mathrm{~s}, 5 \mathrm{H}), 2.14(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.22,135.30,131.35,131.23,131.23,131.01$, 127.16, 126.43, 118.19, 117.87, 78.75, 60.17, 55.0, 50.64, 44.60, 41.74; M.S.: m/e = $456.6(\mathrm{M}-\mathrm{H})$ for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~N}_{9} \mathrm{O}\left(\mathrm{ESI}^{-}\right)$; Rf $0.3\left(\mathrm{SiO}_{2}, \mathrm{NH}_{3}\right.$ saturated $\left.\mathrm{CHCl}_{3}\right)$

General acylation procedure

0.4 mmol porphyrin $\mathbf{2 5 a}, \mathbf{c}(0.300 \mathrm{~g})$ or $\mathbf{2 5 b}(0.407 \mathrm{~g})$ was dissolved in dry THF (60-70 mL) and 12 eq. diethylaniline $(855 \mu \mathrm{l})$ were added. N_{2} was flushed for 10 min and the vessel was plunged in an ice-bath until the temperature of the solution reached $\mathrm{O}^{\circ} \mathrm{C}(15$ min). 8 equiv. bromoacetylbromide ($3.5 \mathrm{mmol}, 309 \mu \mathrm{~L}$) in solution in dichloromethane (5 mL) were introduced dropwise over 30 s to the stirred mixture at $\mathrm{O}^{\circ} \mathrm{C}$. After stirring for 2 min at $\mathrm{O}{ }^{\circ} \mathrm{C}$ the solvent was removed under reduced pressure. The residue was dissolved in dichloromethane and chromatographed (silica gel $60 \mu \mathrm{~m}, 35 \times 3 \mathrm{~cm}$) washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and eluted with a dichloromethane/ethyl acetate ($95: 5 \mathrm{vol}$.) mixture to afford first a yellow and a pink unidentified fraction followed by the desired fraction. 24a (0.400 $\mathrm{g}, 86 \%), \mathbf{2 4 e}(0.412 \mathrm{~g}, 89 \%), \mathbf{2 4 c}(0.281 \mathrm{~g}, 55 \%)$.

$\alpha, \beta, \alpha, \beta$-Tetra-(o-bromoacetamidophenyl)porphyrin (24a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.78(\mathrm{~m}, 8 \mathrm{H}), 8.63(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.05(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ $7.5 \mathrm{~Hz}), 7.83(\mathrm{~m}, 8 \mathrm{H}), 7.59(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.33 \mathrm{~Hz}), 3.20(\mathrm{~s}, 8 \mathrm{H}),-2.60(\mathrm{~s}, 2 \mathrm{H}) ; \mathrm{M} . \mathrm{S} .: \mathrm{m} / \mathrm{e}=$ $1158.9 \mathrm{M}+\mathrm{H}^{+}$for $\mathrm{C}_{52} \mathrm{H}_{38} \mathrm{Br}_{4} \mathrm{~N}_{8} \mathrm{O}_{4}\left(\mathrm{ESI}^{+}\right) ; \lambda_{\text {abs }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\varepsilon, \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) 421$ (395), 512 (28.3), 546 (6.6), 588 (8.4), 648 (1.8) nm; $\mathrm{Rf} 0.6\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate $95: 5$ vol.).

α_{4}-Tetra-(o-bromoacetamidophenyl)porphyrin (24e)

${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.78(\mathrm{~m}, 8 \mathrm{H}), 8.63(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.30 \mathrm{~Hz}), 8.05 \mathrm{~Hz}(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}$ $=7.50 \mathrm{~Hz}), 7.82(\mathrm{~m}, 8 \mathrm{H}), 7.59(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.30 \mathrm{~Hz}), 3.20(\mathrm{~s}, 8 \mathrm{H}),-2.60(\mathrm{~s}, 2 \mathrm{H}) ;$ M.S.: m/e $=1158.9 \mathrm{M}+\mathrm{H}^{+}$for $\mathrm{C}_{52} \mathrm{H}_{38} \mathrm{Br}_{4} \mathrm{~N}_{8} \mathrm{O}_{4}\left(\mathrm{ESI}^{+}\right) ; \lambda_{\text {abs }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\varepsilon, \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) 421$ (381), 512 (27.8), 545 (6.5), 589 (8.4), 648 (1.8) nm; Rf $0.41\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate 80:20 vol.)
α_{3}-Tris-(o-bromoacetamidophenyl)- β-(o-N-triphenylmethylaminophenyl)porphyrin (24c):
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.96(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.67 \mathrm{~Hz}), 8.76(\mathrm{~m}, 6 \mathrm{H}), 8.67(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $8.3 \mathrm{~Hz}), 8.06(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.48 \mathrm{~Hz}), 7.94(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.50 \mathrm{~Hz}), 7.88(\mathrm{~m}, 6 \mathrm{H}), 7.60(\mathrm{~m}, 6 \mathrm{H})$, $7.18(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~m}, 15 \mathrm{H}), 6.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.57 \mathrm{~Hz}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 4 \mathrm{H}),-2.67$ $(\mathrm{s}, 2 \mathrm{H})$; M.S.: $\mathrm{m} / \mathrm{e}=1279.1 \mathrm{M}+\mathrm{H}^{+}$for $\mathrm{C}_{69} \mathrm{H}_{51} \mathrm{Br}_{3} \mathrm{~N}_{8} \mathrm{O}_{3}\left(\mathrm{ESI}^{+}\right) ; \lambda_{\text {abs }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\varepsilon, \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right)$ 418 (329.1), 516 (26.6), 548 (6.6), 590 (8.6), 648 (3.4) nm; Rf $0.6\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ / ethyl acetate 90:10 vol.)

Pyridine- and tris-imidazoles-strap binding procedures ($\alpha \beta \alpha \beta$ porphyrins)

Using bromoacetamido porphyrins.
A $500-\mathrm{mL}$ two neck round bottom flask equipped with a stir bar was charged with tetrabromoacetamidoporphyrin $24 \mathbf{a}(0.312 \mathrm{~g}, 0.269 \mathrm{mmol})$ or pyridine-strappeddibromoacetamido porphyrin 26a ($60 \mathrm{mg}, 0.051 \mathrm{mmol}$) in dry THF (360 mL (24a) or 70 mL (26a)) with 20 equiv. diethyl aniline ($0.786 \mathrm{~mL}(\mathbf{2 4 a})$ or $0.171 \mathrm{~mL}(\mathbf{2 4 e})$). The mixture was bubbled with N_{2} for 10 min , then diamine $\mathbf{1 6}(0.044 \mathrm{~g}, 0.268 \mathrm{mmol})$, or $\mathbf{2 2}^{2}$ $(0.024 \mathrm{~g}, 0.051 \mathrm{mmol})$, or $23(0.023 \mathrm{~g}, 0.051 \mathrm{mmol})$ in solution in THF ($81.5 \mathrm{~mL}(\mathbf{1 6}))$ or in $\mathrm{MeCN}(15 \mathrm{~mL}(\mathbf{2 2 , 2 3})$ was introduced over 1 h . The solution was allowed to stir for 48 h, then the solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The solution was poured on top of a silica gel ($20 \times 2 \mathrm{~cm}$) for chromatography. For 26a: Eluents: dichloromethane 100%, then a mixture dichloromethane/ethyl acetate $9 / 1 \mathrm{vol}$ allows the separation of the unreacted porphyrin $\mathbf{2 4 a}$, then a mixture dichloromethane/ethyl acetate $7 / 3$ vol allows the obtention of the desired product. Two unidentified fractions were noticed: one moving close to 26a, the other may be isolated at 100% ethyl acetate. They were obtained in low amount under the conditions described and in higher yield when working at higher concentration.
Yields: 26a: $0.140 \mathrm{~g}(45 \%)$.
For 8-9: dichloromethane/ethyl acetate 3:1 vol. allows the obtention of unreacted 26a-b, followed by dichloromethane and dichloromethane-methanol (97:3 vol.) to get 8-9. (10 $\%)$, 8: $0.030 \mathrm{~g}(40 \%), 90.026 \mathrm{~g}(35 \%)$.

Using chloroacetamido porphyrins
Same procedure as for bromoacetamidoporphyrins.
$1-\mathbf{2 4 b}(0.250 \mathrm{~g}, 0.254 \mathrm{mmol})$ and $\mathbf{1 6}(0.042 \mathrm{~g}, 0.254 \mathrm{mmol})$ stirred for several weeks at room temperature to get 26b: 38 mg (14%).
2 - At $60^{\circ} \mathrm{C}, \mathbf{2 6 b}$ was obtained in 25% yield.
3- Halogen exchange: $\mathbf{2 6 b}(0.038 \mathrm{~g}, 0.035 \mathrm{mmol})$ was mixed with NaI in acetone at 50 ${ }^{\circ} \mathrm{C}$ for $2 \mathrm{~h}, 23(0.016 \mathrm{~g}, 0.035 \mathrm{mmol})$ was added dropwise. $9(8 \%, 0.004 \mathrm{~g})$.
$\alpha, \beta, \alpha, \beta-$ Pyridine-strapped-dibromoacetamidophenyl porphyrin (26a)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.10(\mathrm{~s}, 2 \mathrm{H}), 8.83(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.63 \mathrm{~Hz}), 8.74(\mathrm{~m}, 7 \mathrm{H}), 8.65$ (d, 2H, J = 8.3 Hz), 7.93 (brs, 4H), $7.83(\mathrm{~m}, 8 \mathrm{H}), 7.48(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.49 \mathrm{~Hz}), 4.87(\mathrm{~s}, 2 \mathrm{H})$, $3.21(\mathrm{~s}, 4 \mathrm{H}), 2.72(\mathrm{~s}, 4 \mathrm{H}), 2.14(\mathrm{brs}, 4 \mathrm{H}),-0.17(\mathrm{~s}, 6 \mathrm{H}),-3.03(\mathrm{~s}, 2 \mathrm{H}) ;$ M.S.: m/e = 1162.3 $\mathrm{M}+\mathrm{H}^{+}$for $\mathrm{C}_{61} \mathrm{H}_{51} \mathrm{Br}_{2} \mathrm{~N}_{11} \mathrm{O}_{4}\left(\mathrm{LCQ}-\mathrm{ESI}^{+}\right) ; \lambda_{\text {abs }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\varepsilon, \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) 404$ (sh), 422 (347), 516 (58.9), 552 (9.7), 592 (45), 656 (12) nm; $\mathrm{Rf} 0.3\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate 70:30 vol.).
$\alpha, \beta, \alpha, \beta-$ Pyridine-strapped-dichloroacetamidophenyl porphyrin (26b)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.08$ (s, 2H), $8.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.19 \mathrm{~Hz}), 8.74(\mathrm{~m}, 7 \mathrm{H}), 8.68$ $(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=8.41 \mathrm{~Hz}), 8.19(\mathrm{~s}, 4 \mathrm{H}), 7.83(\mathrm{~m}, 8 \mathrm{H}), 7.48(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.33 \mathrm{~Hz}), 4.86(\mathrm{~s}, 2 \mathrm{H})$, $3.45(\mathrm{~s}, 4 \mathrm{H}), 2.72(\mathrm{~s}, 4 \mathrm{H}), 2.13$ (brs, 4H), -0.17 ($\mathrm{s}, 6 \mathrm{H}$), $-3.03(\mathrm{~s}, 2 \mathrm{H})$; M.S.: $\mathrm{m} / \mathrm{e}=1072.3$ $\mathrm{M}+\mathrm{H}^{+}$for $\mathrm{C}_{61} \mathrm{H}_{51} \mathrm{Cl}_{2} \mathrm{~N}_{11} \mathrm{O}_{4}\left(\mathrm{LCQ}-\mathrm{ESI}^{+}\right) ; \lambda_{\text {abs }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\varepsilon, \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) 402$ (sh), 422 (410), 514 (75), 544 (52), 586 (49.8), 648 (20) nm; Rf $0.3\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate 70:30 vol.)

$\alpha, \beta, \alpha, \beta-$ Methoxyphenyl-containing-tris-imidazole- strapped / pyridine-strapped porphyrin (8a)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.40(\mathrm{~s}, 2 \mathrm{H}), 8.97(\mathrm{~s}, 2 \mathrm{H}), 8.87(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.57 \mathrm{~Hz}), 8.70$ (m, 8H), 8.42 (brs, 1H), 7.91 (brs, 1H), $7.80(\mathrm{~m}, 5 \mathrm{H}), 7.49(\mathrm{~s}, 2 \mathrm{H}), 7.45(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.82$ $\mathrm{Hz}), 7.32(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.84 \mathrm{~Hz}), 6.97(\mathrm{t}, 1 \mathrm{H}), 6.91(\mathrm{brs}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.58$ $(\mathrm{d}, 1 \mathrm{H}), 6.40(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}, o-\mathrm{Py}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}$, $6 \mathrm{H}), 2.50(\mathrm{brm}, 8 \mathrm{H}), 2.32(\mathrm{brm}, 2 \mathrm{H}), 2.06$ (brs, 6 H), 1.38 (brm, 6H), 1.12 (s, 6H), -0.17 $(\mathrm{s}, 6 \mathrm{H}),-3.03(\mathrm{~s}, 2 \mathrm{H})$; M.S.: m/e $=1464.6 \mathrm{M}+\mathrm{H}^{+}$for $\mathrm{C}_{85} \mathrm{H}_{81} \mathrm{~N}_{19} \mathrm{O}_{6}\left(\mathrm{ESI}^{+}\right) ; \lambda_{\text {abs }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(\varepsilon$, $\left.\mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) 423$ (312.8), 518 (16.7), 550 (2.5), 592 (2.6), 658 (0.4) nm; Rf $0.5\left(\mathrm{SiO}_{2}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 98:2 vol.).
$\alpha, \beta, \alpha, \beta-\quad$ allyl-protected-containing-tris-imidazole-strapped / pyridine-strapped porphyrin (9)
${ }^{\mathrm{I}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.45(\mathrm{~s}, 2 \mathrm{H}), 8.97(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 8.70(\mathrm{~m}, 6 \mathrm{H}), 7.97$ (brs, 1 H), $7.85(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.79(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{brs}, 2 \mathrm{H}), 7.46(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.82 \mathrm{~Hz})$, $7.40(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~m}, 5 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~s}$, $1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}, o-\mathrm{Py}), 4.81(\mathrm{~s}, 1 \mathrm{H}, o-\mathrm{Py}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.25$ (brs, 4 H), $3.11(\mathrm{~s}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 4 \mathrm{H}), 2.75$ (brm, 8H), 2.40 (brs, 2H), 2.31 (brs, 2H), 2.05 $(\mathrm{s}, 8 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}), 1.22(\mathrm{brs}, 4 \mathrm{H}),-0.21(\mathrm{~s}, 6 \mathrm{H}),-3.14(\mathrm{~s}, 2 \mathrm{H})$; M.S.: m/e $=1455.7$ for $\mathrm{C}_{84} \mathrm{H}_{86} \mathrm{~N}_{20} \mathrm{O}_{5}$ (ESI $\lambda_{\text {abs }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\varepsilon, \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) 422$ (357), 516 (21), 546 (6.4), 592 (6.9), 650 (7.7) nm; Rf $0.55\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 89: 11\right.$ vol.).

Tripodal triimidazole ligand attachement ($\alpha, \alpha, \alpha, \beta$ porphyrins)

Using chloroacetamido porphyrin.
Under N_{2} atmosphere, a solution of tripodal triamine $\mathbf{2 7}^{2}(0.090 \mathrm{~g}, 0.216 \mathrm{mmol})$ and NaI ($156 \mathrm{mg}, 1 \mathrm{mmol}$) in dry THF (10 mL) was added to a solution of chloroacetamidoporphyrin $\mathbf{2 4 d}(0.200 \mathrm{~g}, 0.174 \mathrm{mmol})$ in THF (150 mL) with a syringe pump ($1 \mathrm{~mL} / \mathrm{h}$) and the solution is stirred at $50^{\circ} \mathrm{C}$ for 3 days (1.08 mM porphyrin). The
solvent is evaporated off and the residue is purified by preparative TLC $\left(\mathrm{SiO}_{2}, 500 \mu \mathrm{~m}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1$ vol. then $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ isopropanol $85: 15$ vol. Yield 10 ($0.016 \mathrm{~g}, 6.3 \%$).

Using bromoacetamido porphyrin.
In a typical reaction, a 1.0 mM solution of α_{3}-tribromoacetamido- β-trityl-porphyrin $\mathbf{2 4 c}$ $(0.050 \mathrm{~g}, 0.039 \mathrm{mmol})$ in THF (40 mL) under nitrogen atmosphere was added a solution of tripodal triamine $27(0.016 \mathrm{~g}, 0.039 \mathrm{mmol})$, and diethylaniline ($25 \mu \mathrm{~L}, 0.156 \mathrm{mmol}$) in THF (10 mL) at a rate of $40 \mathrm{~mL} / \mathrm{h}$ using syringe pump. After the addition was completed, the solution was allowed to stir for an additional $36-72 \mathrm{~h}$ at room temperature. After removing the solvent, the resulting solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and loaded on top of a silica gel column ($25 \times 3 \mathrm{~cm}$). Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ / ethyl acetate 7:3 vol to remove $\mathbf{2 4 c}$ left, and then as described above. $10(0.015 \mathrm{~g}, 28 \%)$.

α_{3}-Triimidazole-capped- β-trityl-porphyrin (10)

${ }^{\mathrm{I}} \mathrm{H}$ NMR (500 MHz, DMSO- $d_{6}, 80{ }^{\circ} \mathrm{C}$): $\delta 9.32$ (brs, 1 H), 8.92 (brs, 1 H), $8.83(\mathrm{~m}, 4 \mathrm{H})$, $8.70(\mathrm{~s}, 4 \mathrm{H}), 8.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.22(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.80(\mathrm{~m}, 5 \mathrm{H}), 7.65(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=7.80 \mathrm{~Hz}), 7.51(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.49 \mathrm{~Hz}), 7.45(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.80 \mathrm{~Hz}), 7.05(\mathrm{~m}$, $2 \mathrm{H}), 6.90(\mathrm{~m}, 15 \mathrm{H}), 6.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 3.20(\mathrm{~d}, 2 \mathrm{H}), 3.05$ $(\mathrm{m}, 9 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~d}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~m}, 4 \mathrm{H}), 2.10$ (brs, $9 \mathrm{H})$, $-2.75(\mathrm{~s}, 2 \mathrm{H})$; M.S.: $\mathrm{m} / \mathrm{e}=1453.3 \mathrm{M}+\mathrm{H}^{+}$for $\mathrm{C}_{89} \mathrm{H}_{81} \mathrm{~N}_{17} \mathrm{O}_{4}\left(\mathrm{LCQ}-\mathrm{ESI}^{+}\right) ; \lambda_{\mathrm{abs}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\varepsilon, \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) 424$ (264.4), 520 (17.7), 558 (4.5), 598 (4.5), 650 (1.5) nm; Rf $0.7\left(\mathrm{SiO}_{2}, \mathrm{NH}_{3}\right.$-saturated $\mathrm{CHCl}_{3} /$ isopropanol 8:2 vol.)

TACN and cyclen capping procedures ($\alpha, \alpha, \alpha, \beta$ and $\alpha, \alpha, \alpha, \alpha$ porphyrins)

In a typical reaction, a 3.1 mM solution of α_{3}-tribromoacetamido- β-trityl-porphyrin $\mathbf{2 4 c}$ $(0.200 \mathrm{~g}, 0.156 \mathrm{mmol})$ or α_{4}-tetrabromoacetamidoporphyrin $24 \mathrm{~d}(0.100 \mathrm{~g}, 0.0861 \mathrm{mmol})$ in THF (50 mL) under nitrogen atmosphere was added a solution of 1,4,7triazacyclononane $(0.021 \mathrm{~g}, 0.1640 \mathrm{mmol})$ or cyclen $(0.015 \mathrm{~g}, 0.086 \mathrm{mmol})$, and diethylaniline ($751 \mu \mathrm{~L}, 4.68 \mathrm{mmol}$) in THF $(20 \mathrm{~mL})$ at a rate of $40 \mathrm{~mL} / \mathrm{h}$ using syringe pump. After the addition was completed, the solution was allowed to stir for an additional 36 h at room temperature. The solvent was removed in vacuo. The resulting solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, water (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and loaded on top of a silica gel column ($20 \times 3 \mathrm{~cm}$). Washings with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by dichloromethane/ethylacetate (7:3 vol.) to remove unreacted 24c, and dichloromethane:methanol. ($9: 1$ vol. For 12, 8:2 vol. For 13) afforded the desired products. $12(0.080 \mathrm{~g}, 44 \%) ; \mathbf{1 3}^{\text {1c }}(0.043 \mathrm{~g}, 50 \%)$.
α_{3}-Triazacyclononane-capped- $\boldsymbol{\beta}$-(o-N-triphenylmethylaminophenyl)porphyrin (12):
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.60$ (brs, 1 H), 9.12 (brs, 1 H), 8.91 (d, $2 \mathrm{H}, \mathrm{J}=4.89 \mathrm{~Hz}$), $8.82(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}), 8.77(\mathrm{~m}, 8 \mathrm{H}), 8.58(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.51 \mathrm{~Hz}), 7.80(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.19$ $\mathrm{Hz}), 7.75(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.33 \mathrm{~Hz}), 7.68(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.38(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.45 \mathrm{~Hz}), 7.15(\mathrm{~m}$, $2 \mathrm{H}), ~ 6.88-6.99(\mathrm{~m}, 15 \mathrm{H}), 6.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.35 \mathrm{~Hz}), 6.31$ (brs, 1H), $4.65(\mathrm{~s}, 1 \mathrm{H}), 2.64(\mathrm{~m}$, 2H), 2.03-1.75 (m, 4H), 1.73 (m, 2H), 1.34 (m, 4H), 0.61 (brs, 2H), -0.20 (brs, 1H), -
1.95 (brs, 1 H), $-2.34(\mathrm{~s}, 2 \mathrm{H}),-2.60($ brs, 2 H$)$. M.S.: $\mathrm{m} / \mathrm{e}=1167.4 \mathrm{M}+\mathrm{H}^{+}$for $\mathrm{C}_{75} \mathrm{H}_{63} \mathrm{~N}_{11} \mathrm{O}_{3}$ $\left(\mathrm{ESI}^{+}\right) ; \lambda_{\text {abs }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\varepsilon, \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) 418$ (345), 516 (24.9), 546 (4.5), 590 (7.2) nm; Rf $0.30\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 96: 4\right.$ vol.).
α_{4}-Tetrazacyclododecane-capped porphyrin (13):
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.75(\mathrm{~s}, 8 \mathrm{H}), 8.60(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 8.57(\mathrm{~s}, 4 \mathrm{H}), 8.18$ $(\mathrm{d}, 4 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 7.86(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.56(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 2.31(\mathrm{~s}, 8 \mathrm{H}), 0.33$ (brs, 8 H), -0.90 (brs, 8 H), -2.73 (brs, 2H). M.S.: m/e $=1005.1 \mathrm{M}-\mathrm{H}^{+}$for $\mathrm{C}_{60} \mathrm{H}_{54} \mathrm{~N}_{12} \mathrm{O}_{4}\left(\mathrm{ESI}^{+}\right)$; $\lambda_{\text {abs }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\varepsilon, \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) 418$ (360), 510 (25.2), 544 (3.4), 586 (6.6) nm; Rf $0.30\left(\mathrm{SiO}_{2}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 96:4 vol.).

Dimethylethylenediamine-strap binding procedures ($\alpha, \alpha, \alpha, \alpha$ porphyrins)

To a 0.7 mM solution of α_{4}-tetrabromoacetamidoporphyrin $\mathbf{2 4 d}(0.040 \mathrm{~g}, 0.034 \mathrm{mmol})$ in THF (50 mL) under nitrogen atmosphere was added a solution of N, N dimethylethylenediamine ($3.6 \mu \mathrm{~L}, 0.0144 \mathrm{~g}, 0.070 \mathrm{mmol}$) and diethylaniline ($100 \mu \mathrm{~L}$, $4.68 \mathrm{mmol})$ in THF (5 mL) at a rate of $10 \mathrm{~mL} / \mathrm{min}$ using syringe pump. After the addition was completed, the solution was allowed to stir for an additional 36 h at room temperature. The solvent was removed in vacuo. The resulting solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, and loaded on top of a short silica pad (10 x 3 cm), washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / ethyl acetate (7:3 vol.) to remove diethylaniline and unreacted $\mathbf{2 4 e}$. Elution with dichloromethane-methanol (80:20 vol.) followed by evaporation of the solvent led to a residue which was chromatographed over preparative TLC $\left(\mathrm{SiO}_{2}, 500 \mathrm{~A}\right.$, eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol 94:6 vol.) afforded the mono-strapped porphyrin $15(0.018 \mathrm{~g}$, $47 \%)$ and the desired product $14(0.009 \mathrm{~g}, 25 \%)$ moving very closely.

α_{4}-Cis,cis-bis-dimethylethylenediamine-straped (14):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.17(\mathrm{~s}, 4 \mathrm{H}), 8.80(4 \mathrm{H}, \mathrm{s}), 8.75(\mathrm{~s}, 4 \mathrm{H}), 8.66(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ 8.03 Hz), $7.83(\mathrm{~m}, 8 \mathrm{H}), 7.47(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.60 \mathrm{~Hz}), 2.65-2.42(\mathrm{~m}, 8 \mathrm{H}), 1.23(\mathrm{~m}, 4 \mathrm{H}), 0.49$ $(\mathrm{s}, 12 \mathrm{H}), 0.29(\mathrm{~s}, 4 \mathrm{H}),-2.56(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{M} . S .: \mathrm{m} / \mathrm{e}=1011.7 \mathrm{M}+\mathrm{H}^{+}$for $\mathrm{C}_{60} \mathrm{H}_{58} \mathrm{~N}_{12} \mathrm{O}_{4}\left(\mathrm{ESI}^{+}\right)$; $\lambda_{\text {abs }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\varepsilon, \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) 422$ (374), 514 (27.1), 548 (6.1), 590 (7.7), 646 (1.5) nm; Rf $0.5\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1 \mathrm{vol}\right.$. $)$
α_{2}-Cis-dimethylethylenediamine-straped- α_{2}-dibromoacetamido-porphyrin (15):
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.91(\mathrm{~s}, 2 \mathrm{H}), 8.80(\mathrm{~m}, 2 \mathrm{H}), 8.76(\mathrm{~s}, 4 \mathrm{H}), 8.67(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $8.19 \mathrm{~Hz}), 8.62(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.30 \mathrm{~Hz}), 8.06(\mathrm{~s}, 2 \mathrm{H}), 7.97(\mathrm{~m}, 4 \mathrm{H}), 7.84(\mathrm{~m}, 4 \mathrm{H}), 7.56(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{J}=7.59 \mathrm{~Hz}), 7.50(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.44 \mathrm{~Hz}), 3.29(\mathrm{~m}, 4 \mathrm{H}), 2.49-2.29(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{brs}, 4 \mathrm{H})$, 0.21 (brs, 6 H$), 0.10(\mathrm{~m}, 2 \mathrm{H}),-2.60(\mathrm{~s}, 2 \mathrm{H})$. M.S.: $\mathrm{m} / \mathrm{e}=1082.2 \mathrm{M}+\mathrm{H}^{+}$for $\mathrm{C}_{56} \mathrm{H}_{48} \mathrm{Br}_{2} \mathrm{~N}_{10} \mathrm{O}_{4}$ $\left(\mathrm{ESI}^{+}\right) ; \lambda_{\text {abs }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\varepsilon, \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) 420$ (288.6), 514 (16.4), 546 (2.5), 588 (4.2) nm; Rf $0.6\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1 \mathrm{vol}\right.$. $)$

Distal Imidazoles Attachment ($\alpha \alpha \alpha \beta$ porphyrin)

Following a procedure earlier reported and modified as follows. To a mixture of cyanoethyl-protected imidazole $28^{1 \mathrm{~b}}(0.141 \mathrm{~g}, 1.17 \mathrm{mmol})$ and diethylaniline (1.17 mmol , $186 \mu \mathrm{~L})$ in THF (20 mL) was added a solution of porphyrin $\mathbf{2 4 c}(0.050 \mathrm{~g}, 0.039 \mathrm{mmol})$ in

THF (30 mL) under nitrogen atmosphere and the mixture was stirred at room temperature for 16 hrs. The imidazole nitrogen deprotection and porphyrin workup was as previously described by mixing the porphyrin with sodium methoxide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for $30 \mathrm{~min} . \mathbf{1 1}^{\text {1b }}$ ($0.0155 \mathrm{~g}, 40 \%$).

Phenol deprotection reaction: To a solution of $8 \mathbf{a}(10 \mathrm{mg}, 6.8 \mu \mathrm{~mol})$ in dry dichloromethane (8 mL) cooled at $-78{ }^{\circ} \mathrm{C}$ was introduced a 1.0 M solution of BBr_{3} in dichloromethane (0.136 mL , ca 25 eq., 0.8 eq. per heteroatom present in $\mathbf{8 a}$). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min and at $0^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with methanol $(100 \mu \mathrm{~L})$ and stirred for 10 min at $0^{\circ} \mathrm{C}$. The mixture was washed with 50% saturated aqueous NaHCO_{3} solution ($2 \times 50 \mathrm{~mL}$), $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, then dried and the solvent was evaporated under reduced pressure. The crude was chromatographied on preparative silica plates (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 90 / 10$ vol.). $8 \mathrm{~b} 4 \mathrm{mg}, 40 \%$.

$\alpha, \beta, \alpha, \beta-$ phenol-containing-tris-imidazole- strapped / pyridine-strapped porphyrin (8b)

${ }^{\mathrm{I}} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.40(\mathrm{~s}, 2 \mathrm{H}), 9.10(\mathrm{brs}, 1 \mathrm{H}), 9.00(\mathrm{~s}, 2 \mathrm{H}), 8.86(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=8.57 \mathrm{~Hz}), 8.70(\mathrm{~m}, 7 \mathrm{H}), 8.62(\mathrm{brs}, 1 \mathrm{H}), 8.06(\mathrm{brs}, 1 \mathrm{H}), 7.80(\mathrm{~m}, 5 \mathrm{H}), 7.49(\mathrm{~s}, 2 \mathrm{H})$, 7.45 (t, 2H, J = 7.82 Hz), 7.32 (t, 3H, J = 6.84 Hz), 7.03 (t, 1H), 6.91 (brs, 1H), 6.86 $(\mathrm{s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~d}, 1 \mathrm{H}), 6.40(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}$, o-Py), 2.70 (s, 6H), 2.50 (brm, 8H), 2.32 (brm, 2H), 2.06 (brs, 6H), 1.38 (brm, 6H), $1.12(\mathrm{~s}, 6 \mathrm{H}),-0.17(\mathrm{~s}, 6 \mathrm{H}),-3.03(\mathrm{~s}, 2 \mathrm{H})$; M.S.(ESI +): $\mathrm{m} / \mathrm{e}=1483.4 \mathrm{M}+\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}^{+}$ for $\mathrm{C}_{84} \mathrm{H}_{79} \mathrm{~N}_{19} \mathrm{O}_{6}$; M.S.(ESI+, 30eV): m/e $=1450.6 \mathrm{M}+\mathrm{H}^{+}$for $\mathrm{C}_{84} \mathrm{H}_{79} \mathrm{~N}_{19} \mathrm{O}_{6}, 1361.5$ $\left(\mathrm{MH}^{+}-6 \mathrm{CH}_{3}\right) ; \lambda_{\text {abs }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\varepsilon, \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) 422$ (387.7), 516 (29.4), 548 (9.6), 592 (10.1), 654 (4.7) nm; Rf $0.4\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right.$ vol. $)$.

References

1. (a) Collman, J.P.; Gagne, R. R.; Reed, C. A.; Halbert, T. R.; Lang, G.; Robinson, W. T.; J. Am. Chem. Soc. 1975, 97, 1427. (b) Collman, J.P.; Broring, M.; Fu, L.; Rapta, M.; Schwenniger, R. J. Org. Chem. 1998, 63, 8084. (c) Collman, J.P.; Broring, M.; Fu, L.; Rapta, M.; Schwenniger, R.; Straumanis, A. J. Org. Chem. 1998, 63, 8082. (d) Collman, J. P.; Boitrel, B.; Fu, L.; Galanter, J.; Straumanis, A.; Rapta, M. J. Org. Chem. 1997, 62, 2308.
2. (a)Collman, J. P.; Zhong, M.; Costanzo, S.; Zhang, C. J. Org. Chem. 2001, 66, 8252.
3. (a) Momenteau, M.; Mispelter, J.; Loock, B.; Bisagni, E. J. Chem. Soc. Perkin Trans I 1983, 189. (b) Palecek, J.; Ptackova, L.; Kuthan, J. Coll. Czechosl. Chem. Commun. 1969, 34, 427. (c) Queguiner, G.; Pastour, P. C. R. Acad. Sci. Paris (C) 1966, 262, 1335 (d) Queguiner, G.; Pastour, P. Bull. Soc. Chim. Fr. 1968, 4117. (e) (f) Choma, C. T.; Kaeslte, K.; Akerfeldt, K. S.; Kim, R. M.; Groves, J. T.; DeGrado, W. F. Tetrahedron Letters, 1994, 35, 6191. (g) Luenig, U.; Baumstark, R.; Peters, K.; Van Schnering, H. G. Liebigs Annalen der Chemie 1990, 2, 129. (h) Jaisankar, P.; Pal, B. Giri, V. S. Synth. Commun. 2002, 32, 2569. (i) Org. React. 1954, VIII, 232; (j) McFayden, J.S.; Stevens, T.S. J. Chem. Soc. 1936, 584. (k) Habermann, J.; Ley, S. V.; Scott, J. S. Perkin 1 1999, 1253.

S-14

